CN109369173B - 一种四方相钛酸钡粉体的制备方法及产品 - Google Patents

一种四方相钛酸钡粉体的制备方法及产品 Download PDF

Info

Publication number
CN109369173B
CN109369173B CN201811530238.XA CN201811530238A CN109369173B CN 109369173 B CN109369173 B CN 109369173B CN 201811530238 A CN201811530238 A CN 201811530238A CN 109369173 B CN109369173 B CN 109369173B
Authority
CN
China
Prior art keywords
barium
hydroxide
barium titanate
mixed powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811530238.XA
Other languages
English (en)
Other versions
CN109369173A (zh
Inventor
朱归胜
徐华蕊
章秋晨
钱浩宇
赵昀云
张秀云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201811530238.XA priority Critical patent/CN109369173B/zh
Publication of CN109369173A publication Critical patent/CN109369173A/zh
Application granted granted Critical
Publication of CN109369173B publication Critical patent/CN109369173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4686Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on phases other than BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种四方相钛酸钡粉体的制备方法及产品,属于介电陶瓷材料技术领域,该方法中,首先将钡盐或钡的氢氧化物和钛的氧化物或氢氧化物分开球磨或砂磨,分别获得钡盐或钡的氢氧化物浆料和钛的氧化物或氢氧化物浆料,然后将两种浆料在20‑40℃下混匀后进行喷雾干燥,获得混合粉体,再向该混合粉体中加入混合粉体总质量5‑90%的陶瓷材料,再次混匀后进行微波处理,最终制得粉体晶粒细小,粒径均匀,分散性良好的四方相钛酸钡粉体。该制备方法工艺简单,易操作,且成本低,适合工业化生产。

Description

一种四方相钛酸钡粉体的制备方法及产品
技术领域
本发明属于压电陶瓷材料技术领域,具体涉及一种四方相钛酸钡粉体的制备方法及产品。
背景技术
钛酸钡作为重要的电子基础材料,广泛应用于积层电容元件(MLCC)、压电元件、限流保护、消磁、启动、发热元件(PTC)、发光材料等领域。随着MLCC介质层厚度的不断减少,对钛酸钡粒径的要求也越来越细,因此对超细纳米钛酸钡的需求与日增多。
当前,制备钛酸钡主要可分为液相法和固相法两大类。液相生产方法主要有:草酸法、水热法、溶胶-凝胶法和微波水热法。通过液相法生产的钛酸钡,虽然粒径细小,但成本过高,工艺流程复杂,产能有限,并且粉体内含大量反应所生成的羟基,在后续陶瓷化过程容易带入缺陷,导致电容介电常数、损耗等电性能的波动。通过固相法生产制备钛酸钡是目前通用的方法,此法工艺技术成熟,原料来源广泛且价格便宜,可大量生产,最关键的是合成的钛酸钡晶粒完整,缺陷较少,但在球磨过程中,原料与介质碰撞会产生局部高温,从而造成钛酸钡晶核的产生,进而影响最终制备的钛酸钡的均匀性,并且在高温合成中,会出现晶粒长大和团聚,因此难以生产粒径小的超细钛酸钡粉体。因此,急需一种能够制备出粉体晶粒细小,粒径均匀,分散性良好的相钛酸钡粉体的固相法。
发明内容
有鉴于此,本发明的目的之一在于提供一种四方相钛酸钡粉体的制备方法;目的之二在于提供一种四方相钛酸钡粉体。
为达到上述目的,本发明提供如下技术方案:
1、一种四方相钛酸钡粉体的制备方法,所述方法包括如下步骤:
(1)按Ba和Ti的摩尔比为1.02-1.05:1称取钡盐或钡的氢氧化物和钛的氧化物或氢氧化物,然后将所述钡盐或钡的氢氧化物和钛的氧化物或氢氧化物分别进行球磨或砂磨处理,获得钡盐或钡的氢氧化物浆料和钛的氧化物或氢氧化物浆料;
(2)将步骤(1)中获得的钡盐或钡的氢氧化物浆料和钛的氧化物或氢氧化物浆料在20-40℃下混匀,然后进行喷雾干燥,获得混合粉体,再向所述混合粉体中加入所述混合粉体总质量5-90%的陶瓷材料,再次混匀后进行微波处理,所述微波处理具体为以20-100℃/min的升温速率升至600-1100℃后,保温0.5-4h。
优选地,步骤(1)中,所述Ba和Ti的摩尔比为1.03:1。
优选地,步骤(1)中,所述钡盐为BaCO3,所述钡的氢氧化物为Ba(OH)2
优选地,步骤(1)中,所述钛的氧化物为TiO2,所述钛的氢氧化物Ti(OH)4
优选地,步骤(2)中,所述喷雾干燥时进风温度为200℃,出风温度为100℃,雾化器转速为15000-33000rpm。
优选地,步骤(2)中,再向所述混合粉体中加入所述混合粉体总质量25-50%的陶瓷材料。
优选地,所述陶瓷材料是粒径为20-1000μm的微粒。
优选地,所述陶瓷材料为SiC、ZrO2或Al2O3中的至少一种。
优选地,步骤(2)中,所述微波处理具体为以30-50℃/min的升温速率升至800-1000℃后,保温1-2h。
2、由所述的方法制备的四方相钛酸钡粉体。
本发明的有益效果在于:本发明提供了一种四方相钛酸钡粉体的制备方法及产品,在制备过程中将钡盐或钡的氢氧化物和钛的氧化物或氢氧化物分开球磨或砂磨,从而有效地避免了球磨或机磨过程中,因原料间的碰撞产生的局部高温或能量传递而产生的非均相成核,生成少量钛酸钡晶种或晶核,极大影响钛酸钡粉体粒径均匀性的缺陷,保证了最终制备的钛酸钡的均匀性。另外,后期混入陶瓷材料后结合微波处理,一方面利用了陶瓷材料良好的微波吸收性,在其与粉体的充分混合后,形成微区均匀加热,克服了BaTiO3微波吸收性不好的缺陷,另一方面,在利用微波加热快速、均匀的特性的同时,通过限定微波处理的工艺条件,不但能够缩短合成时间,还能有效避免晶粒长大和团聚,相比于传统固相法,所制备出的粉体晶粒细小,粒径均匀,分散性良好。该制备方法工艺简单,易操作,且成本低,适合工业化生产。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为实施例1至实施例8中制备的四方相钛酸钡粉体的XRD图;
图2为实施例1至实施例4中制备的四方相钛酸钡粉体的SEM图。
具体实施方式
下面将对本发明的优选实施例进行详细的描述。
实施例1
制备四方相钛酸钡粉体
(1)按Ba和Ti的摩尔比为1.02:1称取BaCO3和TiO2,按球:料:水的质量比例为2:1:1的比例分别将BaCO3和TiO2加入到两个球磨罐中,然后以300rpm的速度球磨4h,分别获得BaCO3浆料和TiO2浆料;
(2)将步骤(1)中获得的BaCO3浆料和TiO2浆料在25℃下混匀,然后在进风温度为200℃,出风温度为100℃,雾化器转速为20000rpm的工艺条件下进行喷雾干燥,获得混合粉体,再向该混合粉体中加入混合粉体总质量5%的陶瓷材料(由SiC微粒和Al2O3微粒按质量比1:1混合而成,且SiC微粒和Al2O3微粒的平均粒径均分布在50-100μm),再次混匀后进行微波处理,微波处理具体为以60℃/min的升温速率升至600℃后,保温4h,制得四方相钛酸钡粉体。
实施例2
制备四方相钛酸钡粉体
(1)按Ba和Ti的摩尔比为1.03:1称取Ba(OH)2和Ti(OH)4,按球:料:水的质量比例为2:1:1的比例分别将Ba(OH)2和Ti(OH)4加入到两个球磨罐中,然后以150rpm的速度球磨1.5h,分别获得Ba(OH)2浆料和Ti(OH)4浆料;
(2)将步骤(1)中获得的Ba(OH)2浆料和Ti(OH)4浆料在30℃下混匀,然后在进风温度为200℃,出风温度为100℃,雾化器转速为15000rpm的工艺条件下进行喷雾干燥,获得混合粉体,再向该混合粉体中加入混合粉体总质量15%的陶瓷材料(平均粒径分布在100-150μm的SiC微粒),再次混匀后进行微波处理,微波处理具体为以80℃/min的升温速率升至700℃后,保温3.5h,制得四方相钛酸钡粉体。
实施例3
制备四方相钛酸钡粉体
(1)按Ba和Ti的摩尔比为1.05:1称取BaCO3和Ti(OH)4,按球:料:水的质量比例为2:1:1的比例分别将BaCO3和Ti(OH)4加入到两个球磨罐中,然后以200rpm的速度球磨3h,分别获得BaCO3浆料和Ti(OH)4浆料;
(2)将步骤(1)中获得的BaCO3浆料和Ti(OH)4浆料在35℃下混匀,然后在进风温度为200℃,出风温度为100℃,雾化器转速为25000rpm的工艺条件下进行喷雾干燥,获得混合粉体,再向该混合粉体中加入混合粉体总质量15%的陶瓷材料(由ZrO2微粒和Al2O3微粒按质量比1:1混合而成,且ZrO2微粒和Al2O3微粒的平均粒径均分布在150-200μm),再次混匀后进行微波处理,微波处理具体为以45℃/min的升温速率升至800℃后,保温3h,制得四方相钛酸钡粉体。
实施例4
制备四方相钛酸钡粉体
(1)按Ba和Ti的摩尔比为1.02:1称取Ba(OH)2和TiO2,按球:料:水的质量比例为2:1:1的比例分别将Ba(OH)2和TiO2加入到两个球磨罐中,然后以250rpm的速度球磨2h,分别获得Ba(OH)2浆料和TiO2浆料;
(2)将步骤(1)中获得的Ba(OH)2浆料和TiO2浆料在30℃下混匀,然后在进风温度为200℃,出风温度为100℃,雾化器转速为33000rpm的工艺条件下进行喷雾干燥,获得混合粉体,再向该混合粉体中加入混合粉体总质量25%的陶瓷材料(由SiC微粒和Al2O3微粒按质量比2:1混合而成,且SiC微粒和Al2O3微粒的平均粒径均分布在500-1000μm),再次混匀后进行微波处理,微波处理具体为以50℃/min的升温速率升至850℃后,保温2h,制得四方相钛酸钡粉体。
实施例5
制备四方相钛酸钡粉体
(1)按Ba和Ti的摩尔比为1.04:1称取BaCO3和TiO2,按料:水的质量比例为1:1的比例分别将BaCO3和TiO2以2000rpm的速度砂磨1h,分别获得BaCO3浆料和TiO2浆料;
(2)将步骤(1)中获得的BaCO3浆料和TiO2浆料在30℃下混匀,然后在进风温度为200℃,出风温度为100℃,雾化器转速为28000rpm的工艺条件下进行喷雾干燥,获得混合粉体,再向该混合粉体中加入混合粉体总质量25%的陶瓷材料(平均粒径分布在500-800μm的SiC微粒),再次混匀后进行微波处理,微波处理具体为以20℃/min的升温速率升至900℃后,保温2h,制得四方相钛酸钡粉体。
实施例6
制备四方相钛酸钡粉体
(1)按Ba和Ti的摩尔比为1.05:1称取Ba(OH)2和Ti(OH)4,按料:水的质量比例为1:1的比例分别将Ba(OH)2和Ti(OH)4以1500rpm的速度砂磨1.5h,分别获得Ba(OH)2浆料和Ti(OH)4浆料;
(2)将步骤(1)中获得的Ba(OH)2浆料和Ti(OH)4浆料在37℃下混匀,然后在进风温度为200℃,出风温度为100℃,雾化器转速为22000rpm的工艺条件下进行喷雾干燥,获得混合粉体,再向该混合粉体中加入混合粉体总质量50%的陶瓷材料(由SiC微粒和Al2O3微粒按质量比3:1混合而成,且SiC微粒和Al2O3微粒的平均粒径均分布在500-700μm),再次混匀后进行微波处理,微波处理具体为以100℃/min的升温速率升至950℃后,保温1.5h,制得四方相钛酸钡粉体。
实施例7
制备四方相钛酸钡粉体
(1)按Ba和Ti的摩尔比为1.04:1称取BaCO3和Ti(OH)4,按料:水的质量比例为1:1.2的比例分别将BaCO3和Ti(OH)4以3000rpm的速度砂磨0.5h,分别获得BaCO3浆料和Ti(OH)4浆料;
(2)将步骤(1)中获得的BaCO3浆料和Ti(OH)4浆料在35℃下混匀,然后在进风温度为200℃,出风温度为100℃,雾化器转速为20000rpm的工艺条件下进行喷雾干燥,获得混合粉体,再向该混合粉体中加入混合粉体总质量90%的陶瓷材料(平均粒径分布在800-1000μm的ZrO2微粒),再次混匀后进行微波处理,微波处理具体为以65℃/min的升温速率升至1000℃后,保温1h,制得四方相钛酸钡粉体。
实施例8
制备四方相钛酸钡粉体
(1)按Ba和Ti的摩尔比为1.03:1称取Ba(OH)2和TiO2,按料:水的质量比例为1:0.8的比例分别将Ba(OH)2和TiO2以2200rpm的速度砂磨1h,分别获得Ba(OH)2浆料和TiO2浆料;
(2)将步骤(1)中获得的Ba(OH)2浆料和TiO2浆料在20℃下混匀,然后在进风温度为200℃,出风温度为100℃,雾化器转速为15000rpm的工艺条件下进行喷雾干燥,获得混合粉体,再向该混合粉体中加入混合粉体总质量60%的陶瓷材料(由SiC微粒、ZrO2微粒和Al2O3微粒按质量比0.5:0.5:1混合而成,且SiC微粒、ZrO2微粒和Al2O3微粒的平均粒径均分布在400-450μm),再次混匀后进行微波处理,微波处理具体为以90℃/min的升温速率升至1100℃后,保温0.5h,制得四方相钛酸钡粉体。
实施例1至实施例8中制备的四方相钛酸钡粉体的XRD图,由图1可知,实施例1至实施例8中的方法均可以获得具有四方相的钛酸钡粉体,且晶型完整,不存在其它杂相。
图2为实施例1至实施例4中制备的四方相钛酸钡粉体的SEM图,由图2可知,实施例1至实施例4中制备的钛酸钡粉体分散性良好,晶粒生长完整,粒径尺寸在200-400nm,且性能指标重复性好。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其做出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (7)

1.一种四方相钛酸钡粉体的制备方法,其特征在于,所述方法包括如下步骤:
(1)按Ba和Ti的摩尔比为1.02-1.05:1称取钡盐或钡的氢氧化物和钛的氧化物或氢氧化物,然后将所述钡盐或钡的氢氧化物和钛的氧化物或氢氧化物分别进行球磨或砂磨处理,获得钡盐或钡的氢氧化物浆料和钛的氧化物或氢氧化物浆料;
(2)将步骤(1)中获得的钡盐或钡的氢氧化物浆料和钛的氧化物或氢氧化物浆料在20-40℃下混匀,然后进行喷雾干燥,所述喷雾干燥时进风温度为200℃,出风温度为100℃,雾化器转速为15000-33000rpm,获得混合粉体,再向所述混合粉体中加入所述混合粉体总质量5-90%的陶瓷材料,所述陶瓷材料为SiC、ZrO2或Al2O3中的至少一种,再次混匀后进行微波处理,所述微波处理具体为以20-100℃/min的升温速率升至600-1100℃后,保温0.5-4h。
2.如权利要求1所述的方法,其特征在于,步骤(1)中,所述Ba和Ti的摩尔比为1.03:1。
3.如权利要求1所述的方法,其特征在于,步骤(1)中,所述钡盐为BaCO3,所述钡的氢氧化物为Ba(OH)2
4.如权利要求1所述的方法,其特征在于,步骤(1)中,所述钛的氧化物为TiO2,所述钛的氢氧化物Ti(OH)4
5.如权利要求1所述的方法,其特征在于,步骤(2)中,再向所述混合粉体中加入所述混合粉体总质量25-50%的陶瓷材料。
6.如权利要求5所述的方法,其特征在于,所述陶瓷材料是粒径为20-1000μm的微粒。
7.如权利要求1-6任一项所述的方法,其特征在于,步骤(2)中,所述微波处理具体为以30-50℃/min的升温速率升至800-1000℃后,保温1-2h。
CN201811530238.XA 2018-12-14 2018-12-14 一种四方相钛酸钡粉体的制备方法及产品 Active CN109369173B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811530238.XA CN109369173B (zh) 2018-12-14 2018-12-14 一种四方相钛酸钡粉体的制备方法及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811530238.XA CN109369173B (zh) 2018-12-14 2018-12-14 一种四方相钛酸钡粉体的制备方法及产品

Publications (2)

Publication Number Publication Date
CN109369173A CN109369173A (zh) 2019-02-22
CN109369173B true CN109369173B (zh) 2021-07-02

Family

ID=65374654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811530238.XA Active CN109369173B (zh) 2018-12-14 2018-12-14 一种四方相钛酸钡粉体的制备方法及产品

Country Status (1)

Country Link
CN (1) CN109369173B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266012B (zh) * 2020-10-28 2021-10-22 潮州三环(集团)股份有限公司 一种钛酸钡粉体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020066460A (ko) * 2001-02-10 2002-08-17 허창린 폐자재를 이용한 투수 블록 및 그 제조방법
CN101746814A (zh) * 2009-12-21 2010-06-23 山东国瓷功能材料有限公司 一种制备四方相钛酸钡粉体的生产工艺
CN103601238A (zh) * 2013-11-07 2014-02-26 昆明理工大学 一种微波固相反应法制备掺杂铁的TiO2粉体的方法
CN107973600A (zh) * 2017-12-17 2018-05-01 李巧珍 一种钛酸钡基陶瓷粉体的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090079101A1 (en) * 2007-04-27 2009-03-26 Jurgen Laubersheimer Densification Process of Ceramics And Apparatus Therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020066460A (ko) * 2001-02-10 2002-08-17 허창린 폐자재를 이용한 투수 블록 및 그 제조방법
CN101746814A (zh) * 2009-12-21 2010-06-23 山东国瓷功能材料有限公司 一种制备四方相钛酸钡粉体的生产工艺
CN103601238A (zh) * 2013-11-07 2014-02-26 昆明理工大学 一种微波固相反应法制备掺杂铁的TiO2粉体的方法
CN107973600A (zh) * 2017-12-17 2018-05-01 李巧珍 一种钛酸钡基陶瓷粉体的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Effect of microwave sintering on the structural, optical and electrical properties of BaTiO3 nanoparticles";R. Vasudevan et al.;《J Mater Sci: Mater Electron》;20131204;第25卷;第529-537页 *
"Microstructural Comparison of Conventional and Microwave Sintered BaTiO3";Annett Dorner-Reisel et al.;《ADVANCED ENGINEERING MATERIALS》;20071231;第9卷(第5期);第400-405页 *
"On the microwave sintering of BaTiO3 based functional ceramics";Abicht, HP et al.;《METALL》;19970531;第51卷(第5期);第270-276页 *
"微波场中BaTiO3陶瓷的烧结及施、受主掺杂对晶粒生长的影响";张道礼等;《功能材料》;20001025;第31卷(第05期);第528-530页 *
"微波烧结钛酸钡陶瓷与常规烧结钛酸钡陶瓷界面偏析研究";曹明贺等;《硅酸盐学报》;20000229;第28卷(第01期);第47-50页 *

Also Published As

Publication number Publication date
CN109369173A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
KR100674846B1 (ko) 유전체용 세라믹분말의 제조방법, 및 그 세라믹분말을이용하여 제조된 적층세라믹커패시터
US6641794B2 (en) Method for producing barium titanate based powders by oxalate process
CN101314545A (zh) 一种制备电介质陶瓷粉体的喷雾包覆方法及所得的产品
CN108530057B (zh) 溶胶-凝胶法制备应用于储能的形貌可控CaTiO3陶瓷的方法
JP3936655B2 (ja) インジウム酸化物粉末、その製造方法及びこれを使用した高密度インジウム錫酸化物ターゲットの製造方法
CN112266012B (zh) 一种钛酸钡粉体及其制备方法
CN109796042B (zh) 一种加胶制备固相法钛酸钡方法
CN109369173B (zh) 一种四方相钛酸钡粉体的制备方法及产品
KR100414832B1 (ko) 고품질 티탄산바륨계 파우더의 제조방법
CN113121222A (zh) 一种钛酸钡粉体制备方法
KR101426345B1 (ko) 옥살레이트 공정에 의한 티탄산바륨 분말의 제조방법 및 그방법에 의하여 제조된 티탄산바륨 분말
KR101157460B1 (ko) 분무열분해법에 의한 알루미늄산화물이 도핑된 산화아연 분말의 제조
JP2007091505A (ja) チタン酸バリウム系粉末およびその製法
JP5142468B2 (ja) チタン酸バリウム粉末の製造方法
JP3486156B2 (ja) 結晶性チタン酸バリウム粉末の製造方法
JP2023508816A (ja) 適度に分散したDy2O3粒子
CN116283275B (zh) 一种钛酸钡粉体及其制备方法和应用
TW201520173A (zh) 草酸氧鈦鋇製備方法以及鈦酸鋇製備方法
JP2020164375A (ja) チタン酸バリウム粒子を含む非水系分散体及びその製造方法
JP5925358B2 (ja) 結晶性チタン酸アルカリ土類金属塩の製造方法
JP5715279B1 (ja) チタン酸バリウム粉末の製造方法
KR101751081B1 (ko) 티탄산바륨의 제조방법, 및 이에 의하여 제조된 티탄산바륨
CN116177595A (zh) 一种纳米钛酸钡粉体的制备方法
KR20150060189A (ko) 바륨티타닐옥살레이트의 제조방법, 티탄산바륨의 제조방법, 및 티탄산바륨
CN117185343A (zh) 一种固相法制备超细四方相钛酸钡粉体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant