CN109449373B - 负极极片及电池 - Google Patents

负极极片及电池 Download PDF

Info

Publication number
CN109449373B
CN109449373B CN201811208744.7A CN201811208744A CN109449373B CN 109449373 B CN109449373 B CN 109449373B CN 201811208744 A CN201811208744 A CN 201811208744A CN 109449373 B CN109449373 B CN 109449373B
Authority
CN
China
Prior art keywords
negative electrode
negative
battery
active material
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811208744.7A
Other languages
English (en)
Other versions
CN109449373A (zh
Inventor
王家政
康蒙
申玉良
何立兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Contemporary Amperex Technology Co Ltd
Original Assignee
Contemporary Amperex Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Contemporary Amperex Technology Co Ltd filed Critical Contemporary Amperex Technology Co Ltd
Priority to CN201811208744.7A priority Critical patent/CN109449373B/zh
Publication of CN109449373A publication Critical patent/CN109449373A/zh
Priority to PCT/CN2019/111331 priority patent/WO2020078358A1/zh
Priority to EP19872955.0A priority patent/EP3790081A4/en
Priority to US16/973,536 priority patent/US11469418B2/en
Application granted granted Critical
Publication of CN109449373B publication Critical patent/CN109449373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供了一种负极极片及电池,所述负极极片包括负极集流体以及设置于负极集流体至少一个表面上且包括负极活性材料的负极膜片,且所述负极膜片满足:4≤P×[(30‑Dv50)/2+2×(10‑M)]≤20。其中,P为负极膜片的孔隙率;Dv50为负极活性材料的体积中位粒径,单位为μm;M为负极膜片单位面积的容量,单位为mAh/cm2。本发明的负极极片具有动力学性能优异的特点,本发明的电池同时兼顾动力学性能优异、循环寿命长、能量密度较高的特点。

Description

负极极片及电池
技术领域
本发明涉及电池领域,尤其涉及一种负极极片及电池。
背景技术
可充电电池具有重量轻、能量密度高、无污染、无记忆效应、使用寿命长等突出特点,因而被广泛应用于手机、电脑、家用电器、电动工具等。其中,充电时间越来越受到终端消费者的重视,也是限制可充电电池普及的重要因素。
从技术原理来说,电池快速充电技术的核心是通过化学体系调和及设计优化来提升离子在正负极间的移动速度。如果负极无法承受大电流充电,在电池快速充电时离子会在负极表面直接还原析出而不是嵌入负极活性材料中,同时在电池快速充电时负极表面还会产生大量副产物,影响电池的循环寿命和安全性。因此,电池快速充电技术的关键在于负极活性材料以及负极极片的设计。
发明内容
鉴于背景技术中存在的问题,本发明的目的在于提供一种负极极片及电池,所述负极极片具有动力学性能优异的特点,所述电池能同时兼顾动力学性能优异、循环寿命长、能量密度较高的特点。
为了达到上述目的,在本发明的第一方面,本发明提供了一种负极极片,其包括负极集流体以及设置于负极集流体至少一个表面上且包括负极活性材料的负极膜片,且所述负极膜片满足:4≤P×[(30-Dv50)/2+2×(10-M)]≤20。其中,P为负极膜片的孔隙率;Dv50为负极活性材料的体积中位粒径,单位为μm;M为负极膜片单位面积的容量,单位为mAh/cm2
在本发明的第二方面,本发明提供了一种电池,其包括根据本发明第一方面所述的负极极片。
相对于现有技术,本发明至少包括如下所述的有益效果:本发明通过调节负极膜片的孔隙率P、负极膜片单位面积的容量M以及负极活性材料的体积中位粒径Dv50之间的关系,得到了同时兼顾优异动力学性能、长循环寿命以及较高能量密度的电池。
具体实施方式
下面详细说明根据本发明的负极极片及电池。
首先说明根据本发明第一方面的负极极片,其包括负极集流体以及设置于负极集流体至少一个表面上且包括负极活性材料的负极膜片,且所述负极膜片满足:4≤P×[(30-Dv50)/2+2×(10-M)]≤20。其中,P为负极膜片的孔隙率;Dv50为负极活性材料的体积中位粒径,单位为μm;M为负极膜片单位面积的容量,单位为mAh/cm2。需要说明的是,负极膜片单位面积的容量M是指位于负极集流体其中任一个表面上的负极膜片单位面积的容量。
在本发明的一些实施方式中,P×[(30-Dv50)/2+2×(10-M)]的下限值可以为4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9,P×[(30-Dv50)/2+2×(10-M)]的上限值可以为8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20。优选地,6≤P×[(30-Dv50)/2+2×(10-M)]≤15;进一步优选地,8≤P×[(30-Dv50)/2+2×(10-M)]≤12。
在电池充电过程中,对于负极极片来说,需要经过如下的3个电化学过程:(1)正极活性材料脱出的离子(例如锂离子、钠离子等)进入电解液中,并随着电解液进入负极多孔电极的孔道中,进行离子在负极多孔电极孔道内部的液相扩散过程;(2)离子穿过负极活性材料表面的SEI膜并与电子在负极活性材料表面发生电荷交换;(3)离子进入负极活性材料体相内部并进行固相扩散和积累。上述3个电化学过程的阻力越小,越有利于提升电池快速充电能力,电池的动力学性能也越优异;反之,上述3个电化学过程的阻力越大,越不利于提升电池快速充电能力,电池的动力学性能也越差。
通常,负极膜片的孔隙率P越小,离子在负极多孔电极孔道内部液相扩散阻力就越大,越不利于提升电池快速充电能力,电池的动力学性能也越差;反之,负极膜片的孔隙率P越大,离子在负极多孔电极孔道内部液相扩散阻力就越小,原则上越有利于提升电池快速充电能力,电池的动力学性能也越优异。但是负极膜片的孔隙率P变大时,负极膜片中负极活性材料颗粒与颗粒之间堆积程度变得松散,颗粒与颗粒之间的电子接触变差,电子传导性能恶化,离子与电子在负极活性材料表面电荷交换阻力趋向于增加,由此影响了对电池动力学性能的提升效果。同时,负极膜片的孔隙率P变大时,负极高体积能量密度的优势逐渐丧失,由此还影响了电池的能量密度。
通常,负极活性材料的体积中位粒径Dv50越小,那么电池充电时离子与电子在负极活性材料表面电荷交换阻力越小,离子在负极活性材料体相内部固相扩散以及积累阻力也越小,但同时,发生小粒径负极活性材料堵塞负极多孔电极孔道的概率也越高,离子在负极多孔电极孔道内部液相传导路径延长、液相扩散阻力增加,由此影响了对电池动力学性能的提升效果。且负极活性材料的体积中位粒径Dv50越小,负极高体积能量密度的优势逐渐丧失,由此还影响了电池的能量密度。
通常,负极膜片单位面积的容量M越小,离子在负极活性材料体相内部积累速率越快,越有利于提升电池快速充电能力,电池的动力学性能也越优异,但同时负极膜片单位面积的容量M越小,电池能量密度以及循环寿命受到的负面影响也越大。
因此,负极活性材料以及负极极片的不同参数对电池循环寿命、能量密度以及动力学性能的影响程度是不一样的,仅靠上述参数自身优化,对实现电池同时兼顾优异动力学性能、长循环寿命以及较高能量密度方面存在很大的局限性。
发明人通过大量研究发现,当负极膜片的孔隙率P(无量纲)、负极活性材料的体积中位粒径Dv50(单位为μm)、负极膜片单位面积的容量M(单位为mAh/cm2)满足4≤P×[(30-Dv50)/2+2×(10-M)]≤20时,离子在负极多孔电极孔道内部液相传导阻力、离子与电子在负极活性材料表面电荷交换阻力以及离子在负极活性材料体相内部固相扩散以及积累阻力均保持在较小程度,负极极片可具有优异的动力学性能以及高的体积能量密度,由此可以使电池具有优异动力学性能同时兼顾长循环寿命以及较高能量密度的优势。
在本发明第一方面的负极极片中,优选地,所述负极膜片的孔隙率P为20%~65%;进一步优选地,所述负极膜片的孔隙率P为22%~60%;更进一步优选地,所述负极膜片的孔隙率P为22%~55%。负极膜片的孔隙率落入上述优选范围内时,离子在负极多孔电极孔道内部液相扩散阻力以及离子与电子在负极活性材料表面电荷交换阻力均较小,负极极片可具有更优异的动力学性能;同时,负极膜片保有电解液的能力也更好,可保证负极活性材料颗粒与颗粒之间具有良好的电解液浸润性,且负极活性材料和电解液之间的界面电荷转移阻抗也更低,电池动力学性能以及循环寿命可得到进一步提升。
在本发明第一方面的负极极片中,优选地,所述负极活性材料的体积中位粒径Dv50为4μm~20μm;进一步优选地,所述负极活性材料的体积中位粒径Dv50为4μm~18μm;更进一步优选地,所述负极活性材料的体积中位粒径Dv50为4μm~16μm。负极活性材料的体积中位粒径落入上述优选范围内时,负极极片的均一性可更高,由此可以避免负极活性材料粒径太小与电解液产生较多的副反应而影响对电池性能的改善效果,还可以避免粒径太大阻碍离子在负极活性材料体相内部的固相扩散以及积累而影响对电池性能的改善效果。
在本发明第一方面的负极极片中,优选地,所述负极膜片单位面积的容量M控制在0.5mAh/cm2~7.0mAh/cm2;进一步优选地,所述负极膜片单位面积的容量M控制在1.0mAh/cm2~6.0mAh/cm2;更进一步优选地,所述负极膜片单位面积的容量M控制在1.0mAh/cm2~5.5mAh/cm2。负极膜片单位面积的容量落入上述优选范围内时,负极极片可在保持优异动力学性能的同时兼具高体积能量密度优势,进而电池可以在更好地提升动力学性的同时保持较高能量密度优势。
其中,负极活性材料的克容量(单位mAh/g)、负极极片单位面积涂布重量(单位g/cm2)以及负极活性材料在负极膜片中所占比例均会影响负极膜片单位面积的容量M(单位mAh/cm2)。通常,在其它制备条件相同的情况下,负极活性材料的克容量越高、负极极片单位面积涂布重量越高、负极活性材料在负极膜片中所占比例越高,负极膜片单位面积的容量M越大,电池的快速充电能力越弱,电池的动力学性能也越差。这是由于负极活性材料的克容量越高,在相同条件下离子在负极活性材料体相内部固相扩散以及积累阻力越大;负极极片单位面积涂布重量越高、负极活性材料在负极膜片中所占比例越高,负极膜片的厚度越大,离子在负极多孔电极孔道内部液相扩散路径就越长、离子液相扩散阻力越大,越不利于电池动力学性能的提升。
在本发明第一方面的负极极片中,优选地,所述负极活性材料可选自碳材料、硅基材料、锡基材料、钛酸锂中的一种或几种。其中,所述碳材料可选自石墨、软碳、硬碳、碳纤维、中间相碳微球中的一种或几种;所述石墨可选自人造石墨、天然石墨中的一种或几种;所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅合金中的一种或几种;所述锡基材料可选自单质锡、锡氧化合物、锡合金中的一种或几种。更优选地,所述负极活性材料可选自碳材料、硅基材料中的一种或几种。
在本发明第一方面的负极极片中,优选地,所述负极极片单位面积涂布重量为1mg/cm2~22mg/cm2;进一步优选地,所述负极极片单位面积涂布重量为2mg/cm2~18mg/cm2;更进一步优选地,所述负极极片单位面积涂布重量为4mg/cm2~12mg/cm2。负极极片单位面积涂布重量落入上述优选范围内时,负极极片可在保持优异动力学性能的同时兼具高体积能量密度优势,进而电池可以在更好地提升动力学性能的同时保持较高能量密度优势。
在本发明第一方面的负极极片中,在其它条件相同的情况下,负极膜片的压实密度PD越小,则负极多孔电极的孔道结构越发达,越有利于离子在负极多孔电极孔道内部的液相扩散,尤其是在电池经历多次充放电并出现反复膨胀收缩的严苛条件下,仍可以保证离子在负极多孔电极孔道内部液相扩散阻力保持在较小程度。但负极膜片的压实密度过小,会导致负极极片脱膜掉粉,充电时电子电导较差而使离子直接在负极表面还原析出,影响电池的动力学性能和循环寿命,同时也会降低电池的能量密度。优选地,所述负极膜片的压实密度PD为0.8g/cm3~2.0g/cm3;进一步优选地,所述负极膜片的压实密度PD为1.0g/cm3~1.6g/cm3。负极膜片的压实密度落入上述优选范围内时,可以在更好地提升电池动力学性能的同时保持电池较高能量密度优势。
在本发明第一方面的负极极片中,除了负极膜片的孔隙率P、负极膜片单位面积的容量M、负极活性材料的体积中位粒径Dv50对电池动力学性能影响很大之外,负极膜片与负极集流体之间的粘接力F也会对电池动力学性能产生影响。负极膜片与负极集流体之间的粘接力F越大,电子经过负极集流体到达负极膜片的传导能力越好,离子与电子在负极活性材料表面电荷交换阻力越小,电池动力学性能越优异;但负极膜片与负极集流体之间的粘接力F过大可能会降低电池的能量密度。发明人通过大量研究发现,当负极膜片与负极集流体之间的粘接力F(单位N/m)与负极膜片单位面积的容量M(单位mAh/cm2)满足M/3≤F≤6M时,可以更好地提升电池动力学性能以及循环性能,同时保证电池具有较高能量密度的优势。优选地,负极膜片与负极集流体之间的粘接力满足M/2≤F≤5M。
需要说明的是,在负极极片单位面积涂布重量一定的情况下,负极膜片与负极集流体之间的粘接力大小与负极膜片中粘结剂含量、粘结剂种类、负极膜片压实密度等因素有关,本领域技术人员可以根据实际情况选择公知的方法来调节负极膜片与负极集流体之间的粘接力大小。
在本发明第一方面的负极极片中,所述负极膜片可设置在负极集流体的其中一个表面上也可以设置在负极集流体的两个表面上。所述负极膜片还可包括导电剂以及粘接剂,且导电剂以及粘接剂的种类和含量不受具体的限制,可根据实际需求进行选择。所述负极集流体的种类也不受具体的限制,可根据实际需求进行选择,优选可使用铜箔。
需要说明的是,当负极膜片同时设置在负极集流体两个表面上时,只要其中任意一个表面上的负极膜片满足本发明,即认为该负极极片落入本发明的保护范围内。同时本发明所给的各负极膜片参数也均指单面负极膜片的参数。
其次说明根据本发明第二方面的电池,其包括根据本发明第一方面所述的负极极片。
进一步,所述电池还包括正极极片、隔离膜以及电解液。
需要说明的是,根据本申请第二方面的电池可为锂离子电池、钠离子电池以及任何其它使用本发明第一方面所述负极极片的电池。
具体的,当电池为锂离子电池时:所述正极极片可包括正极集流体以及设置在正极集流体至少一个表面上且包括正极活性材料的正极膜片,所述正极活性材料可选自锂钴氧化物、锂镍氧化物、锂锰氧化物、锂镍锰氧化物、锂镍钴锰氧化物、锂镍钴铝氧化物、橄榄石结构的含锂磷酸盐等,但本申请并不限定于这些材料,还可以使用其他可被用作锂离子电池正极活性材料的传统公知的材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。优选地,所述正极活性材料可选自LiCoO2、LiNiO2、LiMnO2、LiMn2O4、LiNi1/3Co1/3Mn1/3O2(NCM333)、LiNi0.5Co0.2Mn0.3O2(NCM523)、LiNi0.6Co0.2Mn0.2O2(NCM622)、LiNi0.8Co0.1Mn0.1O2(NCM811)、LiNi0.85Co0.15Al0.05O2、LiFePO4、LiMnPO4中的一种或几种。
具体的,当电池为钠离子电池时:所述正极极片可包括正极集流体以及设置在正极集流体至少一个表面上且包括正极活性材料的正极膜片,所述正极活性材料可选自过渡金属氧化物NaxMO2(M为过渡金属,优选选自Mn、Fe、Ni、Co、V、Cu、Cr中的一种或几种,0<x≤1)、聚阴离子材料(磷酸盐、氟磷酸盐、焦磷酸盐、硫酸盐)、普鲁士蓝材料等,但本申请并不限定于这些材料,本申请还可以使用其他可被用作钠离子电池正极活性材料的传统公知的材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。优选地,所述正极活性材料可选自NaFeO2、NaCoO2、NaCrO2、NaMnO2、NaNiO2、NaNi1/2Ti1/2O2、NaNi1/2Mn1/2O2、Na2/3Fe1/3Mn2/3O2、NaNi1/3Co1/3Mn1/3O2、NaFePO4、NaMnPO4、NaCoPO4、普鲁士蓝材料、通式为AaMb(PO4)cOxY3-x的材料(其中A选自H+、Li+、Na+、K+、NH4+中的一种或几种,M为过渡金属阳离子,优选选自V、Ti、Mn、Fe、Co、Ni、Cu、Zn中的一种或几种,Y为卤素阴离子,优选选自F、Cl、Br中的一种或几种,0<a≤4,0<b≤2,1≤c≤3,0≤x≤2)中的一种或几种。
在本发明第二方面的电池中,所述隔离膜设置在正极极片和负极极片之间,起到隔离的作用。其中,所述隔离膜的种类并不受到具体的限制,可以是现有电池中使用的任何隔离膜材料,例如聚乙烯、聚丙烯、聚偏氟乙烯以及它们的多层复合膜,但不仅限于这些。
在本发明第二方面的电池中,所述电解液包括电解质盐以及有机溶剂,其中电解质盐和有机溶剂的具体种类不受到具体的限制,可根据实际需求进行选择。所述电解液还可包括添加剂,添加剂种类没有特别的限制,可以为负极成膜添加剂,也可为正极成膜添加剂,也可以为能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温性能的添加剂、改善电池低温性能的添加剂等。
下面以锂离子电池为例并结合具体实施例,进一步阐述本申请。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。在下述实施例中,除非另有说明,所用到的原料均可商购获得。
一、实施例1-22和对比例1-4的锂离子电池均按照下述方法进行制备
(1)正极极片的制备
将正极活性材料(详见表1)、导电剂导电碳黑SP、粘接剂聚偏氟乙烯(PVDF)按质量比96:2:2进行混合,加入溶剂N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌至体系呈均一状,获得正极浆料;将正极浆料均匀涂覆在正极集流体铝箔的两个表面上,室温晾干后转移至烘箱继续干燥,然后经过冷压、分切得到正极极片。
(2)负极极片的制备
将负极活性材料(详见表1)、导电剂导电碳黑SP、增稠剂羧甲基纤维素钠(CMC)、粘接剂丁苯橡胶(SBR)按一定质量比进行混合,加入溶剂去离子水,在真空搅拌机作用下搅拌至体系呈均一状,获得负极浆料;将负极浆料均匀涂覆在负极集流体铜箔的两个表面上,室温晾干后转移至烘箱继续干燥,然后经过冷压、分切得到负极极片。
(3)电解液的制备
将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按照按体积比1:1:1进行混合得到有机溶剂,接着将充分干燥的锂盐LiPF6溶解于混合后的有机溶剂中,配制成浓度为1mol/L的电解液。
(4)隔离膜的制备
选择聚乙烯膜作为隔离膜。
(5)锂离子电池的制备
将上述正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正、负极极片之间起到隔离的作用,然后卷绕得到裸电芯;将裸电芯置于外包装壳中,干燥后注入电解液,经过真空封装、静置、化成、整形等工序,获得锂离子电池。
二、负极活性材料及负极极片参数测定
(1)负极活性材料的体积中位粒径Dv50可通过使用激光衍射粒度分布测量仪(Mastersizer 3000)测试得到,Dv50表示负极活性材料累计体积百分数达到50%时所对应的粒径。
(2)负极膜片的孔隙率P可通过气体置换法得到,孔隙率P=(V1-V2)/V1×100%,V1表示负极膜片的表观体积,V2表示负极膜片的真实体积。
(3)负极膜片单位面积的容量M可通过如下方法测试得到:
取各实施例及对比例制备的负极极片,利用冲片模具获得一定面积的单面涂覆的负极小圆片。以金属锂片为对电极、Celgard膜为隔离膜,采用上述各实施例及对比例制备的电解液,在氩气保护的手套箱中组装6个CR2430型扣式电池。扣式电池组装完后静置12h,之后进行测试。首先在0.05C的放电电流下进行恒流放电,直到电压为5mV;然后再用50μA的放电电流进行恒流放电,直到电压为5mV;接着用10μA的放电电流进行恒流放电,直到电压为5mV;静置5min,最后在0.05C的充电电流下进行恒流充电,直到最终电压为2V,记录此步骤的充电容量。6个扣式电池充电容量的平均值即为负极膜片的平均充电容量。
负极膜片单位面积的容量M=负极膜片的平均充电容量/负极小圆片的面积。
(4)负极膜片与负极集流体之间的粘接力
负极膜片与负极集流体之间的粘接力测试可参考国家标准GB/T2790-1995胶粘剂180°剥离强度试验方法,具体操作时可利用高铁拉力机以50mm/min的剥离速度进行180°剥离力测试,60mm负极膜片从负极集流体上完全剥离时所采集的剥离力平均值即为负极膜片与负极集流体之间的粘接力。
三、电池性能测试
(1)动力学性能测试
在25℃下,将实施例和对比例制备得到的电池以x C满充、以1C满放重复10次后,再将电池以x C满充,然后拆解出负极极片,并观察负极极片表面析锂情况。如果负极表面未析锂,则将充电倍率x C以0.1C为梯度递增再次进行测试,直至负极表面析锂,停止测试,此时的充电倍率x C减去0.1C即为电池的最大充电倍率。
(2)实际能量密度测试
在25℃下,将实施例和对比例制备得到的电池以1C倍率满充、以1C倍率满放,记录此时的实际放电能量;在25℃下,使用电子天平对该电池进行称重;电池1C实际放电能量与电池重量的比值即为电池的实际能量密度。
其中,实际能量密度小于预期能量密度的80%时,认为电池实际能量密度非常低;实际能量密度大于等于预期能量密度的80%且小于预期能量密度的95%时,认为电池实际能量密度偏低;实际能量密度大于等于预期能量密度的95%且小于预期能量密度的105%时,认为电池实际能量密度适中;实际能量密度大于等于预期能量密度的105%且小于预期能量密度的120%时,认为电池实际能量密度较高;实际能量密度为预期能量密度的120%以上时,认为电池实际能量密度非常高。
(3)循环寿命测试
在25℃下,将实施例和对比例制备得到的电池以3C倍率充电、以1C倍率放电,进行满充满放循环测试,直至电池的容量小于初始容量的80%,记录电池的循环圈数。
表1:实施例1-22和对比例1-4的参数
Figure BDA0001831892470000101
Figure BDA0001831892470000111
注:公式1=P×[(30-Dv50)/2+2×(10-M)]
表2:实施例1-22和对比例1-4的性能测试结果
Figure BDA0001831892470000112
Figure BDA0001831892470000121
从表2的测试结果可以看出:实施例1-22的负极极片均满足4≤P×[(30-Dv50)/2+2×(10-M)]≤20,电池可同时兼顾优异动力学性能、长循环寿命以及较高能量密度的特点。这是由于负极膜片的孔隙率P、负极膜片单位面积的容量M以及负极活性材料的体积中位粒径Dv50之间的匹配关系良好,锂离子在负极多孔电极孔道内部液相扩散阻力、锂离子与电子在负极活性材料表面电荷交换阻力以及锂离子在负极活性材料体相内部固相扩散以及积累阻力均较小,由此电池能同时兼顾优异动力学性能、长循环寿命以及较高能量密度的特点。
与实施例1-22相比,在对比例1-4中,负极膜片的孔隙率P、负极膜片单位面积的容量M以及负极活性材料的体积中位粒径Dv50没有合理匹配,导致P×[(30-Dv50)/2+2×(10-M)]不在所给范围内,难以满足电池优异动力学性能、长循环寿命以及较高能量密度的需求。
其中,负极膜片的孔隙率P优选控制在20%~65%之间,在上述优选范围内,电池可兼顾优异的动力学性能以及较长的循环寿命。负极膜片单位面积的容量M优选控制在0.5mAh/cm2~7.0mAh/cm2之间,在上述优选范围内,电池可兼顾较长的循环寿命以及较高的能量密度。负极活性材料的体积中位粒径Dv50优选控制在4μm~20μm之间,在上述优选范围内,电池可兼顾优异的动力学性能以及较高的能量密度。
但是当负极膜片的孔隙率P、负极膜片单位面积容量M、负极活性材料体积中位粒径Dv50中的一个或几个参数未能满足上述优选范围时,只要保证4≤P×[(30-Dv50)/2+2×(10-M)]≤20,结合实施例15-20,电池仍可在不牺牲能量密度的前提下具有良好的动力学性能以及循环性能。
从实施例11以及对比例3-4中可知,当电池选用不同的正、负极活性材料时,只要负极极片满足4≤P×[(30-Dv50)/2+2×(10-M)]≤20,电池仍可同时兼顾优异动力学性能、长循环寿命以及较高能量密度的特点。
进一步地,当调节负极膜片与负极集流体之间的粘接力F以及负极膜片单位面积的容量M之间的关系使其满足M/3≤F≤6M时,可以更好地提升电池动力学性能以及循环性能,同时保证电池具有较高能量密度的优势。
结合实施例21,负极膜片与负极集流体之间的粘接力F较小,负极活性材料颗粒与颗粒之间的电子接触较差、负极膜片与负极集流体之间的电子接触也较差,电子经过负极集流体到达负极膜片的传导能力较差,锂离子与电子在负极活性材料表面电荷交换阻力较大,因此与实施例8相比,实施例21对电池动力学性能以及循环性能的提升效果略差。结合实施例22,负极膜片与负极集流体之间的粘接力F过大,在这个过程中负极膜片加入了大量导电性较差的粘接剂,电池的能量密度会降低,同时电子经过负极集流体到达负极膜片的传导能力较差,锂离子与电子在负极活性材料表面电荷交换阻力较大,因此与实施例9相比,实施例22对电池动力学性能以及循环性能的提升效果也略差。
根据上述说明书的揭示和教导,本领域技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (15)

1.一种电池,包括正极极片、负极极片、电解液以及隔离膜,所述正极极片包括正极集流体以及设置在正极集流体至少一个表面上且包括正极活性材料的正极膜片,所述负极极片包括负极集流体以及设置在负极集流体至少一个表面上且包括负极活性材料的负极膜片;
其特征在于,
所述负极活性材料包括石墨;
所述负极膜片满足:6≤P×[(30-Dv50)/2+2×(10-M)]≤15;
所述负极活性材料的体积中位粒径Dv50为4μm~16μm;
所述负极膜片单位面积的容量M为1.0mAh/cm2~5.5mAh/cm2
其中,
P为负极膜片的孔隙率;
Dv50为负极活性材料的体积中位粒径,单位为μm;
M为负极膜片单位面积的容量,单位为mAh/cm2
2.根据权利要求1所述的电池,其特征在于,所述负极膜片满足:8≤P×[(30-Dv50)/2+2×(10-M)]≤12。
3.根据权利要求2所述的电池,其特征在于,所述负极膜片满足:8.7≤P×[(30-Dv50)/2+2×(10-M)]≤11.4。
4.根据权利要求1-3中任一项所述的电池,其特征在于,所述负极膜片的孔隙率P为20%~50%。
5.根据权利要求4所述的电池,其特征在于,所述负极膜片的孔隙率P为30%~50%。
6.根据权利要求1所述的电池,其特征在于,所述负极活性材料的体积中位粒径Dv50为4μm~12μm。
7.根据权利要求1所述的电池,其特征在于,所述负极膜片单位面积的容量M为1.58mAh/cm2~3.13mAh/cm2
8.根据权利要求1所述的电池,其特征在于,所述负极极片单位面积涂布重量为4mg/cm2~12mg/cm2
9.根据权利要求8所述的电池,其特征在于,所述负极极片单位面积涂布重量为6.3mg/cm2~8.9mg/cm2
10.根据权利要求1所述的电池,其特征在于,所述负极膜片的压实密度PD为1.0g/cm3~1.6g/cm3
11.根据权利要求1所述的电池,其特征在于,负极膜片与负极集流体之间的粘接力F与负极膜片单位面积的容量M满足:M/3≤F≤6M;
其中,
F的单位为N/m;
M的单位为mAh/cm2
12.根据权利要求11所述的电池,其特征在于,负极膜片与负极集流体之间的粘接力F与负极膜片单位面积的容量M满足:M/2≤F≤5M。
13.根据权利要求1所述的电池,其特征在于,所述石墨选自人造石墨、天然石墨中的一种或几种。
14.根据权利要求1所述的电池,其特征在于,所述负极活性材料还包括软碳、硬碳、硅基材料中的一种或几种。
15.根据权利要求1所述的电池,其特征在于,所述正极活性材料选自锂镍钴锰氧化物、锂镍钴铝氧化物、橄榄石结构的含锂磷酸盐中的一种或几种。
CN201811208744.7A 2018-10-17 2018-10-17 负极极片及电池 Active CN109449373B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201811208744.7A CN109449373B (zh) 2018-10-17 2018-10-17 负极极片及电池
PCT/CN2019/111331 WO2020078358A1 (zh) 2018-10-17 2019-10-15 负极极片及电池
EP19872955.0A EP3790081A4 (en) 2018-10-17 2019-10-15 NEGATIVE ELECTRODE SHEET AND BATTERY
US16/973,536 US11469418B2 (en) 2018-10-17 2019-10-15 Negative electrode sheet and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811208744.7A CN109449373B (zh) 2018-10-17 2018-10-17 负极极片及电池

Publications (2)

Publication Number Publication Date
CN109449373A CN109449373A (zh) 2019-03-08
CN109449373B true CN109449373B (zh) 2020-09-11

Family

ID=65546905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811208744.7A Active CN109449373B (zh) 2018-10-17 2018-10-17 负极极片及电池

Country Status (4)

Country Link
US (1) US11469418B2 (zh)
EP (1) EP3790081A4 (zh)
CN (1) CN109449373B (zh)
WO (1) WO2020078358A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449373B (zh) * 2018-10-17 2020-09-11 宁德时代新能源科技股份有限公司 负极极片及电池
CN112909220A (zh) 2019-12-04 2021-06-04 宁德时代新能源科技股份有限公司 二次电池及含有它的装置
KR20220115812A (ko) * 2020-01-02 2022-08-18 닝더 엠프렉스 테크놀로지 리미티드 음극 및 이를 포함하는 전기 화학 디바이스
CN111337842A (zh) * 2020-02-20 2020-06-26 东莞维科电池有限公司 一种锂离子电池负极片最优压实密度的测试方法
WO2021189454A1 (zh) * 2020-03-27 2021-09-30 宁德新能源科技有限公司 一种电极组件及包含其的电化学装置和电子装置
CN113097438B (zh) * 2021-03-31 2022-08-12 宁德新能源科技有限公司 电化学装置和电子装置
CN114267862A (zh) * 2021-12-27 2022-04-01 华秦储能技术有限公司 一种全钒液流电池混合储能体系及组成的电堆
CN115172667B (zh) * 2022-09-07 2022-11-18 中创新航科技股份有限公司 一种电池负极片及其制备方法、应用其的锂离子电池
CN115632175B (zh) * 2022-11-02 2023-12-15 江苏正力新能电池技术有限公司 一种负极补锂快充极片及快充电池
CN116632170B (zh) * 2023-07-25 2023-09-26 中创新航科技集团股份有限公司 一种负极极片、包含该负极极片的二次电池及用电装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688063A (zh) * 2005-04-27 2005-10-26 惠州Tcl金能电池有限公司 一种高比容量二次锂离子电池
CN105934845A (zh) * 2014-01-24 2016-09-07 日产自动车株式会社 电器件

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1716610B1 (en) 2004-02-06 2011-08-24 A 123 Systems, Inc. Lithium secondary cell with high charge and discharge rate capability
CN101174683B (zh) 2006-11-01 2010-05-12 比亚迪股份有限公司 锂离子二次电池的负极以及包括该负极的锂离子二次电池
JP2008311209A (ja) * 2007-05-17 2008-12-25 Sanyo Electric Co Ltd 非水電解質二次電池
US9065093B2 (en) * 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
CN102610791A (zh) 2012-02-27 2012-07-25 宁德新能源科技有限公司 一种用于插电式混合动力汽车的锂离子电池及其负极
KR20140008957A (ko) * 2012-07-13 2014-01-22 주식회사 엘지화학 접착력과 고율 특성이 향상된 음극 및 이를 포함하는 리튬 이차 전지
US10340508B2 (en) * 2014-06-16 2019-07-02 The Regents Of The University Of California Porous silicon oxide (SiO) anode enabled by a conductive polymer binder and performance enhancement by stabilized lithium metal power (SLMP)
CN107210429B (zh) * 2015-01-21 2020-05-19 株式会社Lg 化学 具有改进的输出特性的锂二次电池
CN108461842B (zh) 2018-04-09 2021-05-11 合肥国轩高科动力能源有限公司 一种提高圆柱型钛酸锂储能电芯短路通过率的方法
CN109449373B (zh) * 2018-10-17 2020-09-11 宁德时代新能源科技股份有限公司 负极极片及电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688063A (zh) * 2005-04-27 2005-10-26 惠州Tcl金能电池有限公司 一种高比容量二次锂离子电池
CN105934845A (zh) * 2014-01-24 2016-09-07 日产自动车株式会社 电器件

Also Published As

Publication number Publication date
EP3790081A1 (en) 2021-03-10
US11469418B2 (en) 2022-10-11
US20210249656A1 (en) 2021-08-12
EP3790081A4 (en) 2021-08-18
CN109449373A (zh) 2019-03-08
WO2020078358A1 (zh) 2020-04-23

Similar Documents

Publication Publication Date Title
CN109449446B (zh) 二次电池
CN109449373B (zh) 负极极片及电池
CN109449447B (zh) 二次电池
CN109994706B (zh) 锂离子电池
CN111129502B (zh) 一种负极极片以及二次电池
US11114659B2 (en) Negative electrode sheet and secondary battery
CN109461880B (zh) 负极极片及电池
US11088361B2 (en) Secondary battery
CN109509909B (zh) 二次电池
CN109273771B (zh) 二次电池
US20130302698A1 (en) Nonaqueous electrolyte battery
CN111384374B (zh) 负极活性材料、负极极片及电池
CN108808068A (zh) 二次电池
WO2022133963A1 (zh) 电池组、电池包、电学装置以及电池组的制造方法及制造设备
CN112310360A (zh) 负极活性材料及电池
CN109494348B (zh) 负极极片及二次电池
CN109841832B (zh) 正极片及电化学电池
CN109461881B (zh) 负极极片及二次电池
CN108808006B (zh) 负极极片及电池
JP2013206583A (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP2019145292A (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant