CN109440231B - 一种石墨烯/碳复合微纳米纤维及其制备方法 - Google Patents

一种石墨烯/碳复合微纳米纤维及其制备方法 Download PDF

Info

Publication number
CN109440231B
CN109440231B CN201811355157.0A CN201811355157A CN109440231B CN 109440231 B CN109440231 B CN 109440231B CN 201811355157 A CN201811355157 A CN 201811355157A CN 109440231 B CN109440231 B CN 109440231B
Authority
CN
China
Prior art keywords
temperature
spinning
pan
solution
placing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811355157.0A
Other languages
English (en)
Other versions
CN109440231A (zh
Inventor
吴小文
张培云
赵航
黄朝晖
刘艳改
房明浩
闵鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences Beijing
Original Assignee
China University of Geosciences Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences Beijing filed Critical China University of Geosciences Beijing
Priority to CN201811355157.0A priority Critical patent/CN109440231B/zh
Publication of CN109440231A publication Critical patent/CN109440231A/zh
Application granted granted Critical
Publication of CN109440231B publication Critical patent/CN109440231B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明系一种石墨烯‑碳复合微纳米纤维及其制备方法,属于碳纤维材料技术领域。主要包括如下步骤:(1)配制纺丝溶液。将一定量的氧化石墨烯(GO)溶解于N,N二甲基甲酰胺(DMF)中。将一定量的聚丙烯腈粉末加入GO/DMF溶液中,磁力搅拌待PAN完全溶解配制成纺丝溶液。(2)离心纺丝。将纺丝溶液至于离心容器中,调节转速进行离心纺丝。将收集到的PAN/GO纤维置于60℃的干燥箱中烘干30min。(3)预氧化和碳化。将PAN/GO纤维置于管式炉中空气气氛下进行预氧化,280℃保温3h。之后在氮气气氛下进行高温碳化。碳化温度900℃,保温2h。持续通入氮气冷却至室温,得到石墨烯‑碳复合微纳米纤维。该纤维具有比表面积大、比电容高、产量大、成本低等优点。

Description

一种石墨烯/碳复合微纳米纤维及其制备方法
技术领域
本发明提供一种石墨烯/碳复合微纳米纤维及其制备方法,属于碳纤维材料技术领域。
背景技术
炭纤维(Carbon Fiber,CF)是一种含碳量在90wt%以上的高性能无机纤维材料。炭纤维的材料性能涵盖了广泛的热物理性能,具备高比强度和比模量、密度低、高热导、热膨胀系数小、耐磨、耐化学腐蚀、耐疲劳、低电阻等优异的物化性能,可以根据所需的应用进行改性定制,从而获得更多优质丰富的材料性能。聚丙烯腈(PAN)是一种众所周知的聚合物,具有良好的稳定性和机械性能。PAN纳米纤维可能被应用于组织工程、传感、复合材料、电池分离器和制备碳纳米纤维的前驱体等多个领域。在各种应用中,PAN纳米纤维的最重要的作用是制备碳纳米纤维的前驱体,因为它具有高的碳产率和用于调整所得碳纳米纤维结构的可塑性。一些研究表明,通过离心纺丝方法制备了微/纳米纤维,如聚环氧乙烷、聚偏二氟乙烯、聚甲基丙烯酸甲酯和聚已酸内酯。Ravandi和他的同事提出了一种电离心纺丝系统,该系统合成了质量、细度和产率都有所提高的纳米纤维。同时,随着社会经济的发展,传统能源消耗巨大,发展清洁高效的新型能源迫在眉睫。作为环境友好型高性能储能系统,电化学超级电容器比普通电容器具有更高的能量密度、功率密度和更长的循环寿命。是一种发展迅速的新型能源器件。以提高能量密度为目标,使其接近甚至超过电池的密度,降低制造成本是当下的研究趋势。世界各国的科研人员在离心纺丝领域进行了大量深入的研究工作,制备PAN基碳纳米纤维、调整多孔结构、使用添加剂掺杂和对碳纳米纤维进行复合改性等,以此来提高比电容、力学强度、吸附性等物理化学性能,从而使纤维材料更加满足超级电容器的需求。
氧化石墨烯结构与石墨烯相仿,都具有由单层碳原子紧密堆积的二维层状结构,但氧化石墨烯的层间及片层边缘含有大量活性的含氧官能团,使氧化石墨烯在水及有机溶剂中的分散性更好;同时氧化石墨烯在高温碳化时发生热还原,生成具有高比表面积和高导电性的石墨烯,大幅度提高碳化纤维的比表面积和电导率。
发明内容
本发明的目的在于提供一种石墨烯-碳复合微纳米纤维及其制备方法,具体是一种成本低、比电容高的以聚丙烯腈为前躯体,氧化石墨烯为添加剂的复合碳纤维的制备方法。
其中制备石墨烯-碳复合微纳米纤维所用的前驱体是聚丙烯腈,质量分数为12wt%。
其中制备石墨烯-碳复合微纳米纤维所用的生产技术是离心纺丝技术。
其中制备石墨烯-碳复合微纳米纤维所用的添加剂是氧化石墨烯,质量分数为2.0wt%。
其中制备石墨烯-碳复合微纳米纤维预氧化处理温度为280℃,碳化温度为900℃。
本发明一种石墨烯-碳复合微纳米纤维及其制备方法,其优点及功效在于该材料比电容较高、生产效率高、稳定性好和成本低。
附图说明
图1离心纺丝纤维出丝情况(GO添加量分别为0(a),1.0wt%(b),1.5wt%(c),2.0wt%(d))
图2预氧化前及碳化后纤维的宏观照片((a)(c)预氧化之前;(b)(d)高温碳化之后)
图3石墨烯-碳复合微纳米纤维的SEM照片(氧化石墨烯含量为2.0wt%,低放大倍数下(a)、高放大倍数下(b))
图4石墨烯-碳复合微纳米纤维XRD图谱
图5石墨烯-碳复合微纳米纤维红外光谱曲线
图6石墨烯-碳复合微纳米纤维的电化学性能((a)循环伏安曲线;(b)恒流充放电曲线)
具体实施方式
下面结合实例对本发明的特点做进一步描述,但并非仅仅局限于下述实施例。
实施例一:
首先用滴管量取8.8g的N,N二甲基甲酰胺(DMF)溶液(密度为0.945~0.950g/mL)加入容量为15ml的玻璃试剂瓶中,用分析天平称量0.2g的氧化石墨烯(GO)溶解于DMF溶液中,超声振荡lh;待DMF/GO完全分散后,再称量12wt%聚丙烯腈(PAN)粉末缓慢加入到上述混合溶液中,放入磁力转子并置于磁力搅拌器上开始搅拌,并将玻璃瓶盖拧紧,以防搅拌过程中渗漏。磁力搅拌器台面温度为50℃,磁力搅拌24h,PAN完全溶解后配成纺丝溶液。将纺丝溶液缓慢注入离心纺丝容器中,调节纺丝参数,时刻观察出丝情况进行离心纺丝。将离心纺丝收集的氧化石墨烯/聚丙烯腈纳米纤维置于玻璃皿中在60℃的干燥箱中烘干30min。将纤维置于管式炉在空气中进行预氧化,以1℃·min-1的升温速率从25℃升至280℃并恒温预氧化3h,除去有机溶剂。将预氧化处理的纤维放在瓷舟中,置于真空管式炉内,在氮气的保护下进行高温碳化处理。待30min将管内的气体基本排除干净后,以5℃/min的速率从室温升温至600℃,再以3℃/min的速率升温至指定碳化温度900℃,并保温2h进行碳化,最后持续通入氮气冷却至室温,得到碳纳米纤维。
对这种复合碳纳米纤维进行电化学性能测试:材料的比电容为45.38F/g。
实施例二:
首先用滴管量取8.6g的N,N二甲基甲酰胺(DMF)溶液(密度为0.945~0.950g/mL)加入容量为15ml的玻璃试剂瓶中,用分析天平称量0.2g的氧化石墨烯(GO)溶解于DMF溶液中,超声振荡lh;待DMF/GO完全分散后,再称量12wt%聚丙烯腈(PAN)粉末缓慢加入到上述混合溶液中,放入磁力转子并置于磁力搅拌器上开始搅拌,并将玻璃瓶盖拧紧,以防搅拌过程中渗漏。磁力搅拌器台面温度为50℃,磁力搅拌24h,PAN完全溶解后配成纺丝溶液。将纺丝溶液缓慢注入离心纺丝容器中,调节纺丝参数,时刻观察出丝情况进行离心纺丝。将离心纺丝收集的氧化石墨烯/聚丙烯腈纳米纤维置于玻璃皿中在60℃的干燥箱中烘干30min。将纤维置于管式炉在空气中进行预氧化,以1℃·min-1的升温速率从25℃升至280℃并恒温预氧化3h,除去有机溶剂。将预氧化处理的纤维放在瓷舟中,置于真空管式炉内,在氮气的保护下进行高温碳化处理。待30min将管内的气体基本排除干净后,以5℃/min的速率从室温升温至600℃,再以3℃/min的速率升温至指定碳化温度900℃,并保温2h进行碳化,最后持续通入氮气冷却至室温,得到碳纳米纤维。
对这种复合碳纳米纤维进行电化学性能测试:材料的比电容为235.22F/g。
实施例三:
首先用滴管量取8.6g的N,N二甲基甲酰胺(DMF)溶液(密度为0.945~0.950g/mL)加入容量为15ml的玻璃试剂瓶中,用分析天平称量0.2g的氧化石墨烯(GO)溶解于DMF溶液中,超声振荡lh;待DMF/GO完全分散后,再称量12wt%聚丙烯腈(PAN)粉末缓慢加入到上述混合溶液中,放入磁力转子并置于磁力搅拌器上开始搅拌,并将玻璃瓶盖拧紧,以防搅拌过程中渗漏。磁力搅拌器台面温度为50℃,磁力搅拌24h,PAN完全溶解后配成纺丝溶液。将纺丝溶液缓慢注入离心纺丝容器中,调节纺丝参数,时刻观察出丝情况进行离心纺丝。将离心纺丝收集的氧化石墨烯/聚丙烯腈纳米纤维置于玻璃皿中在60℃的干燥箱中烘干30min。将纤维置于管式炉在空气中进行预氧化,以1℃·min-1的升温速率从25℃升至280℃并恒温预氧化3h,除去有机溶剂。将预氧化处理的纤维放在瓷舟中,置于真空管式炉内,在氮气的保护下进行高温碳化处理。待30min将管内的气体基本排除干净后,以5℃/min的速率从室温升温至600℃,再以3℃/min的速率升温至指定碳化温度700℃,并保温2h进行碳化,最后持续通入氮气冷却至室温,得到碳纳米纤维。
对这种复合碳纳米纤维进行电化学性能测试:材料的比电容为55.62F/g。
实施例四:
首先用滴管量取8.6g的N,N二甲基甲酰胺(DMF)溶液(密度为0.945~0.950g/mL)加入容量为15ml的玻璃试剂瓶中,用分析天平称量0.2g的氧化石墨烯(GO)溶解于DMF溶液中,超声振荡lh;待DMF/GO完全分散后,再称量12wt%聚丙烯腈(PAN)粉末缓慢加入到上述混合溶液中,放入磁力转子并置于磁力搅拌器上开始搅拌,并将玻璃瓶盖拧紧,以防搅拌过程中渗漏。磁力搅拌器台面温度为50℃,磁力搅拌24h,PAN完全溶解后配成纺丝溶液。将纺丝溶液缓慢注入离心纺丝容器中,调节纺丝参数,时刻观察出丝情况进行离心纺丝。将离心纺丝收集的氧化石墨烯/聚丙烯腈纳米纤维置于玻璃皿中在60℃的干燥箱中烘干30min。将纤维置于管式炉在空气中进行预氧化,以1℃·min-1的升温速率从25℃升至280℃并恒温预氧化3h,除去有机溶剂。将预氧化处理的纤维放在瓷舟中,置于真空管式炉内,在氮气的保护下进行高温碳化处理。待30min将管内的气体基本排除干净后,以5℃/min的速率从室温升温至600℃,再以3℃/min的速率升温至指定碳化温度1100℃,并保温2h进行碳化,最后持续通入氮气冷却至室温,得到碳纳米纤维。
对这种复合碳纳米纤维进行电化学性能测试:材料的比电容为175.23F/g。

Claims (1)

1.一种石墨烯/碳复合微纳米纤维的制备方法,其特征在于:该方法包括如下几个步骤:
(1)纺丝溶液的制备
首先,用滴管量取8.6g的N,N二甲基甲酰胺(DMF)溶液加入容量为15ml的玻璃试剂瓶中,用分析天平称量0.2g的氧化石墨烯(GO)溶解于DMF溶液中,超声振荡lh;待DMF/GO完全分散后,再称量12wt%聚丙烯腈(PAN)粉末缓慢加入到上述混合溶液中,置于磁力搅拌器上开始搅拌;磁力搅拌器台面温度为50℃,磁力搅拌24h,PAN完全溶解后配成纺丝溶液;
(2)离心纺丝
将搅拌好的纺丝液超声震荡30min,将纺丝溶液缓慢注入离心纺丝容器中,调节纺丝参数进行离心纺丝;将上述离心纺丝收集的形貌和结构良好的GO/PAN维纳米纤维置于玻璃皿中在60℃的干燥箱中烘干30min;
(3)纤维的预氧化处理
将纺丝得到的GO/PAN微纳米纤维置于管式炉在空气气氛中进行预氧化,以1℃·min-1的升温速率从25℃升至280℃并恒温预氧化3h,除去有机溶剂,预氧化完成后,GO/PAN微纳米纤维颜色变成了黑色;
(4)纤维的碳化处理
将预氧化处理的纤维放在瓷舟中,置于真空管式炉内,在氮气的保护下进行高温碳化处理;待30min将管内的气体基本排除干净后,以5℃/min的速率从室温升温至600℃,再以3℃/min的速率升温至900℃,并保温2h进行碳化,最后持续通入氮气冷却至室温,得到碳纳米纤维。
CN201811355157.0A 2018-11-14 2018-11-14 一种石墨烯/碳复合微纳米纤维及其制备方法 Active CN109440231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811355157.0A CN109440231B (zh) 2018-11-14 2018-11-14 一种石墨烯/碳复合微纳米纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811355157.0A CN109440231B (zh) 2018-11-14 2018-11-14 一种石墨烯/碳复合微纳米纤维及其制备方法

Publications (2)

Publication Number Publication Date
CN109440231A CN109440231A (zh) 2019-03-08
CN109440231B true CN109440231B (zh) 2020-03-13

Family

ID=65552322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811355157.0A Active CN109440231B (zh) 2018-11-14 2018-11-14 一种石墨烯/碳复合微纳米纤维及其制备方法

Country Status (1)

Country Link
CN (1) CN109440231B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110158158A (zh) * 2019-04-29 2019-08-23 浙江七色彩虹印染有限公司 聚偏氟乙烯功能复合纤维膜及其应用
WO2020221361A1 (zh) * 2019-04-30 2020-11-05 青岛大学 一种氧化石墨烯纤维的制备方法及得到的纤维
CN110499550B (zh) * 2019-08-05 2022-04-29 武汉纺织大学 聚丙烯腈基预氧丝及碳纤维的离心纺制备方法
CN111041715B (zh) * 2019-12-31 2021-08-31 松山湖材料实验室 电磁屏蔽用纳米碳纤维膜和树脂复合板材及其制备方法
CN114792779A (zh) * 2021-11-19 2022-07-26 广东一纳科技有限公司 柔性电池极片、电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560746B (zh) * 2011-12-29 2013-08-07 中国科学院宁波材料技术与工程研究所 一种聚丙烯腈/石墨烯复合物基碳纤维的制备方法
CN102586952A (zh) * 2012-01-09 2012-07-18 东华大学 一种石墨烯增强聚丙烯腈碳纤维的制备方法
CN106521719A (zh) * 2016-11-10 2017-03-22 过冬 一种石墨烯基碳纳米纤维的制备方法
CN108704488A (zh) * 2018-04-11 2018-10-26 杭州牛墨科技有限公司 一种用于海水淡化石墨烯纤维滤膜及其制备方法
CN108589025A (zh) * 2018-04-23 2018-09-28 中国石油大学(华东) 一种石墨烯-碳复合纳米纤维的制备方法

Also Published As

Publication number Publication date
CN109440231A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN109440231B (zh) 一种石墨烯/碳复合微纳米纤维及其制备方法
CN103305965B (zh) 具有纳米微孔隙的硅碳复合材料及其制备方法与用途
CN109545578B (zh) 酰胺类聚合物衍生一维氮掺杂纳米碳电极材料及制备方法
CN105369475B (zh) 锡锑和碳纳米纤维活性材料及其制备方法
CN106757538A (zh) 一种电纺丝方法制备多孔炭纤维制备方法
CN103474125B (zh) 一种利用废弃纤维制作的电极材料及其制造方法
CN107805858A (zh) 一种柔性SnS‑C纳米纤维的静电纺丝制备方法
CN106935410B (zh) 一种基于石墨化有序排列纺丝纤维的自支撑柔性超级电容器的制备方法
CN109023590A (zh) 一种碳化硅中空纤维及其制备方法
CN111235698B (zh) 一种氮掺杂多孔碳纤维材料的制备方法及其应用
CN110517900B (zh) 一种超级电容器用氮掺杂低温碳纳米纤维电极材料的制备方法
CN106744783A (zh) 一种石墨化空心炭微球的制备方法
CN111180214A (zh) 一种超级电容器用竹基多孔碳/二氧化锰纳米复合电极材料及其制备方法
CN102912476A (zh) 一种碳化硅亚微米纤维的制备方法
CN110331469A (zh) CuO/Cu氮掺杂碳纳米纤维材料的制备方法及其应用
CN109755033A (zh) 一种碳纤维负载钴氧化物复合材料及其制备方法和应用
CN111235700A (zh) 一种红磷掺杂TiO2/C纳米纤维负极材料的制备方法
CN110143827A (zh) 一种超轻弹性无机氧化物纤维气凝胶及其制备方法
CN113224292A (zh) 一种高性能锂离子电池聚丙烯腈碳纤维负极材料及其制备方法
CN109354004A (zh) 一种利用鱼鳞制备分级多孔碳材料的方法
CN107994216B (zh) 一种超高倍率、长寿命柔性纳米纤维阵列电极的制备方法
Bai et al. PVA/sodium alginate multi-network aerogel fibers, incorporated with PEG and ZnO, exhibit enhanced temperature regulation, antibacterial, thermal conductivity, and thermal stability
CN108539149A (zh) 一种石墨烯复合氮、氧共掺杂生物质碳材料及其制备方法
CN102041564A (zh) 纤维丝束纺丝用干燥装置及方法
CN202116703U (zh) 纤维丝束纺丝用干燥装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant