CN109411527A - 一种采用降低表面电场技术的n型ldmos - Google Patents

一种采用降低表面电场技术的n型ldmos Download PDF

Info

Publication number
CN109411527A
CN109411527A CN201811111233.3A CN201811111233A CN109411527A CN 109411527 A CN109411527 A CN 109411527A CN 201811111233 A CN201811111233 A CN 201811111233A CN 109411527 A CN109411527 A CN 109411527A
Authority
CN
China
Prior art keywords
layer
well layer
depth
well
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811111233.3A
Other languages
English (en)
Inventor
梁继然
张叶
陈亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201811111233.3A priority Critical patent/CN109411527A/zh
Publication of CN109411527A publication Critical patent/CN109411527A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种采用降低表面电场技术的N型LDMOS,包括p型衬底层,所述p型衬底层上端面为深N阱层,所述深N阱层内部包含深p阱层、n阱层、p型掺杂区、第一漂流环和第二漂流环,所述深p阱层包含p阱层,p+掺杂层和第一n+掺杂层,所述n阱层内包括第二n+掺杂层,所述第一n+掺杂层和p+掺杂层构成器件源极,所述第二n+掺杂层构成器件的漏极,所述深n阱上端面由下至上分别为二氧化硅隔离层和多晶硅栅极与多晶硅场板层;器件直接采用表面二氧化硅层隔离。本发明通过降低表面电场从而使击穿点从表面转移到体内击穿,提高击穿电压。采用场板技术和漂流环技术,达到分散电场的作用,弱化电场,从而达到提高击穿电压和降低导通电阻的效果。

Description

一种采用降低表面电场技术的N型LDMOS
技术领域
本发明涉及半导体功率器件技术领域,具体涉及一种采用降低表面电场技术的N型LDMOS。
背景技术
传统的高压横向扩散金属氧化物半导体场效应管(LDMOS)的表面电场强度非常大,从而导致击穿电压非常容易在表面击穿,而且击穿电压也非常低,达不到高击穿电压的效果,为我们的研究带来了困难,后来有人提出了降低表面电场技术(RESURF)对于LDMOS的发展有了革命性的改变,使LDMOS击穿电压得到了非常大的提升。刚开始单型降低表面电场技术(SINGLE RESURF),虽然提高了击穿电压,但是却带来了负面的影响,使得导通电阻增大。为了解决此问题本发明采用双型降低表面电场技术(DOUBLE RESURF),此项技术利用增大漂移区耗尽层宽度,在提高击穿电压的同时,降低了导通电阻。
虽然RESURF技术在一定程度上提高了击穿电压,但是离我们的目标还是有一定的距离,所以此时采用场板技术,场板技术起到了分散电场的作用,使得电场线密度在曲率比较大的地方降低,不容易在曲率大的地方提前击穿,使漏端的耐压程度提高,提高击穿电压。
此外随着半导体行业的发展,对于器件的性能提出了新的挑战,为了满足现实生活的发展需求,提出了漂流环技术,此项技术与DOUBLE RESURF相呼应扩大了漂移区的耗尽层宽度,使得漂移区全部耗尽,提高击穿电压,降低比导通电阻,提高了器件的工作效率。
发明内容
为了解决现有技术中存在的问题,本发明提供一种采用降低表面电场技术的N型LDMOS,解决现有技术中N型LDMOS的耐压值低、比导通电阻高的问题。
本发明的技术方案是:一种采用降低表面电场技术的N型LDMOS,包括p型衬底层,所述p型衬底层上端面为深N阱层,所述深N阱层内部包含深p阱层、n阱层、p型掺杂区、第一漂流环和第二漂流环,所述深p阱层包含p阱层,p+掺杂层和第一n+掺杂层,所述n阱层内包括第二n+掺杂层,所述第一n+掺杂层和p+掺杂层构成器件源极,所述第二n+掺杂层构成器件的漏极,所述深n阱上端面由下至上分别为二氧化硅隔离层和多晶硅栅极与多晶硅场板层;器件直接采用表面二氧化硅层隔离。
所述p型衬底层是在单晶硅中通过注入硼离子所形成的。
所述深n阱层采用离子注入,注入大量的磷离子形成。
所述深p阱层和p型掺杂区是通过注入不同浓度和能量的硼离子实现的,通过注入离子的能量不同来调节注入所需的深度。
本发明的有益效果为:
1、本发明提出一种采用降低表面电场技术的双阱N型LDMOS,通过降低表面电场从而使击穿点从表面转移到体内击穿,提高击穿电压。
2、本发明采用场板技术和漂流环技术,达到分散电场的作用,弱化电场,从而达到提高击穿电压和降低导通电阻的效果。
3、本发明利用双型降低表面电场技术(DOUBLE RESURF LDMOS),此技术使漂移区耗尽区变的更宽,降低表面电场,从而使漏区耐压达到最大,提高击穿电压的同时降低导通电阻。可以在不增加工艺制造难度的基础上提高器件性能,达到降低制造成本的目的。
附图说明
图1本发明一种采用降低表面电场技术的N型LDMOS结构示意图;
图中:1.p型衬底层;2.深n阱层;3.深p阱层;4.p型掺杂区;5.第一漂流环;6.第二漂流环;7.n阱层;8.p阱层;9.第一n+参杂层;10.p+参杂层;11.第二n+参杂层;12.第一二氧化硅隔离层;13.多晶硅场板;14.多晶硅栅极;15.第二二氧化硅隔离层。
具体实施方式
下面结合附图对本发明作进一步详细说明。
如图1所示本发明一种采用降低表面电场技术的N型LDMOS,包括p型衬底层1,所述p型沉底层1是在单晶硅中通过注入硼离子所形成的,p型衬底层1上端面为深n阱层2,所述深n阱层2采用离子注入,注入大量的磷离子形成,所述深n阱层2内包含深p阱层3、p型掺杂区4、第一漂流环5、第二漂流环6和n阱层7,所述深p阱层3和p型掺杂区4是通过注入不同浓度和能量的硼离子实现的,通过注入离子的能量不同来调节注入所需的深度,所述深p阱层3包括p阱层8,所述p阱层8的作用是为了降低寄生电阻,从而使导通电阻降低,所述p阱层8包含第一n+参杂层9和p+参杂层10,所述第一n+参杂层9和p+参杂层10是为了在源极形成欧姆接触而设计的,所述n阱层7上端面是第二n+参杂层11,所述第二n+参杂层11是为在漏极形成欧姆接触而设计的,所述p型参杂区4上端面铺有第一二氧化硅隔离层12,所述第一二氧化硅隔离层12的作用是为了隔离栅极与漏极,防止栅极与漏极短路,所述第一二氧化硅隔离层12上端面平铺多晶硅场板13,所述平铺的多晶硅场板13是为了分散曲率大处的电场,防止预击穿,从而提高击穿电压,所述多晶硅场板13左边是多晶硅栅极14,所述第一n+参杂层9和p+参杂层10左边是第二二氧化硅隔离层15,其作用是隔离源极与漏极,防止源极与漏极短路。
本实例所涉及的一种采用降低表面电场技术的N型LDMOS,栅极击穿电压达到至少600V,单位长度比导通小于50mΩ/mm,单位面积栅电容约1.7fF/um2,阈值电压不高于3V,工作温度为-40℃~125℃。
本实例在p型衬底生(上)实现,但在应用发明过程中,可以在n型衬底体系上实现相似结构,尽管已示出并描述了根据发明的基本原理和精神的情况下,可以对这些实例作(做)出改变,本发明的范围由权力要求书及其等同物限定。

Claims (4)

1.一种采用降低表面电场技术的N型LDMOS,其特征在于,包括p型衬底层,所述p型衬底层上端面为深N阱层,所述深N阱层内部包含深p阱层、n阱层、p型掺杂区、第一漂流环和第二漂流环,所述深p阱层包含p阱层,p+掺杂层和第一n+掺杂层,所述n阱层内包括第二n+掺杂层,所述第一n+掺杂层和p+掺杂层构成器件源极,所述第二n+掺杂层构成器件的漏极,所述深n阱上端面由下至上分别为二氧化硅隔离层和多晶硅栅极与多晶硅场板层;器件直接采用表面二氧化硅层隔离。
2.根据权利要求1所述采用降低表面电场技术的N型LDMOS,其特征在于,所述p型衬底层是在单晶硅中通过注入硼离子所形成的。
3.根据权利要求1所述采用降低表面电场技术的N型LDMOS,其特征在于,所述深n阱层采用离子注入,注入大量的磷离子形成。
4.根据权利要求1所述采用降低表面电场技术的N型LDMOS,其特征在于,所述深p阱层和p型掺杂区是通过注入不同浓度和能量的硼离子实现的,通过注入离子的能量不同来调节注入所需的深度。
CN201811111233.3A 2018-09-22 2018-09-22 一种采用降低表面电场技术的n型ldmos Pending CN109411527A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811111233.3A CN109411527A (zh) 2018-09-22 2018-09-22 一种采用降低表面电场技术的n型ldmos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811111233.3A CN109411527A (zh) 2018-09-22 2018-09-22 一种采用降低表面电场技术的n型ldmos

Publications (1)

Publication Number Publication Date
CN109411527A true CN109411527A (zh) 2019-03-01

Family

ID=65465268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811111233.3A Pending CN109411527A (zh) 2018-09-22 2018-09-22 一种采用降低表面电场技术的n型ldmos

Country Status (1)

Country Link
CN (1) CN109411527A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349764A (zh) * 2019-08-08 2021-02-09 天津大学 一种具有场限环结构的resurf ldmos器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886839A (zh) * 2004-02-24 2006-12-27 崇贸科技股份有限公司 具有均化电容的高压和低导通电阻横向扩散金属氧化物半导体晶体管
CN103094350A (zh) * 2013-02-07 2013-05-08 南京邮电大学 一种高压ldmos器件
CN103474466A (zh) * 2013-09-13 2013-12-25 电子科技大学 一种高压器件及其制造方法
CN103579313A (zh) * 2012-08-10 2014-02-12 上海华虹Nec电子有限公司 提高高压ldmos器件击穿电压的结构
CN104617149A (zh) * 2015-01-30 2015-05-13 上海华虹宏力半导体制造有限公司 隔离型nldmos器件及其制造方法
CN207705201U (zh) * 2018-01-23 2018-08-07 西安因变光电科技有限公司 具有新型电极结构的t-resurf ldmos

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886839A (zh) * 2004-02-24 2006-12-27 崇贸科技股份有限公司 具有均化电容的高压和低导通电阻横向扩散金属氧化物半导体晶体管
CN103579313A (zh) * 2012-08-10 2014-02-12 上海华虹Nec电子有限公司 提高高压ldmos器件击穿电压的结构
CN103094350A (zh) * 2013-02-07 2013-05-08 南京邮电大学 一种高压ldmos器件
CN103474466A (zh) * 2013-09-13 2013-12-25 电子科技大学 一种高压器件及其制造方法
CN104617149A (zh) * 2015-01-30 2015-05-13 上海华虹宏力半导体制造有限公司 隔离型nldmos器件及其制造方法
CN207705201U (zh) * 2018-01-23 2018-08-07 西安因变光电科技有限公司 具有新型电极结构的t-resurf ldmos

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349764A (zh) * 2019-08-08 2021-02-09 天津大学 一种具有场限环结构的resurf ldmos器件

Similar Documents

Publication Publication Date Title
CN102110716B (zh) 槽型半导体功率器件
CN101939843B (zh) 半导体装置
CN102610643B (zh) 沟槽金属氧化物半导体场效应晶体管器件
CN102376762B (zh) 超级结ldmos器件及制造方法
CN102184939B (zh) 一种具有高k介质槽的半导体功率器件
CN105097914B (zh) 横向扩散金属氧化物半导体器件及其制造方法
CN103579353B (zh) 一种具有p型辅助埋层的半超结vdmos
CN102097480B (zh) N型超结横向双扩散金属氧化物半导体管
CN102044563A (zh) Ldmos器件及其制造方法
CN102184856A (zh) 一种槽型纵向半导体器件的制造方法
CN109119460A (zh) 一种超结功率器件终端结构及其制备方法
CN107564965B (zh) 一种横向双扩散mos器件
CN206976353U (zh) 一种优化终端结构的沟槽型半导体器件
CN110047930A (zh) Vdmos器件
CN102130176B (zh) 一种具有缓冲层的soi超结ldmos器件
CN102157377B (zh) 超结vdmos器件及其制造方法
CN109411527A (zh) 一种采用降低表面电场技术的n型ldmos
CN102097481B (zh) P型超结横向双扩散金属氧化物半导体管
CN115274859B (zh) Ldmos晶体管及其制造方法
CN218069857U (zh) 具有倒t型埋层的深沟槽型功率器件
CN107425070B (zh) 一种具有辅助氧化埋层的半超结mosfet
CN112993021A (zh) 横向双扩散金属氧化物半导体场效应管
CN108172618B (zh) 高k介质沟槽横向双扩散金属氧化物宽带隙半导体场效应管及其制作方法
CN108054194B (zh) 一种具有三维横向变掺杂的半导体器件耐压层
CN104617139B (zh) Ldmos器件及制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190301