CN109365765B - 一种MnAlV永磁合金及其制备方法 - Google Patents

一种MnAlV永磁合金及其制备方法 Download PDF

Info

Publication number
CN109365765B
CN109365765B CN201811313280.6A CN201811313280A CN109365765B CN 109365765 B CN109365765 B CN 109365765B CN 201811313280 A CN201811313280 A CN 201811313280A CN 109365765 B CN109365765 B CN 109365765B
Authority
CN
China
Prior art keywords
alloy
mnalv
permanent
preparation
thin band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811313280.6A
Other languages
English (en)
Other versions
CN109365765A (zh
Inventor
陆伟
向震
邓柏闻
熊娟
王萧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201811313280.6A priority Critical patent/CN109365765B/zh
Publication of CN109365765A publication Critical patent/CN109365765A/zh
Application granted granted Critical
Publication of CN109365765B publication Critical patent/CN109365765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0602Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a casting wheel and belt, e.g. Properzi-process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明涉及一种MnAlV永磁合金及其制备方法。其合金成分化学式为(Mn0.55Al0.45)100‑xVx,下标x分别为各对应元素(组成)的原子百分含量,并且0<x≤3.0。其制备方法简述如下:首先进行配制母合金的原料;再将熔炼后得到的母合金铸锭破碎,将表面杂质清洗干净,并烘干处理,得到破碎块体合金;将破碎块体合金放入石英管中,利用铜辊快淬喷带技术制备合金薄带;对合金薄带进行热处理得到MnAlV永磁合金材料。与现有技术相比,本发明以元素掺杂调控为手段用以稳定磁性相,并通过热处理,在完全不使用稀土元素的基础上在磁性能与价格间寻求了平衡,获得了有高性能的磁性材料。

Description

一种MnAlV永磁合金及其制备方法
技术领域
本发明涉及功能材料领域中的永磁材料,尤其是涉及一种MnAlV永磁合金及其制备方法。
背景技术
永磁材料广泛应用于磁悬浮、医药设备及电动汽车、风力发电的马达系统等。随着新能源和电动汽车的发展,对高性能永磁材料的需求越来越大。目前大量应用的永磁材料主要包括铁氧体和稀土永磁。其中1/3为Ba或Sr六角铁氧体,其最大磁能积低于5MGOe,但成本相对较低,另外2/3是以稀土为基的稀土永磁材料包括SmCo5、Sm2(Fe、Cu、Zr、Co)17(2:17)和Nd-Fe-B等,性能很高,成本也很高,其中Nd-Fe-B材料的磁性积已达到接近60MGOe的理论值。但由于稀土资源有限性和使用成本(尤其是需要添加重稀土提高矫顽力)的大幅度提高,开发无稀土类高性能永磁材料越来越成为世界各国磁性材料研究的重要方向之一。
一般而言,Mn基合金由于具有较大的磁矩,具有很好的磁性。其中,MnAl合金(τ相)具有高磁矩、大磁各向异性能和低成本等优点,是一种有前途的不使用稀土元素为原料的永磁材料。然而,高纯度铁磁的τ相MnAl合金很难获得,因为τ相不稳定,容易分解为稳定的非磁性γ2(Al8Mn5)和β(Mn)相。此外,MnAl合金中其Mn原子并非都能完美地占据晶胞结构中(1/2,1/2,1/2)位置从而实现铁磁性耦合。其中有部分多余的Mn原子会占据晶胞中Al原子的结构,从而使得占据晶胞中Al位置的Mn原子会和邻近晶胞的Mn原子由于距离过小而形成反铁磁性耦合,从而导致晶胞中的净磁距下降。故而提高τ相的热稳定性及纯度和减少MnAl合金中的反铁磁性耦合对制备具有优异稳定磁性能的MnAl合金十分重要。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种MnAlV永磁合金及其制备方法。该磁性材料具有优异的磁性能,还可以通过简单易行热处理工艺获得优异、稳定的性能。
本发明的目的可以通过以下技术方案来实现:
一种MnAlV永磁合金,其特征在于,其成分化学式为(Mn0.55Al0.45)100-xVx,下标x分别为各对应元素(组成)的原子百分含量,0<x≤3。
所述MnAlV永磁合金的制备方法,将Mn、Al、V熔炼为母合金锭、将母合金锭破碎后通过铜辊快淬喷带技术得到合金薄带、将合金薄带热处理最后得到MnAlV永磁合金。
进一步地,制备方法包括以下步骤:
(1)将Mn、Al、V,按合金组成原子百分比进行配料;
(2)将步骤(1)中称量好的原料放置于电弧熔炼炉中进行熔炼,放置原料时,将Mn片、V颗粒置于底部,上面放置Al粒,进行熔炼,得到母合金锭;
(3)将步骤(2)母合金锭破碎,通过铜辊快淬喷带技术得到合金薄带;
(4)将步骤(3)热处理后的合金薄带,置于真空管式炉中进行热处理,得到MnAlV永磁合金。
进一步地,步骤(1)中,考虑到Mn元素的挥发,多添加8%(质量百分比)的Mn片。
进一步地,步骤(1)中,Mn、Al、V均采用纯度为99.99%的Mn、Al、V纯原料。
进一步地,步骤(2)中进行熔炼时,首先抽真空至5×10-3Pa以下,然后充入适量的高纯保护气体氩气,点燃电弧后调节电流缓慢地由小到大,先熔化Al粒,以使液态的Al能包裹住Mn,从而减少Mn的损失,将合金铸锭总共正反熔炼5~6遍。
进一步地,步骤(3)中,合金薄带制备过程:将母合金锭破碎,利用超声波和酒精清洗,置于石英玻璃管中;玻璃管与旋淬系统的水冷铜辊的最高点的距离为1-2mm,在氩气气氛下,缓慢加大感应线圈的电流,使铸锭缓慢熔化,设置好铜辊的转速为25-30m/s,待合金液体达完全熔融态时,按下喷铸阀按钮,将熔融液体喷铸在水冷铜辊上,得到合金薄带。
进一步地,步骤(4)中,合金薄带热处理参数:热处理温度范围:400℃-460℃;保温时间:10-30分钟;升温速率:5℃/min。
由于V的原子半径与Mn的原子半径相似(其中V为Mn为),故本发明选用V元素掺杂,来取代多余的Mn原子,以提高不稳定的τ相的稳定性和减少MnAl合金中的反铁磁耦合,以制备拥有优良磁性能MnAlV合金材料。
本发明简化制备工艺,同时制备的MnAlV合金具备优异磁性能。因此,本发明提供的具有优异磁性能的MnAlV合金材料极其制备方法对于当前Mn基合金材料的研究和应用具有极其重要意义。
与现有技术相比,本发明创新点主要体现在以下方面:
1.本发明通过铜辊快淬喷带技术和热处理制备了一种MnAlV永磁合金。
2.本发明制备MnAlV永磁合金,同时具有优异且稳定的磁学性能,Ms范围64.4-105.8emu/g,同时Hc范围为2324-924Oe。
3.本发明制备工艺简单易行、可控稳定,因此大大推进了工业化生产,对MnAlV永磁合金的广泛应用和发展具有重要的意义。
附图说明
图1是对比实施例及实施例1-6中制得快淬材料的XRD衍射图谱。
图2是对比实施例及实施例1-6中制得快淬材料的MH变化曲线图。
图3是对比实施例及实施例1-6中制得热处理材料的XRD衍射图谱。
图4是对比实施例及实施例1-6中制得热处理材料的MH变化曲线图。
具体实施方式
下面结合附图实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
本发明提供了如下具体实施方案,公开了各种组合实施例的性能,并分析各元素在体系中的作用。因此,应当认为本专利具体记载公开了所述技术方案的所有可能的组合方式。
实施例1:
本实施例中,MnAlV合金的成分化学式为(Mn0.55Al0.45)99.5V0.5
上述MnAlV合金的制备方法如下:
(1)将纯度为99.99%的Mn、Al、V纯原料,按合金组成原子百分比进行配料,考虑到Mn元素的挥发,多添加8%(质量百分比)的Mn片。
(2)将步骤(1)中称量好的原料放置于电弧熔炼炉中进行熔炼,放置原料时,将Mn片、V颗粒置于底部,上面放置Al粒。首先抽真空至5×10-3Pa以下,然后充入适量的高纯保护气体氩气,点燃电弧后调节电流缓慢地由小到大,先熔化Al粒,以使液态的Al能包裹住Mn,从而减少Mn的损失,将合金铸锭总共正反熔炼5遍。
(3)将步骤(2)合金锭破碎,打磨,超声波和丙酮清洗,置于石英玻璃管中。然后调节玻璃管与旋淬系统的水冷铜辊的最高点的距离为1.5mm,在氩气气氛下,缓慢加大感应线圈的电流,使铸锭缓慢熔化。设置好铜辊的转速为28m/s,待合金液体达完全熔融态时,按下喷铸阀按钮,将熔融液体喷铸在水冷铜辊上,得到合金薄带。
(4)将步骤(3)热处理后的合金薄带,置于真空管式炉中进行热处理,合金薄带热处理参数:热处理温度:460℃;保温时间:30分钟;升温速率:5℃/min。
对上述制得的进行如下检测:
(A)分别采用照射源为Cu-Kα)的X射线衍射(简称XRD,下同)来确定样品的晶体结构。
(B)分别采用振动样品磁强计(简称VSM,下同)测量合金的磁学性能、饱和磁化强度Ms和矫顽力Hc
实施例2:
本实施例中,MnAlV合金的成分化学式为(Mn0.55Al0.45)99V1
上述MnAlV合金的制备方法如下:
(1)将纯度为99.99%的Mn、Al、V纯原料,按合金组成原子百分比进行配料,考虑到Mn元素的挥发,多添加8%(质量百分比)的Mn片。
(2)将步骤(1)中称量好的原料放置于电弧熔炼炉中进行熔炼,放置原料时,将Mn片、V颗粒置于底部,上面放置Al粒。首先抽真空至5×10-3Pa以下,然后充入适量的高纯保护气体氩气,点燃电弧后调节电流缓慢地由小到大,先熔化Al粒,以使液态的Al能包裹住Mn,从而减少Mn的损失,将合金铸锭总共正反熔炼6遍。
(3)将步骤(2)合金锭破碎,打磨,超声波和丙酮清洗,置于石英玻璃管中。然后调节玻璃管与旋淬系统的水冷铜辊的最高点的距离为1.5mm,在氩气气氛下,缓慢加大感应线圈的电流,使铸锭缓慢熔化。设置好铜辊的转速为28m/s,待合金液体达完全熔融态时,按下喷铸阀按钮,将熔融液体喷铸在水冷铜辊上,得到合金薄带。
(4)将步骤(3)热处理后的合金薄带,置于真空管式炉中进行热处理,合金薄带热处理参数:热处理温度:460℃;保温时间:30分钟;升温速率:5℃/min。
对上述制得合金进行检测,检测方法与检测内容与实施例1完全相同。
实施例3:
本实施例中,MnAlV合金的成分化学式为(Mn0.55Al0.45)98.5V1.5
上述MnAlV合金的制备方法如下:
(1)将纯度为99.99%的Mn、Al、V纯原料,按合金组成原子百分比进行配料,考虑到Mn元素的挥发,多添加8%(质量百分比)的Mn片。
(2)将步骤(1)中称量好的原料放置于电弧熔炼炉中进行熔炼,放置原料时,将Mn片、V颗粒置于底部,上面放置Al粒。首先抽真空至5×10-3Pa以下,然后充入适量的高纯保护气体氩气,点燃电弧后调节电流缓慢地由小到大,先熔化Al粒,以使液态的Al能包裹住Mn,从而减少Mn的损失,将合金铸锭总共正反熔炼5遍。
(3)将步骤(2)合金锭破碎,打磨,超声波和丙酮清洗,置于石英玻璃管中。然后调节玻璃管与旋淬系统的水冷铜辊的最高点的距离为1.5mm,在氩气气氛下,缓慢加大感应线圈的电流,使铸锭缓慢熔化。设置好铜辊的转速为28m/s,待合金液体达完全熔融态时,按下喷铸阀按钮,将熔融液体喷铸在水冷铜辊上,得到合金薄带。
(4)将步骤(3)热处理后的合金薄带,置于真空管式炉中进行热处理,合金薄带热处理参数:热处理温度:460℃;保温时间:30分钟;升温速率:5℃/min。
对上述制得合金进行检测,检测方法与检测内容与实施例1完全相同。
实施例4:
本实施例中,MnAlV合金的成分化学式为(Mn0.55Al0.45)98V2
上述MnAlV合金的制备方法如下:
(1)将纯度为99.99%的Mn、Al、V纯原料,按合金组成原子百分比进行配料,考虑到Mn元素的挥发,多添加8%(质量百分比)的Mn片。
(2)将步骤(1)中称量好的原料放置于电弧熔炼炉中进行熔炼,放置原料时,将Mn片、V颗粒置于底部,上面放置Al粒。首先抽真空至5×10-3Pa以下,然后充入适量的高纯保护气体氩气,点燃电弧后调节电流缓慢地由小到大,先熔化Al粒,以使液态的Al能包裹住Mn,从而减少Mn的损失,将合金铸锭总共正反熔炼6遍。
(3)将步骤(2)合金锭破碎,打磨,超声波和丙酮清洗,置于石英玻璃管中。然后调节玻璃管与旋淬系统的水冷铜辊的最高点的距离为1.5mm,在氩气气氛下,缓慢加大感应线圈的电流,使铸锭缓慢熔化。设置好铜辊的转速为28m/s,待合金液体达完全熔融态时,按下喷铸阀按钮,将熔融液体喷铸在水冷铜辊上,得到合金薄带。
(4)将步骤(3)热处理后的合金薄带,置于真空管式炉中进行热处理,合金薄带热处理参数:热处理温度:460℃;保温时间:30分钟;升温速率:5℃/min。
对上述制得合金进行检测,检测方法与检测内容与实施例1完全相同。
实施例5:
本实施例中,MnAlV合金的成分化学式为(Mn0.55Al0.45)97.5V2.5
上述MnAlV合金的制备方法如下:
(1)将纯度为99.99%的Mn、Al、V纯原料,按合金组成原子百分比进行配料,考虑到Mn元素的挥发,多添加8%(质量百分比)的Mn片。
(2)将步骤(1)中称量好的原料放置于电弧熔炼炉中进行熔炼,放置原料时,将Mn片、V颗粒置于底部,上面放置Al粒。首先抽真空至5×10-3Pa以下,然后充入适量的高纯保护气体氩气,点燃电弧后调节电流缓慢地由小到大,先熔化Al粒,以使液态的Al能包裹住Mn,从而减少Mn的损失,将合金铸锭总共正反熔炼5遍。
(3)将步骤(2)合金锭破碎,打磨,超声波和丙酮清洗,置于石英玻璃管中。然后调节玻璃管与旋淬系统的水冷铜辊的最高点的距离为1.5mm,在氩气气氛下,缓慢加大感应线圈的电流,使铸锭缓慢熔化。设置好铜辊的转速为28m/s,待合金液体达完全熔融态时,按下喷铸阀按钮,将熔融液体喷铸在水冷铜辊上,得到合金薄带。
(4)将步骤(3)热处理后的合金薄带,置于真空管式炉中进行热处理,合金薄带热处理参数:热处理温度:460℃;保温时间:30分钟;升温速率:5℃/min。
对上述制得合金进行检测,检测方法与检测内容与实施例1完全相同。
实施例6:
本实施例中,MnAlV合金的成分化学式为(Mn0.55Al0.45)97V3
上述MnAlV合金的制备方法如下:
(1)将纯度为99.99%的Mn、Al、V纯原料,按合金组成原子百分比进行配料,考虑到Mn元素的挥发,多添加8%(质量百分比)的Mn片。
(2)将步骤(1)中称量好的原料放置于电弧熔炼炉中进行熔炼,放置原料时,将Mn片、V颗粒置于底部,上面放置Al粒。首先抽真空至5×10-3Pa以下,然后充入适量的高纯保护气体氩气,点燃电弧后调节电流缓慢地由小到大,先熔化Al粒,以使液态的Al能包裹住Mn,从而减少Mn的损失,将合金铸锭总共正反熔炼6遍。
(3)将步骤(2)合金锭破碎,打磨,超声波和丙酮清洗,置于石英玻璃管中。然后调节玻璃管与旋淬系统的水冷铜辊的最高点的距离为1.5mm,在氩气气氛下,缓慢加大感应线圈的电流,使铸锭缓慢熔化。设置好铜辊的转速为28m/s,待合金液体达完全熔融态时,按下喷铸阀按钮,将熔融液体喷铸在水冷铜辊上,得到合金薄带。
(4)将步骤(3)热处理后的合金薄带,置于真空管式炉中进行热处理,合金薄带热处理参数:热处理温度:460℃;保温时间:30分钟;升温速率:5℃/min。
对上述制得合金进行检测,检测方法与检测内容与实施例1完全相同。
对比实施例:
本实施例是上述实施例1-6的对比实施例。
本实施例中,MnAlV合金的成分化学式为Mn0.55Al0.45
上述MnAlV合金的制备方法如下:
(1)将纯度为99.99%的Mn、Al纯原料,按合金组成原子百分比进行配料,考虑到Mn元素的挥发,多添加8%(质量百分比)的Mn片。
(2)将步骤(1)中称量好的原料放置于电弧熔炼炉中进行熔炼,放置原料时,将Mn片、V颗粒置于底部,上面放置Al粒。首先抽真空至5×10-3Pa以下,然后充入适量的高纯保护气体氩气,点燃电弧后调节电流缓慢地由小到大,先熔化Al粒,以使液态的Al能包裹住Mn,从而减少Mn的损失,将合金铸锭总共正反熔炼5遍。
(3)将步骤(2)合金锭破碎,打磨,超声波和丙酮清洗,置于石英玻璃管中。然后调节玻璃管与旋淬系统的水冷铜辊的最高点的距离为1.5mm,在氩气气氛下,缓慢加大感应线圈的电流,使铸锭缓慢熔化。设置好铜辊的转速为28m/s,待合金液体达完全熔融态时,按下喷铸阀按钮,将熔融液体喷铸在水冷铜辊上,得到合金薄带。
(4)将步骤(3)热处理后的合金薄带,置于真空管式炉中进行热处理,合金薄带热处理参数:热处理温度:460℃;保温时间:30分钟;升温速率:5℃/min。
对上述制得合金进行检测,检测方法与检测内容与实施例1完全相同。
由图1所示,快淬MnAl合金条带的物相组成随着V元素掺杂含量的增加而变化,即,物相由快淬高温ε相逐渐转变为铁磁性τ相。这说明了掺杂V元素有利于促进形成MnAl铁磁性τ相。此外,快淬MnAlV合金条带的磁性能如图2所示,分析可知,快淬MnAlV合金条带的磁化强度随着V元素含量的增加而增加,其矫顽力随之增加而减小。另一方面,MnAlV合金经过热处理后,其物相含量如图3所示,即,经过热处理后,MnAlV合金中铁磁性τ相含量随着V元素掺杂含量的增加而增加,非磁性γ2(Al8Mn5)和β(Mn)相随之增加而减少,这说明了MnAl合金的热稳定性随着V元素的增加而增加。图4显示热处理后MnAlV合金的磁性能。分析可知,MnAl合金的磁化强度随着V元素掺杂含量的增加而提升,其矫顽力随之增加而降低。
综上所述,通过调节掺入的V元素的含量,可以调控所得材料的相组成。掺杂V元素后所有实施例所得材料均具有优良的磁学性能。随着掺入的V元素含量的升高,所得材料中τ相的含量也不断升高。说明合理掺入V元素能够有效对所得的材料相组成进行调控并可以得到高纯的τ相,从而得到稳定的优异磁性能。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (7)

1.一种MnAlV永磁合金,其特征在于,其成分化学式为(Mn0.55Al0.45)100-xVx,其中,0<x≤3。
2.如权利要求1所述MnAlV永磁合金的制备方法,其特征在于,将Mn、Al、V熔炼为母合金锭、将母合金锭破碎后通过铜辊快淬喷带技术得到合金薄带、将合金薄带热处理最后得到MnAlV永磁合金。
3.根据权利要求2所述MnAlV永磁合金的制备方法,其特征在于,包括以下步骤:
(1)将Mn、Al、V,按合金组成原子百分比进行配料;
(2)将步骤(1)中称量好的原料放置于电弧熔炼炉中进行熔炼,放置原料时,将Mn片、V颗粒置于底部,上面放置Al粒,进行熔炼,得到母合金锭;
(3)将步骤(2)母合金锭破碎,通过铜辊快淬喷带技术得到合金薄带;
(4)将步骤(3)得到的合金薄带,置于真空管式炉中进行热处理,得到MnAlV永磁合金。
4.根据权利要求3所述MnAlV永磁合金的制备方法,其特征在于,步骤(1)中,Mn、Al、V均采用纯度为99.99%的Mn、Al、V纯原料。
5.根据权利要求3所述MnAlV永磁合金的制备方法,其特征在于,步骤(2)中进行熔炼时,首先抽真空至5×10-3Pa以下,然后充入保护气体,点燃电弧后调节电流缓慢地由小到大,先熔化Al粒,以使液态的Al能包裹住Mn,将合金铸锭总共正反熔炼5~6遍。
6.根据权利要求3所述MnAlV永磁合金的制备方法,其特征在于,步骤(3)中,合金薄带制备过程:将母合金锭破碎,利用超声波和酒精清洗,置于石英玻璃管中;玻璃管与旋淬系统的水冷铜辊的最高点的距离为1-2mm,在氩气气氛下,缓慢加大感应线圈的电流,使铸锭缓慢熔化,设置好铜辊的转速为25-30m/s,待合金液体达完全熔融态时,按下喷铸阀按钮,将熔融液体喷铸在水冷铜辊上,得到合金薄带。
7.根据权利要求3所述MnAlV永磁合金的制备方法,其特征在于,步骤(4)中,合金薄带热处理参数:热处理温度范围:400℃-460℃;保温时间:10-30分钟;升温速率:5℃/min。
CN201811313280.6A 2018-11-06 2018-11-06 一种MnAlV永磁合金及其制备方法 Active CN109365765B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811313280.6A CN109365765B (zh) 2018-11-06 2018-11-06 一种MnAlV永磁合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811313280.6A CN109365765B (zh) 2018-11-06 2018-11-06 一种MnAlV永磁合金及其制备方法

Publications (2)

Publication Number Publication Date
CN109365765A CN109365765A (zh) 2019-02-22
CN109365765B true CN109365765B (zh) 2019-10-18

Family

ID=65397250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811313280.6A Active CN109365765B (zh) 2018-11-06 2018-11-06 一种MnAlV永磁合金及其制备方法

Country Status (1)

Country Link
CN (1) CN109365765B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234518B2 (ja) * 2018-06-30 2023-03-08 Tdk株式会社 MnAl合金及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158993A (en) * 1974-11-20 1976-05-22 Matsushita Electric Ind Co Ltd Mangan aruminiumukeigokinno soseihanteihoho
JPS52118298A (en) * 1976-03-31 1977-10-04 Hitachi Metals Ltd Permanent magnet and method of manufacture thereof
JPS54136522A (en) * 1978-04-17 1979-10-23 Seiko Instr & Electronics Ltd Permanent magnet
JPS594946A (ja) * 1982-06-30 1984-01-11 Hitachi Metals Ltd Cu−Al−Mn系磁石合金の製造方法
JPS609104A (ja) * 1983-06-29 1985-01-18 Sumitomo Special Metals Co Ltd 永久磁石材料
JPH0521216A (ja) * 1991-07-17 1993-01-29 Hitachi Metals Ltd 永久磁石合金およびその製造方法
JPH0533095A (ja) * 1991-07-25 1993-02-09 Hitachi Metals Ltd 永久磁石合金およびその製造方法
CN105755303B (zh) * 2016-04-06 2017-06-13 同济大学 一种MnAl合金磁性材料及其制备方法
CN106011566B (zh) * 2016-05-27 2018-02-09 同济大学 一种高饱和磁化强度MnAlB永磁合金及其制备方法

Also Published As

Publication number Publication date
CN109365765A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
Yoshizawa Magnetic properties and applications of nanostructured soft magnetic materials
CN106756643B (zh) 一种铁基非晶纳米晶软磁合金及其制备方法
CN102304669B (zh) 高饱和磁感应强度低成本铁基纳米晶软磁合金
CN104593666B (zh) 一种镧掺杂铁钴基软磁材料的制备方法
CN104934179A (zh) 强非晶形成能力的铁基纳米晶软磁合金及其制备方法
CN106756644B (zh) 一种基于硅元素的铁基非晶纳米晶软磁合金及其制备方法
CN105755404A (zh) 一种铁基非晶/纳米晶软磁合金薄带及其制备方法
CN109930080B (zh) 一种无铜纳米晶软磁合金及其制备方法
CN105261435A (zh) 一种铁基非晶纳米晶软磁合金薄带及其制备方法
CN111057970A (zh) 一种高磁导率的非晶纳米晶合金的制备方法
CN109440021A (zh) 一种铁基非晶纳米晶软磁合金及其制备方法和应用
CN101894644A (zh) 各向异性的纳米晶复合NdFeB永磁合金及其制备方法
Zhang et al. Phase precipitation behavior of rapidly quenched ternary La–Fe–B alloy and the effects of Nd substitution
CN109295401A (zh) 一种新型铁基非晶纳米晶软磁合金及其制备方法
CN109365765B (zh) 一种MnAlV永磁合金及其制备方法
CN110670001A (zh) 富硅含p型铁基非晶纳米晶合金及铁基非晶合金纳米晶磁芯的制备方法
CN107297493A (zh) 一种高矫顽力MnBi纳米颗粒及其制备方法
CN100465323C (zh) 一种纳米晶复合永磁合金及其制备方法
CN107393670A (zh) 一种高性能MnBi基永磁合金及其制备方法
WO2020024870A1 (zh) 合金组成物、Fe基纳米晶合金及其制造方法和磁性部件
CN105655079B (zh) 一种铁基纳米晶软磁合金材料及其制备方法
CN103785827B (zh) 一种涂料用钴铁基合金磁粉材料及制备方法
CN107369513B (zh) 一种低成本高饱和磁化强度的铁基软磁合金及其制备方法
JP2017166018A (ja) ネオジム−鉄−ボロン系合金
Sinnecker et al. Glass coated microwires with enhanced coercivity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant