CN109407093B - 解决宽孔径雷达到达角模糊度的多普勒测量 - Google Patents

解决宽孔径雷达到达角模糊度的多普勒测量 Download PDF

Info

Publication number
CN109407093B
CN109407093B CN201810884533.9A CN201810884533A CN109407093B CN 109407093 B CN109407093 B CN 109407093B CN 201810884533 A CN201810884533 A CN 201810884533A CN 109407093 B CN109407093 B CN 109407093B
Authority
CN
China
Prior art keywords
aoa
transceiver nodes
controller
aoas
reflections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810884533.9A
Other languages
English (en)
Other versions
CN109407093A (zh
Inventor
O·比尔勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN109407093A publication Critical patent/CN109407093A/zh
Application granted granted Critical
Publication of CN109407093B publication Critical patent/CN109407093B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • G01S13/726Multiple target tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/043Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9047Doppler beam sharpening mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

在雷达系统中解决到达角(AOA)模糊度的系统和方法包括在多个收发器节点处接收所接收的反射。雷达系统的多个收发器节点中的每个收发器节点在相应的一个或多个接收元件处接收一个或多个接收到的反射。该方法包括基于多个收发器节点处的接收反射的相位差确定候选AOAs
Figure DDA0001755271980000011
并基于接收到的反射确定多普勒频率
Figure DDA0001755271980000015
基于多普勒频率和候选AOAs
Figure DDA0001755271980000012
之间的匹配度量,从候选AOAs
Figure DDA0001755271980000014
中选择估计的AOA
Figure DDA0001755271980000013

Description

解决宽孔径雷达到达角模糊度的多普勒测量
技术领域
本公开涉及使用多普勒测量来解决宽孔径雷达的到达角模糊度。
背景技术
车辆(例如,汽车、卡车、建筑设备、农场设备、自动化工厂设备)越来越多地配备有便于增强或自动车辆操作的传感器系统。雷达系统是发送无线电波或脉冲并从目标接收所产生的反射的传感器系统。通常,雷达系统基于每个接收器处的接收反射和公共参考信号之间的相位差来估计到目标的角度。每个接收器经历的相位差可以用于细化对目标的角度的估计。虽然通过宽孔径雷达(即,增加的视场)获得高角度分辨率,但是接收器之间的较宽间隔(即,与公共参考信号的波长的一半以上对应的间隔)导致每个接收器经历的相位差异不同超过π。这导致从不同接收器获得的角度测量的模糊性。因此,期望提供多普勒测量以解决宽孔径雷达的到达角模糊度。
发明内容
在一个示例性实施例中,一种在雷达系统中解决到达角(AOA)模糊度的方法包括在多个收发器节点处接收所接收的反射。雷达系统的多个收发器节点中的每个收发器节点在相应的一个或多个接收元件处接收一个或多个接收到的反射。该方法还包括基于多个收发器节点处的接收反射的相位差确定候选AOAs
Figure DEST_PATH_IMAGE001
,并基于接收到的反射确定多普勒频率
Figure 92068DEST_PATH_IMAGE002
。基于多普勒频率和候选AOAs
Figure 602684DEST_PATH_IMAGE001
之间的匹配度量
Figure DEST_PATH_IMAGE003
,从候选AOAs
Figure 710317DEST_PATH_IMAGE001
中选择估计的AOA
Figure 902264DEST_PATH_IMAGE004
除了本文描述的一个或多个特征之外,还开发了实际接收信号a(θ i )的矩阵A。对于给定的实际AOA θ i ,每个a(θ i )是多个收发器节点中的每个收发器节点的一个或多个接收元件中的每个接收元件处的实际接收信号的矢量。
除了本文描述的一个或多个特征之外,还针对多个收发器节点处的接收反射的矢量y确定波束成形结果z,如下:
Figure DEST_PATH_IMAGE005
,其中
H表示厄米特转置。
除了本文描述的一个或多个特征之外,确定候选AOAs
Figure 781883DEST_PATH_IMAGE001
还包括识别波束成形结果z的高于指定阈值的矢量元素。
除了本文描述的一个或多个特征之外,确定多普勒频率
Figure 869924DEST_PATH_IMAGE006
还包括识别从在多个收发器节点中的每个收发器节点处超过指定值的接收反射获得的多普勒频谱的值。
除了本文描述的一个或多个特征之外,对于i=1至L,确定多个收发器节点中的每个收发器节点处的多普勒频率
Figure DEST_PATH_IMAGE007
与AOAɤ i 之间的关系,如下:
Figure 933695DEST_PATH_IMAGE008
,其中
v x v y 分别是生成接收的反射的目标的水平和垂直速度。
除了本文描述的一个或多个特征之外,基于以下来重写该关系:
Figure DEST_PATH_IMAGE009
,
Figure 194912DEST_PATH_IMAGE010
,以及
Figure 394950DEST_PATH_IMAGE011
,为
Figure 653893DEST_PATH_IMAGE012
除了本文描述的一个或多个特征之外,目标的速度矢量
Figure DEST_PATH_IMAGE013
估计为:
Figure 470539DEST_PATH_IMAGE014
,其中
p表示p>0的幂值。
除了本文描述的一个或多个特征之外,目标的速度矢量
Figure 473130DEST_PATH_IMAGE013
估计为:
Figure DEST_PATH_IMAGE015
除了本文描述的一个或多个特征之外,匹配度量
Figure 58832DEST_PATH_IMAGE016
被确定为:
Figure DEST_PATH_IMAGE017
其中p是p>0的幂值,I是单位矩阵,并且选择估计的AOA
Figure 285414DEST_PATH_IMAGE018
是基于识别最小值
Figure 58198DEST_PATH_IMAGE003
在另一示例性实施例中,一种解决雷达系统中的到达角(AOA)模糊度的系统包括接收所接收的反射的多个收发器节点。雷达系统的多个收发器节点中的每个收发器节点被配置为在相应的一个或多个接收元件处接收一个或多个接收到的反射。该系统还包括控制器,用于基于多个收发器节点处的接收反射中的相位差确定候选AOAs
Figure DEST_PATH_IMAGE019
,基于接收的反射确定多普勒频率
Figure 130059DEST_PATH_IMAGE002
,并基于多普勒频率和候选AOAs
Figure 568605DEST_PATH_IMAGE001
之间的匹配度量
Figure 434929DEST_PATH_IMAGE020
从候选AOAs
Figure 695010DEST_PATH_IMAGE019
中选择估计的AOA
Figure DEST_PATH_IMAGE021
除了本文描述的一个或多个特征之外,控制器生成实际接收信号a(θ i )的矩阵A,每个a(θ i )是对于给定的实际AOA θ i ,在多个收发器节点中的每个收发器节点的一个或多个接收元件中的每个接收元件处的实际接收信号的矢量。
除了本文描述的一个或多个特征之外,控制器还确定多个收发器节点处接收到的反射的矢量y的波束成形结果z,如下:
Figure 164037DEST_PATH_IMAGE005
,其中
H指示厄米特转置。
除了本文描述的一个或多个特征之外,控制器还基于识别波束成形结果z的高于指定阈值的矢量元素来确定候选AOAs
Figure 927594DEST_PATH_IMAGE019
除了本文描述的一个或多个特征之外,控制器还基于识别从多个收发器节点中的每个收发器节点处超过指定值的接收反射获得的多普勒频谱的值来确定多普勒频率
Figure 230399DEST_PATH_IMAGE006
除了本文描述的一个或多个特征之外,控制器还确定对于i=1至L,确定多个收发器节点中的每个收发器节点处的多普勒频率
Figure 715126DEST_PATH_IMAGE006
与AOAɤ i 之间的关系,如下:
Figure 194036DEST_PATH_IMAGE008
,其中
v x v y 分别是生成接收反射的目标的水平和垂直速度。
除了本文描述的一个或多个特征之外,基于:
Figure 61367DEST_PATH_IMAGE009
Figure 269494DEST_PATH_IMAGE010
,以及
Figure 557694DEST_PATH_IMAGE011
,控制器确定
Figure 509470DEST_PATH_IMAGE012
除了本文描述的一个或多个特征之外,控制器还将估计目标的速度矢量
Figure 513198DEST_PATH_IMAGE013
为:
Figure 892227DEST_PATH_IMAGE022
,其中
p表示p>0的幂值。
除了本文描述的一个或多个特征之外,控制器还估计目标的速度矢量
Figure 676512DEST_PATH_IMAGE013
为:
Figure 166399DEST_PATH_IMAGE015
除了本文描述的一个或多个特征之外,控制器还将匹配度量
Figure 759054DEST_PATH_IMAGE016
确定为:
Figure 574564DEST_PATH_IMAGE017
其中p是p>0的幂值,I是单位矩阵,并且选择估计的AOA
Figure 783828DEST_PATH_IMAGE018
是基于识别最小值
Figure 342985DEST_PATH_IMAGE003
通过以下结合附图的详细描述,本公开的上述特征和优点以及其它特征和优点将变得显而易见。
附图说明
其它特征、优点和细节仅作为示例出现在以下详细描述中,参考附图的详细描述,在附图中:
图1是根据一个或多个实施例的使用多普勒测量来解决宽孔径雷达的到达角模糊度的系统的框图;
图2示出了示例性场景,其中模糊度导致根据一个或多个实施例解决的多个到达角假设;以及
图3详细描述了根据一个或多个实施例的由控制器执行以使用多普勒测量来解决到达角模糊度的过程。
具体实施方式
以下描述本质上仅是示例性的,并不旨在限制本公开、其应用或用途。应该理解的是,在整个附图中,相应的附图标记表示相同或相应的部件和特征。
如前所述,雷达系统的接收器之间的相位差用于确定目标的到达角。通常,雷达系统包括一个或多个发射器和两个或更多个接收器,该接收器接收由所有发射器的发射产生的反射。当存在多于一个的发射器时,发射器可以根据时域复用方案依次发送,或者发射器可以根据代码或频率复用方案同时发送。每个接收器(即,接收反射或接收元件的天线元件)接收与每个发射器相关联的反射。确定每个接收元件处的每个发射信号与每个接收信号之间的相位差,并用于估计目标到接收元件阵列中心的到达角。当使用相同的参考信号来生成由每个发射元件发射的信号时,如这里所假设的,可以使用接收元件中每个接收元件处的测量相位的差异而不是在每个接收元件处确定的相位差的差异。也如前所述,雷达系统的接收器之间增加的间隔增加了视场,并且因此增加了雷达系统的角分辨率。然而,增加的间隔也可能导致目标到达角的角度测量模糊度。
本文详述的系统和方法的实施例涉及使用多普勒测量来解决宽孔径雷达的到达角模糊度。多普勒频率是载波信号、目标速度和距目标的角度的函数。因为每个接收器处的多普勒频率将受到从目标到该接收器的角度的影响,所以可以使用多普勒测量来解决由于基于在接收元件中每个接收元件处接收的反射之间的相位差确定角度而导致的角度测量模糊度。
也就是说,在每个接收元件处接收的反射信号之间的相位差用于测量信号的到达时间差。然后使用该时间差来计算到达角。该过程可以通过对接收信号进行波束成形来实现。在波束成形中,来自每个接收元件的接收信号被延迟指定的量或权重,以便将每个接收元件接收的能量的增益控制到特定角度。根据本文详述的实施例,从具有高强度的波束成形输出(例如,波束成形峰值)获得多个到达角(AOA)估计或假设。模糊度源于波束成形输出中的多个峰值,这是由接收元件之间的距离产生的。然后,根据一个或多个实施例,使用多普勒频率来创建度量,通过该度量在AOA假设中进行选择。
根据示例性实施例,图1是使用多普勒测量来解决宽孔径雷达的到达角模糊度的系统的框图。该系统包括根据图1所示的示例性实施例的车辆100的雷达系统110。图1中示出的示例性车辆100是汽车101。雷达系统110示出为具有多个收发器节点115-A至115-N(通常称为115)。雷达系统110是宽孔径雷达。这意味着雷达系统110的每个接收元件(在每个收发器节点115处)所经历的相位差可以大于π,从而在随后的AOA确定中产生模糊度。雷达系统110另外包括生成发射信号并处理接收信号的已知组件。控制器120可以是雷达系统110的一部分或耦合到雷达系统110,并且可以执行雷达系统110的一些已知功能,诸如信号生成。控制器120可以将来自雷达系统110的信息提供给一个或多个车辆系统130(例如,碰撞避免系统、自适应巡航控制系统、自动驾驶系统)以增强或自动化车辆100的动作。
根据参考图1讨论的示例性实施例,控制器120执行参考图3详细描述的处理,使用多普勒频率确定生成AOA假设并生成度量,用于在AOA假设之间进行选择。控制器120包括处理电路,该处理电路可以包括专用集成电路(ASIC)、电子电路、处理器(共享、专用或群组)和执行一个或多个软件或固件程序的存储器、组合逻辑电路,以及/或提供所述功能的其它合适组件。
图2示出示例性场景,其中模糊度导致根据一个或多个实施例解决的多个AOA假设。车辆100包括发送信号并在每个接收元件处接收反射的雷达系统110。由控制器120处理所接收的反射导致与三个位置相关联的AOA的三个假设。反过来,这些位置与由模糊度导致的一个真实目标210和两个重影目标215相关联。控制器120使用多普勒频率信息,如参考图3详细描述的,解决模糊度并将真实目标210及其AOA与重影目标215及其相应的AOA区分开。
图3详细描述了根据一个或多个实施例的由控制器120执行以使用多普勒测量来解决AOA模糊度的过程。收发器节点115-A至115-N接收从目标210反射的信号。在考虑用于说明目的的示例性雷达系统110中,每个收发器节点115包括一个接收元件。然而,在替代实施例中,每个收发器节点115可以包括多于一个的发送元件和多于一个的接收元件。由于收发器节点115之间的距离,每个收发器节点115处的AOA是不同的。例如,收发器节点115-A处的AOA ɤ 1 与收发器节点115-N处的AOA ɤ N 不同。作为收发器节点115阵列中的接收元件阵列的中心处的AOA θ是感兴趣的角度。该角度θ由控制器120解决。控制器120执行的过程被概括,并且然后进一步详述。
如图所示,每个收发器节点115-A至115-N将对应的测量相位ϕ 1 ϕ N 提供给控制器120的处理框310。当每个收发器节点115包括多于一个的接收元件时,每个收发器节点115将提供多于一个的相位值。在框310处,针对AOA θ获得K AOA假设
Figure DEST_PATH_IMAGE023
Figure 586885DEST_PATH_IMAGE024
。收发器节点115处的接收信号y 1 y N 也被提供用于多普勒处理。在框320处,根据通过执行接收信号y 1 y N 的快速傅里叶变换(FFT)获得的多普勒频谱中检测到的峰值(例如,超过预定阈值的值)确定L多普勒频率
Figure DEST_PATH_IMAGE025
Figure 573295DEST_PATH_IMAGE026
。在框330处,基于多普勒频率
Figure 4277DEST_PATH_IMAGE025
Figure 104475DEST_PATH_IMAGE026
计算与AOA假设
Figure DEST_PATH_IMAGE027
Figure 468461DEST_PATH_IMAGE024
对应的匹配度量
Figure 625773DEST_PATH_IMAGE028
Figure DEST_PATH_IMAGE029
。在框340处,匹配度量
Figure 340788DEST_PATH_IMAGE028
Figure 241748DEST_PATH_IMAGE030
用于选择估计的AOA
Figure 397922DEST_PATH_IMAGE018
。进一步详述由控制器120执行的每个过程。
在框310处,通过波束成形获得AOA假设
Figure DEST_PATH_IMAGE031
Figure 54032DEST_PATH_IMAGE032
。每个收发器节点115处的每个接收信号由y i 指示。接收信号y i 与矩阵A相关以获得AOA假设
Figure 459605DEST_PATH_IMAGE031
Figure 164256DEST_PATH_IMAGE032
。矩阵A被开发,矩阵的每列是对于所有收发器节点115的中心点处的给定AOA θ i ,在没有所有噪声的情况下,将在接收元件中每个接收元件处接收的实际接收信号a(θ i )。因此,矩阵A的列数对应于所考虑的AOAθ i 的数量,并且矩阵A的行数对应于所有收发器节点115中的接收元件的数量(例如,示例性情况中的N)。每个θ i 是接收信号的相位ϕ i 的函数。矩阵A由下式给出:
Figure 706096DEST_PATH_IMAGE033
[等式1]
对于任何接收信号y,其是示例中的y 1 y N 的矢量,波束成形结果矢量z由下式给出:
Figure 208140DEST_PATH_IMAGE034
[等式2]
在等式2中,T指示转置,并且每个|a(θ i H y|是复数标量|a(θ i H y|的绝对值。矢量z将具有矩阵A的每列的值(元素),其对应于所考虑的AOA之一。然后,获得AOA假设
Figure 835430DEST_PATH_IMAGE035
Figure DEST_PATH_IMAGE036
作为超过指定阈值的z矢量的元素或值。
在框320处,检查所有收发器节点115的多普勒频谱。如前所述,L多普勒频率
Figure 343772DEST_PATH_IMAGE037
Figure 740118DEST_PATH_IMAGE038
对应于超过指定阈值的L多普勒频谱值。对随时间推移在每个接收元件处接收的信号执行FFT。当收发器节点115包括多于一个的接收元件时,对同一收发器节点115内的所有接收元件的FFT结果进行组合(例如,平均)以确定收发器节点115的多普勒频率。基于雷达系统110的视场中目标210的数量,每个收发器节点115可以确定多个多普勒频率。假设目标210和雷达系统110之间的恒定相对速度,每个收发器节点115处多普勒频率与AOAɤi之间的关系由下式给出:
Figure DEST_PATH_IMAGE039
[等式3]
在等式3中,v x v y 分别是水平和垂直速度。多普勒频率
Figure 675713DEST_PATH_IMAGE037
Figure 790300DEST_PATH_IMAGE038
表示为矢量f,正弦值和余弦值的矩阵表示为矩阵G θi ,并且速度矢量表示为v。矩阵G θi 分别基于γ 1 至γ N (记为θ i)来表示。因此,等式3可以重写为:
Figure 571174DEST_PATH_IMAGE012
[等式4]
速度矢量估计
Figure 946661DEST_PATH_IMAGE040
可以根据以下从AOA假设
Figure DEST_PATH_IMAGE041
Figure 318736DEST_PATH_IMAGE036
获得:
Figure 186198DEST_PATH_IMAGE042
[等式5]
等式5中的幂不一定是2,并且可以替代地是幂p的值,其中p>0。因此,等式5可以重写为:
Figure DEST_PATH_IMAGE043
[等式6]
此外,可以使用另一运动模型(例如,不假设雷达系统110和目标210之间的恒定相对速度的运动模型)。另一运动模型可以考虑频率矢量f和AOA假设θ i 之间的不同数学关系。
等式5可以重写为:
Figure 304851DEST_PATH_IMAGE015
[等式7]
在等式7,H表示厄米特转置。多普勒频率(矢量f)和AOA假设
Figure 675790DEST_PATH_IMAGE001
之间的匹配度量
Figure 687608DEST_PATH_IMAGE003
Figure 511208DEST_PATH_IMAGE044
Figure 899464DEST_PATH_IMAGE030
)由下式给出:
Figure DEST_PATH_IMAGE045
[等式8]
等式8可以重写为:
Figure 656067DEST_PATH_IMAGE046
[等式9]
在等式8和等式9中,误差成本函数可以不是平方误差成本函数(即,幂可以不同于2)。因此,等式9可以更一般地写为:
Figure 838787DEST_PATH_IMAGE017
[等式10]
等式10中p的值不必是2。在高斯噪声的情况下,p=2的值可能是最优的,而当噪声分布不是高斯的时,值p≤1可能是更好的。在等式9和等式10中,I是单位矩阵,其中对角线上的所有矩阵元素具有值1并且所有其它矩阵元素具有值0。估计的AOA
Figure 415262DEST_PATH_IMAGE018
是具有最优(即,最小)匹配度量
Figure 341629DEST_PATH_IMAGE047
的AOA假设θ i
虽然已经参考示例性实施例描述了以上公开,但是本领域技术人员将理解,在不脱离其范围的情况下,可以进行各种改变并且可以用等同物替换其元件。另外,在不脱离本发明的实质范围的情况下,可以进行许多修改以使特定情况或材料适应本公开的教导。因此,意图是本公开不限于所公开的特定实施例,而是将包括落入其范围内的所有实施例。

Claims (10)

1.一种在雷达系统中解决到达角(AOA)模糊度的方法,所述方法包括:
接收在多个收发器节点处接收的反射,其中所述雷达系统的所述多个收发器节点中的每个收发器节点接收在相应的一个或多个接收元件处的一个或多个所述接收的反射;
基于所述多个收发器节点处的所述接收反射中的相位差,确定候选AOAs
Figure FDA0001755271950000011
基于所述接收的反射确定多普勒频率
Figure FDA0001755271950000012
以及
基于所述多普勒频率和所述候选AOAs
Figure FDA0001755271950000013
之间的匹配度量μi从所述候选AOAs
Figure FDA0001755271950000015
中选择估计的AOA
Figure FDA0001755271950000014
2.根据权利要求1所述的方法,进一步包括开发实际接收信号a(θi)的矩阵A,其中每个a(θi)是对于给定的实际AOAθi,在所述多个收发器节点中的每个收发器节点的所述一个或多个接收元件中的每个接收元件处的所述实际接收信号的矢量。
3.根据权利要求2所述的方法,进一步包括针对所述多个收发器节点处的所述接收反射的矢量y确定波束成形结果z,如下:
z=||AHy||,其中
H指示厄米特转置,其中所述确定所述候选AOAs
Figure FDA0001755271950000016
包括识别所述波束成形结果z的高于指定阈值的矢量元素。
4.根据权利要求2所述的方法,其中所述确定所述多普勒频率
Figure FDA0001755271950000018
包括识别从在所述多个收发器节点中的每个收发器节点处超过指定值的所述接收的反射获得的多普勒频谱的值。
5.根据权利要求1所述的方法,进一步包括:对于i=1到L,确定所述多个收发器节点中的每个收发器节点处的所述多普勒频率
Figure FDA0001755271950000017
与AOAγi之间的关系,如下:
Figure FDA0001755271950000021
其中
vx和vy分别是生成所述接收的反射的目标的水平和垂直速度,进一步包括基于以下来重写所述关系:
Figure FDA0001755271950000022
以及
Figure FDA0001755271950000023
Figure FDA0001755271950000024
进一步包括估计所述目标的速度矢量
Figure FDA0001755271950000025
为:
Figure FDA0001755271950000026
其中
p表示p>0的幂值,进一步包括将所述目标的速度矢量
Figure FDA0001755271950000027
估计为:
Figure FDA0001755271950000028
以及
进一步包括将所述匹配度量μi确定为:
Figure FDA0001755271950000029
其中p是p>0的幂值,I是单位矩阵,并且选择所述估计的AOA
Figure FDA00017552719500000210
是基于识别最小值μi
6.一种用于解决雷达系统中的到达角(AOA)模糊度的系统,所述系统包括:
多个收发器节点,其被配置为接收所述接收的反射,其中所述雷达系统的所述多个收发器节点中的每个收发器节点被配置为在相应的一个或多个接收元件处接收一个或多个所述接收的反射;
控制器,其被配置为基于所述多个收发器节点处的所述接收反射中的相位差确定候选AOAs
Figure FDA0001755271950000031
基于所述接收的反射确定多普勒频率
Figure FDA0001755271950000039
并基于所述多普勒频率和所述候选AOAs
Figure FDA0001755271950000032
之间的匹配度量μi从所述候选AOAs
Figure FDA0001755271950000033
中选择估计的AOA
Figure FDA0001755271950000034
7.根据权利要求6所述的系统,其中所述控制器进一步被配置为生成实际接收信号a(θi)的矩阵A,每个a(θi)是对于给定的实际AOAθi,在所述多个收发器节点中的每个收发器节点的所述一个或多个接收元件中的每个接收元件处的所述实际接收信号的矢量。
8.根据权利要求7所述的系统,其中所述控制器进一步被配置为针对所述多个收发器节点处的所述接收反射的矢量y确定波束成形结果z,如下:
z=||AHy||,其中
H指示厄米特转置,其中所述控制器进一步被配置为基于识别所述波束成形结果z的高于指定阈值的矢量元素来确定所述候选AOAs
Figure FDA0001755271950000035
9.根据权利要求7所述的系统,其中所述控制器进一步被配置为基于识别从所述多个收发器节点中的每个收发器节点处超过指定值的所述接收反射获得的多普勒频谱的值来确定所述多普勒频率
Figure FDA0001755271950000036
10.根据权利要求6所述的系统,其中所述控制器进一步被配置为对于i=1至L,确定所述多个收发器节点中的每个收发器节点处的所述多普勒频率
Figure FDA0001755271950000037
与AOA
Figure FDA0001755271950000038
之间的关系,如下:
Figure FDA0001755271950000041
其中
vx和vy分别是生成所述接收反射的目标的水平和垂直速度,其中,基于:
Figure FDA0001755271950000042
以及
Figure FDA0001755271950000043
所述控制器进一步配置为确定:
Figure FDA0001755271950000044
其中
所述控制器进一步被配置为估计所述目标的速度矢量
Figure FDA0001755271950000048
为:
Figure FDA0001755271950000045
其中
p表示p>0的幂值,其中所述控制器进一步被配置为估计所述目标的速度矢量
Figure FDA0001755271950000049
为:
Figure FDA0001755271950000046
以及其中
所述控制器进一步被配置为将所述匹配度量μi确定为:
Figure FDA0001755271950000047
其中p是p>0的幂值,I是单位矩阵,并且所述选择所述估计的AOA
Figure FDA00017552719500000410
是基于识别最小值μi
CN201810884533.9A 2017-08-17 2018-08-06 解决宽孔径雷达到达角模糊度的多普勒测量 Active CN109407093B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/679,552 US10690743B2 (en) 2017-08-17 2017-08-17 Doppler measurements to resolve angle of arrival ambiguity of wide aperture radar
US15/679552 2017-08-17

Publications (2)

Publication Number Publication Date
CN109407093A CN109407093A (zh) 2019-03-01
CN109407093B true CN109407093B (zh) 2022-08-23

Family

ID=65235504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810884533.9A Active CN109407093B (zh) 2017-08-17 2018-08-06 解决宽孔径雷达到达角模糊度的多普勒测量

Country Status (3)

Country Link
US (1) US10690743B2 (zh)
CN (1) CN109407093B (zh)
DE (1) DE102018119858B4 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6279187B2 (ja) * 2016-02-29 2018-02-14 三菱電機株式会社 レーダ装置
US11073608B2 (en) * 2018-10-11 2021-07-27 Raytheon Company Resolving radar angle ambiguities using a multiple hypothesis tracker
US11187782B2 (en) * 2019-04-10 2021-11-30 GM Global Technology Operations LLC Radar system with enhanced angular resolution and method for enhancing angular resolution in a radar system
US11313948B2 (en) * 2019-07-08 2022-04-26 GM Global Technology Operations LLC Radar system and method for identifying multiple targets in a beam response spectrum
US11587214B2 (en) * 2019-10-04 2023-02-21 GM Global Technology Operations LLC Multipath ghost mitigation in vehicle radar system
US20210181303A1 (en) * 2019-12-16 2021-06-17 Semiconductor Components Industries, Llc Calibrating array antennas based on signal energy distribution as a function of angle
US11320515B2 (en) * 2020-04-21 2022-05-03 GM Global Technology Operations LLC Detection with multipath reflection elimination in multi-input multi-output radar system
WO2021240632A1 (ja) * 2020-05-26 2021-12-02 三菱電機株式会社 到来方向推定装置
WO2022139843A1 (en) * 2020-12-24 2022-06-30 Intel Corporation Radar apparatus, system, and method
US11991656B2 (en) * 2021-01-25 2024-05-21 Qualcomm Incorporated Synchronization signal selection across multiple transceiver nodes
EP4033269A1 (en) * 2021-01-26 2022-07-27 Aptiv Technologies Limited Methods and system for determining an angle of a detection
EP4194885A1 (en) 2021-12-09 2023-06-14 Aptiv Technologies Limited Method for determining the mobility status of a target object
DE102022205584B4 (de) 2022-06-01 2024-02-29 Mercedes-Benz Group AG Verfahren zum Unterdrücken von auf Winkelmehrdeutigkeiten beruhenden Fehlortungen eines winkelauflösenden Radarsystems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708443A (en) * 1996-08-07 1998-01-13 Litton Systems Inc. Method and apparatus for using signal doppler change to resolve long baseline interferometer ambiguous phase change measurements for locating a radar emitter
US5724047A (en) * 1996-11-27 1998-03-03 Hughes Electronics Phase and time-difference precision direction finding system
US9046591B1 (en) * 2009-05-07 2015-06-02 Sigtem Technology, Inc. Coordinate-free measurement-domain navigation and guidance using location-dependent radio signal measurements
CN107037396A (zh) * 2016-01-22 2017-08-11 通用汽车环球科技运作有限责任公司 到达角估计

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727851B2 (en) * 2000-09-20 2004-04-27 The Corporation Of Mercer University System for signal emitter location using rotational doppler measurement
GB0325622D0 (en) * 2003-11-03 2003-12-10 Cambridge Consultants System for determining positional information
US7205932B2 (en) * 2004-01-29 2007-04-17 Bae Systems Information And Electronic Systems Integration Inc. Method and apparatus for improved determination of range and angle of arrival utilizing a two tone CW radar
US7804445B1 (en) * 2006-03-02 2010-09-28 Bae Systems Information And Electronic Systems Integration Inc. Method and apparatus for determination of range and direction for a multiple tone phased array radar in a multipath environment
KR101308212B1 (ko) * 2008-10-06 2013-09-13 엘렉트로비트 시스템 테스트 오와이 오티에이 시험
WO2012052856A1 (en) * 2010-10-21 2012-04-26 Reutech Radar Systems (Proprietary) Limited Floodlight radar system for detecting and locating moving targets in three dimensions
JP6853642B2 (ja) * 2016-09-26 2021-03-31 パナソニック株式会社 レーダ装置
US10705202B2 (en) 2017-01-19 2020-07-07 GM Global Technology Operations LLC Iterative approach to achieve angular ambiguity resolution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708443A (en) * 1996-08-07 1998-01-13 Litton Systems Inc. Method and apparatus for using signal doppler change to resolve long baseline interferometer ambiguous phase change measurements for locating a radar emitter
US5724047A (en) * 1996-11-27 1998-03-03 Hughes Electronics Phase and time-difference precision direction finding system
US9046591B1 (en) * 2009-05-07 2015-06-02 Sigtem Technology, Inc. Coordinate-free measurement-domain navigation and guidance using location-dependent radio signal measurements
CN107037396A (zh) * 2016-01-22 2017-08-11 通用汽车环球科技运作有限责任公司 到达角估计

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
多基线数据融合的双基地MIMO雷达角度估计;刘晓莉等;《电波科学学报》;20101215(第06期);全文 *

Also Published As

Publication number Publication date
US10690743B2 (en) 2020-06-23
DE102018119858B4 (de) 2024-03-28
CN109407093A (zh) 2019-03-01
DE102018119858A1 (de) 2019-02-21
US20190056506A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
CN109407093B (zh) 解决宽孔径雷达到达角模糊度的多普勒测量
US10389421B2 (en) Apparatus for estimating arrival-angle and apparatus for beam-forming
US10379204B2 (en) Method for calibrating a MIMO radar sensor for motor vehicles
US9618616B2 (en) Radar apparatus
US9470782B2 (en) Method and apparatus for increasing angular resolution in an automotive radar system
CN108333588B (zh) 用来获得角度模糊度解析的迭代方法
EP3324205B1 (en) Decentralised radar system
CN110579763A (zh) 使用数字多脉冲重复频率来解决多输入多输出雷达中的多普勒模糊
US10656248B2 (en) Radar post processing for sidelobe suppression
US20190346548A1 (en) Filtering to address range walk effect in range-doppler map
CN106486769B (zh) 用于线性相控阵天线的空间插值方法和设备
JP6362262B2 (ja) 角度推定装置および角度推定方法
WO2019220503A1 (ja) 物体検出装置及び物体検出方法
CN110658390B (zh) 利用天线和检测装置确定天线和车辆的对准误差的方法
CN105158754B (zh) 一种利用多输入单输出无线电系统进行目标定位的方法
CN110940973B (zh) 一种用于雷达目标检测的角度测量方法及装置
WO2021240927A1 (ja) レーダ装置
JP6980570B2 (ja) 目標検出装置および信号処理方法
CN110471039B (zh) 解决非相干雷达系统中的节间相位噪声
US20240192353A1 (en) Ego velocity estimator for radar systems
TWI808874B (zh) 用於交通工具的雷達系統及偵測方法
US20240094377A1 (en) High resolution radar simulation to train vehicle radar system neural network
US10948590B2 (en) Estimation and compensation of transceiver position offsets in a radar system for targets at unknown positions
JP7015929B2 (ja) 物体の角度位置を評価する方法および装置、ならびに運転者支援システム
CN117795371A (zh) 用于机动车雷达收发器的低水平雷达融合

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant