CN109437879B - x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料 - Google Patents

x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料 Download PDF

Info

Publication number
CN109437879B
CN109437879B CN201811483879.4A CN201811483879A CN109437879B CN 109437879 B CN109437879 B CN 109437879B CN 201811483879 A CN201811483879 A CN 201811483879A CN 109437879 B CN109437879 B CN 109437879B
Authority
CN
China
Prior art keywords
equal
less
spinel
waveband
phase shifter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811483879.4A
Other languages
English (en)
Other versions
CN109437879A (zh
Inventor
袁红兰
冯涛
任仕晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOUTHWEST INSTITUTE OF APPLIED MAGNETICS
Original Assignee
SOUTHWEST INSTITUTE OF APPLIED MAGNETICS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOUTHWEST INSTITUTE OF APPLIED MAGNETICS filed Critical SOUTHWEST INSTITUTE OF APPLIED MAGNETICS
Priority to CN201811483879.4A priority Critical patent/CN109437879B/zh
Publication of CN109437879A publication Critical patent/CN109437879A/zh
Application granted granted Critical
Publication of CN109437879B publication Critical patent/CN109437879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/19Phase-shifters using a ferromagnetic device
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料,其组成化学式为Li0.5(1‑a+b‑c‑d‑e)ZnaMgeTibCucCodBinMnmFe0.5(5‑a‑3b‑c‑d‑e)‑m‑n‑δO4,其中:0≤a≤0.4,0≤b≤0.5,0.002≤c≤0.006,0.002≤d≤0.008,0≤e≤0.5,0.03≤m≤0.08,0.002≤n≤0.006,δ为缺铁量,0.02≤δ≤0.08。本发明通过微量的Cu2+取代Li0.5Fe2.5O4系的Li1+和Fe3+,降低了材料的矫顽力,提高了材料的剩磁比;添加适量的Co3+,提高材料的功率承受能力。实现了微波铁氧体材料剩余磁感应强度Br在148mT~343mT之间时,自旋波线宽ΔHk为400~800A/m,矫顽力Hc≤80A/m,剩磁比R为0.89~0.96,居里温度Tc为450℃~500℃,同时该材料具有低的电磁损耗特性,可用于x波段至毫米波波段大功率锁式移相器。

Description

x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料
技术领域
本发明属于微波技术和磁性材料领域,是一种功率承受能力强,具有低矫顽力、高剩磁比、低损耗、高居里温度特性的尖晶石Li系铁氧体材料,满足x波段至毫米波波段微波系统中大功率锁式移相器、开关使用的旋磁材料。
背景技术
微波锁式移相器用微波铁氧体材料,不仅要求材料具有合适的剩余磁感应强度、小的电损耗和磁损耗及高的居里温度,更重要的是材料应具有高的剩磁比、低的矫顽力以及相应的高功率承受能力。
x波段至毫米波波段铁氧体器件一般采用尖晶石铁氧体材料。尖晶石铁氧体材料分为Li系和Ni系两大类。Ni系铁氧体材料虽然具有较低的电磁损耗,但材料的剩磁比低,温度稳定性较Li系差,一般不作为锁式移相器材料使用,另外Ni系铁氧体材料有效线宽ΔHeff是Li系的几十倍,也不适合低插入损耗移相器使用。Li系铁氧体材料具有高的剩磁比,有利于移相器工作在剩磁状态;又具有良好的温度特性,有利于提升移相器温度稳定性,在锁式移相器中,差相移稳定性是一个重要的指标。Li系铁氧体材料的剩余磁感应强度可通过不同Zn2+、Mg2+、Ti4+添加量调节,可满足x波段至毫米波波段锁式移相器对不同剩余磁感应强度的需要。Li系铁氧体材料的自旋波线宽在230A/m左右,难以满足大功率器件的需求,需要通过快弛豫离子Co3+取代来达到提高材料的自旋波线宽的目的,但添加Co3+会导致矫顽力增大。
为了改善尖晶石Li系铁氧体材料的矩形性能,使材料剩磁比高、Br稳定,必须降低材料气孔率低,使应力能λσ下降,λσ远远小于磁晶各向异性常数K1,而使磁晶各向异性的作用居于首要地位。但提高K1值会引起材料铁磁共振线宽、矫顽力的增大,因此,只有使磁致伸缩系数λ趋于零来达到这一目的。通常在LiZn配方基础上,加入少量的Mn2+降低磁致伸缩系数和剩磁的应力敏感性,使矩形度和剩磁比得到改善,同时还可抑制Fe2+的出现,对降低介电损耗有利;加入微量的Bi3+一方面促进气孔向晶粒边界移动,以获得致密、均匀的尖晶石结构,另一方面又降低烧结温度,避免高温氧的分解和Li1+的挥发,因而可得到低的矫顽力和介电损耗。
目前对于低矫顽力、高剩磁比的尖晶石Li系铁氧体材料,国内外已有文献和专利报道。在专利CN102167575A中,公布了ka波段移相器用LiZn铁氧体材料及制备方法,通过添加低熔点的Bi2O3降低烧结温度,使用缺铁配方以降低微波介电损耗,材料性能指标为:饱和磁化强度Ms=382±5%kA/m,剩余磁感应强度Br>365mT,矫顽力Hc<120A/m,铁磁共振线宽ΔH=12.0kA/m,介电常数ε'=15.0,介电损耗tanδε<4.5×10-4,居里温度Tc>460℃,密度d>4.90g/cm3。该专利材料具有高的剩余磁感应强度、低的矫顽力,较高的居里温度。在专利CN106946559A中,公布了尖晶石复合铁氧体材料及制备方法,采用Ni系和Li系两类粉料按一定质量比复合,并添加Bi2O3、BBS、CaO做助熔剂,材料性能达到:饱和磁化强度Ms=400±20%kA/m,矫顽力Hc<90A/m,铁磁共振线宽ΔH=9.0kA/m,介电常数ε'=15.0,介电损耗tanδε=2.5×10-4(±20%),居里温度Tc>330℃。该材料虽然具有低损耗、低矫顽力,但材料的居里温度低,不利于器件的温度稳定性。专利CN101552072A中,公布了移相器用低损耗LiZn铁氧体材料,以主料Fe2O3、ZnO、MnCO3、Li2CO3加入添加剂Bi2O3、BST、Nb2O5制得低损耗、低矫顽力、高饱和磁化强度的铁氧体材料,其性能为:饱和磁化强度Ms=4800±5%Gs,剩余磁感应强度Br>360mT,矫顽力Hc<120A/m,铁磁共振线宽ΔH=15~20kA/m,介电常数ε'=15.0,介电损耗tanδε<10×10-4,居里温度Tc>400℃,密度d=4.80g/cm3。以上专利均未有涉及提高材料功率承受能力即提高自旋波线宽的内容,也没有给出自旋波线宽的性能指标。
发明内容
本发明主要针对现有x波段至毫米波波段微波器件用铁氧体材料所存在的低矫顽力、高剩磁比、高居里温度与高功率承受能力难以同时满足的技术难题,提供一种微量Cu2+、Co3+取代的Li系铁氧体材料的配方设计,在满足高的自旋波线宽的情况下,具有低矫顽力、高剩磁比、高居里温度的特性。
为了解决以上问题,本发明采用以下技术方案:x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料,单相尖晶石结构,其组成化学式为:
Li0.5(1-a+b-c-d-e)ZnaMgeTibCucCodBinMnmFe0.5(5-a-3b-c-d-e)-m-n-δO4
其中:0≤a≤0.4,0≤b≤0.5,0.002≤c≤0.006,0.002≤d≤0.008,0≤e≤0.5,0.03≤m≤0.08,0.002≤n≤0.006,δ为缺铁量,0.02≤δ≤0.08。根据不同饱和磁化强度及居里温度的需求,a、b、e下限可以为0。
使用分析纯的Fe2O3,CuO,Co2O3,ZnO,TiO2,MgO,MnCO3,Bi2O3,Li2CO3为原材料制成。
制备工艺流程为:1)原材料处理→2)按配方计算称料→3)一次球磨→4)预烧→5)二次球磨→6)造粒→7)成型→8)烧结→9)测试。
本发明在Li系配方中新添加微量的Cu2+取代降低矫顽力和电磁损耗、提高剩磁比;添加快弛豫离子Co3+提高材料自旋波线宽;同时添加Bi3+降低烧结温度;添加Mn2+降低磁致伸缩系数和剩磁的应力敏感性,使矩形度和剩磁比得到改善。CuFe2O4的磁致伸缩系数远小于Fe2O4,Cu2+取代Fe3+降低了铁氧体的λ,适量的Cu2+取代,可使λ≈0,有利于获得高剩磁比、Br稳定的材料。由单离子理论分析S=1/2的Cu2+在尖晶石八面体时的单重态对K1无贡献,Cu2 +取代降低了铁氧体的磁晶各向异性常数,从而使材料铁磁共振线宽、矫顽力下降。另外,加入微量Cu2+取代,可降低材料的烧结温度,提高材料密度,使材料具有致密、均匀的微观结构。添加快弛豫离子Co3+主要目的是提高材料自旋波线宽ΔHk,ΔHk∝Co3+浓度,使材料具有更高的功率承受能力;另外,Co3+具有大的正K1值,可综合配方中其他金属离子的负K1值,使配方的K1值趋于0,从而降低材料的磁损耗。
与现有技术相比,本发明的有益效果是:本发明实现了微波铁氧体材料剩余磁感应强度Br在148mT~343mT之间时,自旋波线宽ΔHk为400~800A/m,矫顽力Hc≤80A/m,剩磁比R为0.89~0.96,居里温度Tc为450℃~500℃,同时该材料具有低的电磁损耗特性,可用于x波段至毫米波波段大功率锁式移相器。
附图说明
图1为实施例一材料的磁滞回线。
图2为实施例二材料的磁滞回线。
图3为实施例三材料的磁滞回线。
图4为实施例四材料的磁滞回线。
具体实施方式
以下通过具体实施例对本发明的技术方案进行详细说明。
实施例一
x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料,单相尖晶石结构,其组成化学式为,
Li0.5(1-a+b-c-d-e)ZnaMgeTibCucCodBinMnmFe0.5(5-a-3b-c-d-e)-m-n-δO4,
其中a=0.12,b=0.3,c=0.004,d=0.002,e=0.3,m=0.08,n=0.003,δ=0.02;按分子式分别计算出各原材料的所需量。使用分析纯的Fe2O3,CuO,ZnO,Co2O3,TiO2,MgO,MnCO3,Bi2O3,Li2CO3原材料,经处理后按配方计算称出相应重量;一次球磨5小时混合均匀后烘干;于820℃预烧,保温5小时;再经二次球磨5小时后烘干,加入10%的聚乙烯醇造粒,成型后于980℃烧结,保温5小时;最后进行性能参数测试。
用排水法测试材料的表观密度ρapp,用磁环称测量比磁化强度σs和居里温度Tc,由σs和密度计算出饱和磁化强度Ms;铁磁共振线宽ΔH、介电损耗tanδε、介电常数ε'、自旋波线宽ΔHk按GB/T 9633-2012测试;用磁滞回线仪C-750测试材料的磁滞回线。测试结果如表1、图1所示。从图1中可以看出,材料具有非常良好的矩形度,剩余磁感应强度Br为148mT时,矫顽力Hc低到57.5A/m,外磁场约为10倍矫顽力600A/m下的最大磁感应强度Bm是153mT,剩磁比R达到0.96。该材料的居里温度Tc达到450℃,温度稳定性好,且能承受较高的功率。
表1实施例一材料性能测试
Figure BDA0001893986660000061
实施例二
x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料,单相尖晶石结构,其组成化学式为:
Li0.5(1-a+b-c-d-e)ZnaMgeTibCucCodBinMnmFe0.5(5-a-3b-c-d-e)-m-n-δO4,
其中a=0.11,b=0.27,c=0.005,d=0.006,e=0.29,m=0.07,n=0.003,δ=0.04;按分子式分别计算出各原材料的所需量。使用分析纯的Fe2O3,CuO,ZnO,Co2O3,TiO2,MgO,MnCO3,Bi2O3,Li2CO3原材料,经处理后按配方计算称出相应重量;一次球磨5小时混合均匀后烘干;于820℃预烧,保温5小时;再经二次球磨5小时后烘干,加入10%的聚乙烯醇造粒,成型后于980℃烧结,保温5小时;最后进行性能参数测试。
用排水法测试材料的表观密度ρapp,用磁环称测量比磁化强度σs和居里温度Tc,由σs和密度计算出饱和磁化强度Ms;铁磁共振线宽ΔH、介电损耗tanδε、介电常数ε'、自旋波线宽ΔHk按GB/T 9633-2012测试;用磁滞回线仪C-750测试材料的磁滞回线,测试结果如表2、图2所示。从图2中可以看出,材料具有非常良好的矩形度,剩余磁感应强度Br为162mT时,矫顽力Hc只有70.7A/m,外磁场约为10倍矫顽力650A/m下的最大磁感应强度Bm是171mT,剩磁比R达到0.95。该材料的居里温度Tc高,温度稳定性好,自旋波线宽ΔHk高达800A/m,功率承受能力特别强,对器件在大功率情况下的稳定性非常有利。
表2实施例二材料性能测试
Figure BDA0001893986660000071
实施例三
x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料,单相尖晶石结构,其组成化学式为:
Li0.5(1-a+b-c-d-e)ZnaMgeTibCucCodBinMnmFe0.5(5-a-3b-c-d-e)-m-n-δO4,
其中a=0.15,b=0.25,c=0.002,d=0.003,e=0.1,m=0.06,n=0.002,δ=0.06;按分子式分别计算出各原材料的所需量。使用分析纯的Fe2O3,CuO,ZnO,TiO2,MnCO3,Co2O3,Bi2O3,Li2CO3原材料,经处理后按配方计算称出相应重量;一次球磨5小时混合均匀后烘干;于830℃预烧,保温5小时;再经二次球磨5小时后烘干,加入10%的聚乙烯醇造粒,成型后于990℃烧结,保温5小时;最后进行性能参数测试。
用排水法测材料的表观密度ρapp,用环称测量比磁化强度σs和居里温度Tc,由σs和密度计算出饱和磁化强度Ms;铁磁共振线宽ΔH、介电损耗tanδε、介电常数ε'、自旋波线宽ΔHk按GB/T 9633-2012测试;用C-750磁滞回线测试仪测试材料的磁滞回线,测试结果如表3、图3所示。从图3中可以看出,材料具有良好的矩形度,剩余磁感应强度Br为186mT时,矫顽力Hc只有77.9A/m,外磁场约为10倍矫顽力800A/m下的最大磁感应强度Bm是209mT,剩磁比R达到0.89。该材料的居里温度Tc高,温度稳定性好,自旋波线宽ΔHk高,功率承受能力强,对器件在大功率情况下的稳定性非常有利。
表3实施例三材料性能测试
Figure BDA0001893986660000081
实施例四
x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料,单相尖晶石结构,其组成化学式为:
Li0.5(1-a+b-c-d-e)ZnaMgeTibCucCodBinMnmFe0.5(5-a-3b-c-d-e)-m-n-δO4,
其中a=0.3,b=0,c=0.003,d=0.003,e=0,m=0.05,n=0.002,δ=0.08;按分子式分别计算出各原材料的所需量。使用分析纯的Fe2O3,CuO,ZnO,MnCO3,Co2O3,Bi2O3,Li2CO3原材料,经处理后按配方计算称出相应重量;一次球磨5小时混合均匀后烘干;于830℃预烧,保温5小时;再经二次球磨5小时后烘干,加入10%的聚乙烯醇造粒,成型后于990℃烧结,保温5小时;最后进行性能参数测试。
用排水法测材料的表观密度ρapp,用环称测量比磁化强度σs和居里温度Tc,由σs和密度计算出饱和磁化强度Ms;铁磁共振线宽ΔH、介电损耗tanδε、介电常数ε'、自旋波线宽ΔHk按GB/T 9633-2012测试;用C-750磁滞回线测试仪测试材料的磁滞回线,测试结果如表4、图4所示。从图4中可以看出,材料具有良好的矩形度,剩余磁感应强度Br为343mT时,矫顽力Hc只有74.1A/m,外磁场约为10倍矫顽力750A/m下的最大磁感应强度Bm是386mT,剩磁比R达到0.89。该材料的居里温度Tc高,温度稳定性好,自旋波线宽ΔHk高达480A/m,功率承受能力特别强,对高频器件在大功率情况下的稳定性非常有利。
表4实施例四材料性能测试
Figure BDA0001893986660000091
本发明解决了x波段至毫米波波段锁式移相器用Li系尖晶石铁氧体材料在不同饱和磁化强度下,具有低矫顽力、高功率承受能力、高剩磁比、高温度稳定性的同时满足的性能难题,实现了材料饱和磁化强度从160k A/m~400kA/m、剩余磁感应强度Br在148mT~343mT之间时,矫顽力Hc≤80A/m,10倍矫顽力Hc下的剩磁比R≥0.89,居里温度450℃~500℃,自旋波线宽可高达800A/m。实施例一、二表明,Cu2+含量到0.005时,材料的剩磁比达到0.96,而矫顽力只有70.7A/m。实施例三、四中Cu2+的取代量略小于实施例一、二时,材料的剩磁比、矫顽力指标比其略差。不同含量的Co3+添加,可使自旋波线宽从230A/m提高到800A/m。实验表明,Cu2+、Co3+同时添加,可获得低矫顽力、高功率承受能力,同时具有高剩磁比、低损耗的旋磁材料,有利于提高功率微波器件的功率容量、降低损耗,提高器件功率下的稳定性。
根据上述实施例及测试结果表明,本发明的尖晶石Li系铁氧体材料,在较宽的剩余磁感应强度范围内,具有高的功率承受能力、低矫顽力、高剩磁比,同时具有低损耗、高居里温度的特性。
上述实施例中只为说明本发明的技术构思及特点,并非对本发明作任何形式上的限制,对于本领域的技术人员来说,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例。但凡脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

Claims (3)

1.x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料,其特征在于:为单相尖晶石结构且组成化学式为
Li0.5(1-a +b-c-d-e)ZnaMgeTibCucCodBinMnmFe0.5(5-a-3b-c-d-e)-m-n-δO4
其中:0.11≤a≤0.4,0.25≤b≤0.5,0.002≤c≤0.006,0.002≤d≤0.008,0.1≤e≤0.5,0.03≤m≤0.08,0.002≤n≤0.006,δ为缺铁量,0.02≤δ≤0.08。
2.根据权利要求1所述的x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料,其特征在于:使用分析纯的Fe2O3,CuO,Co2O3,ZnO,TiO2,MgO, MnCO3,Bi2O3,Li2CO3为原材料制成。
3.根据权利要求1所述的x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料,其特征在于:制备工艺流程为:1)原材料处理→2)按配方计算称料→3)一次球磨→4)预烧→5)二次球磨→6)造粒→7)成型→8)烧结→9)测试。
CN201811483879.4A 2018-12-06 2018-12-06 x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料 Active CN109437879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811483879.4A CN109437879B (zh) 2018-12-06 2018-12-06 x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811483879.4A CN109437879B (zh) 2018-12-06 2018-12-06 x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料

Publications (2)

Publication Number Publication Date
CN109437879A CN109437879A (zh) 2019-03-08
CN109437879B true CN109437879B (zh) 2021-07-13

Family

ID=65556746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811483879.4A Active CN109437879B (zh) 2018-12-06 2018-12-06 x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料

Country Status (1)

Country Link
CN (1) CN109437879B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112456993A (zh) * 2020-10-29 2021-03-09 中国航天时代电子有限公司 一种可用于铁氧体器件的微波铁氧体材料及制备方法
CN112430076B (zh) * 2020-12-08 2022-08-26 江门旭弘磁材有限公司 一种提高铁氧体材料剩磁和矫顽力的方法
FR3121930A1 (fr) * 2021-04-19 2022-10-21 Thales Materiau ferrite de lithium faibles pertes pour dispositif hyperfrequence commandable de puissance
CN113501708A (zh) * 2021-06-23 2021-10-15 北京无线电测量研究所 一种Li系尖晶石微波铁氧体材料及其制备方法
CN113831119B (zh) * 2021-09-30 2022-09-06 海宁辉恒磁业有限公司 一种超高Bs低损耗锰锌铁氧体材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102582143A (zh) * 2012-02-13 2012-07-18 西南应用磁学研究所 低温磁瓷共烧复合基材及制备方法
CN103664154A (zh) * 2012-09-21 2014-03-26 绵阳市维奇电子技术有限公司 高频高电阻率Li-Ti-Zn软磁铁氧体材料配方及工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215907A (ja) * 1990-01-19 1991-09-20 Murata Mfg Co Ltd マイクロ波・ミリ波用磁性体組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102582143A (zh) * 2012-02-13 2012-07-18 西南应用磁学研究所 低温磁瓷共烧复合基材及制备方法
CN103664154A (zh) * 2012-09-21 2014-03-26 绵阳市维奇电子技术有限公司 高频高电阻率Li-Ti-Zn软磁铁氧体材料配方及工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Li-Zn-Zr-Ti-Cu系铁氧体磁性的研究;黄琳等;《磁性材料及器件》;19920430;第23卷(第2期);第11-14页 *
微波Li铁氧体的制备及其性能;安国;《磁性材料及器件》;19721230;第23-39页 *
微波锂镁钛铁氧体的特性和应用;王会宗;《磁性材料及器件》;19810402;第13-18页 *

Also Published As

Publication number Publication date
CN109437879A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN109437879B (zh) x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料
Su et al. High-permeability and high-Curie temperature NiCuZn ferrite
CN109836149B (zh) 一种低磁矩、小损耗、高温度稳定性石榴石铁氧体材料
CN103803959A (zh) 一种小线宽、高居里温度微波铁氧体材料及其制备方法
CN105174931A (zh) NiCuZn铁氧体材料的制备方法
CN108191423B (zh) 一种应用于超高功率锁式移相器石榴石铁氧体材料
Raju et al. Microwave properties of Al and Mn doped nickel ferrites at Ku band frequencies
CN106946559B (zh) 尖晶石复合铁氧体材料及制备方法
CN114057479B (zh) 一种超高居里温度的yig微波铁氧体材料及其制备方法
Su et al. Correlation between the microstructure and permeability stability of ferrite materials
Gee et al. Synthesis of nanosized (Li 0.5 x Fe 0.5 x Zn 1− x) Fe 2 O 4 particles and magnetic properties
Lubitz et al. Z type Ba hexagonal ferrites with tailored microwave properties
Zheng et al. Introduction of NiZn-ferrite into Co $ _ {2} $ Z-ferrite and effects on the magnetic and dielectric properties
Ching‐Chien et al. Effect of particle size of as‐milled powders on microstructural and magnetic properties of Y3MnxAl0. 8‐xF e4. 2O12 ferrites
CN109678483A (zh) 宽温低温度系数低功耗锰锌铁氧体材料的制备方法
Pullar et al. The ferromagnetic resonance (FMR) of SrZ hexaferrite (Sr3Co2Fe24O41), and the tuning of FMR with an external magnetic field
CN103833347A (zh) 一种小线宽、高居里温度微波铁氧体材料及其制备方法
Yan et al. Investigation on microstructure and magnetic properties in V2O5 doped NiCuZn ferrite
Malyshev et al. Chemical homogeneity, microstructure and magnetic properties of LiTiZn ferrite ceramics doped with Al2O3 or ZrO2
Guo et al. Effects of Bi2O3–CaCu3Ti4O12 composite additives on micromorphology, static magnetic properties, and FMR linewidth ΔH of NCZ ferrites
Yin et al. Study of the microstructure and microwave magnetic characteristics of Ti-doped Li–Zn ferrite
CN114702310A (zh) 低损耗尖晶石微波铁氧体材料及其制备方法
Sláma et al. Composite material with substituted Li ferrite for high-frequency applications
Dionne et al. Magnetic anisotropy and magnetostriction of Y3Mn0. 1Fe4. 9O12 at 300° K
HUANG et al. Low temperature sintering behavior of La-Co substituted M-type strontium hexaferrites for use in microwave LTCC technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant