CN109360157A - 基于tv和小波正则化的空间变化模糊图像复原方法 - Google Patents

基于tv和小波正则化的空间变化模糊图像复原方法 Download PDF

Info

Publication number
CN109360157A
CN109360157A CN201810961332.4A CN201810961332A CN109360157A CN 109360157 A CN109360157 A CN 109360157A CN 201810961332 A CN201810961332 A CN 201810961332A CN 109360157 A CN109360157 A CN 109360157A
Authority
CN
China
Prior art keywords
model
regularization
matrix
deblurring
small echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810961332.4A
Other languages
English (en)
Other versions
CN109360157B (zh
Inventor
金燕
万宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201810961332.4A priority Critical patent/CN109360157B/zh
Publication of CN109360157A publication Critical patent/CN109360157A/zh
Application granted granted Critical
Publication of CN109360157B publication Critical patent/CN109360157B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于TV和小波正则化的空间变化模糊图像复原方法,包括:(1)对模糊图像进行灰度化;(2)根据灰度化的模糊图像构建模糊核分解模型,在所述模糊核分解模型中,采用奇异值分解方法将模糊核分解为基滤波矩阵和系数矩阵;(3)应用所述模糊核分解模型,并结合TV正则项和小波正则项构建去模糊模型;(4)将所述去模糊模型转化为增广拉格朗日形式后,在对增广拉格朗日形式的去模糊模型进行改进,得到新去模糊模型;(5)采用ADMM算法对新去模糊模型进行数值迭代求解,获得复原图像。该方法解决了TV正则化算法在复原过程中产生的细节信息丢失问题。

Description

基于TV和小波正则化的空间变化模糊图像复原方法
技术领域
本发明属于图像处理技术领域,具体涉及一种基于TV和小波正则化的空间变化模糊图像复原方法。
背景技术
图像去模糊旨在通过算法对被噪声污染的图像进行某种处理,以降低噪声对原始有用信息的影响,根据退化图像尽可能地求解出清晰图像,具体可以分为三大类,分别为图像增强、图像复原和超分辨率重构。
图像复原是以获取视觉质量某种程度的改善为目的,根据某些特定的图像退化模型进行估计计算,以实现对退化图像的复原。
对于许多成像装置来说,他们的图像退化模型虽然可以被认为是线性的,但在图像获取传输过程中,由成像系统、传输介质方面的原因造成图像退化模型并不是空间不变(Space-invariant,SI)的,而是空间变化的 (Space-variant,SV)。空间变化退化模型与空间不变退化模型差异主要表现在:空间不变的模糊核(Point spread function,PSF)在图像退化模型中是固定不变,而空间变化的模糊核在图像的不同区域是不同的。
申请公布号为CN105741243A的专利申请公开了一种模糊图像复原方法,应用于由相机和被拍摄目标相对运动形成的模糊图像,该方法包括:通过图像得到图像的平滑区域;通过图像的平滑区域计算平滑区域标记矩阵;根据图像生成初始模糊核;通过对初始模糊核优化得到模糊核的估计值;通过模糊核的估计值对模糊图像进行复原。该方法通过对图像的平滑区域进行标记和充分利用图像中的平滑区域信息对模糊核估计过程施加约束,保证了模糊核估计的准确性,并利用估计的模糊核对模糊图像进行复原。该方法采用了空间变化的模糊核对模糊图像进行复原。
在图像复原过程中,图像上的一点点噪声可能就会对复原的结果产生非常大的影响,因为很多复原算法都会放大噪声。这时候需要在最优化问题模型中添加一些正则项来保持图像的光滑性,全变分(Total Variation, TV)是常用的一种正则项。TV项用在图像复原和去噪中的作用就是保持图像的光滑性,消除图像复原可能带来的伪影。
由于TV正则项通常在平坦区域内和边缘采取不同平滑速度的非线性策略,让其在平坦区域加速平滑,在边缘处抑制平滑,以保护图像边缘,导致了在去模糊过程中阶梯效应的产生,导致细节信息的丢失,使复原图像中出现虚假边缘现象。
奇异值分解是一种基于特征向量的矩阵变换方法,在信号处理、模式识别、数字水印技术等方面都得到了应用。
发明内容
本发明的目的是提供一种基于TV和小波正则化的空间变化模糊图像复原方法。通过添加小波正则项,利用小波良好的重建能力来补充TV正则化算法在复原过程中产生的细节信息丢失问题,同时TV正则项可以解决小波分解产生的边缘模糊问题。
为实现上述发明目的,本发明提供以下技术方案:
一种基于TV和小波正则化的空间变化模糊图像复原方法,包括以下步骤:
(1)对模糊图像进行灰度化;
(2)根据灰度化的模糊图像构建模糊核分解模型,在所述模糊核分解模型中,采用奇异值分解方法将模糊核分解为基滤波矩阵和系数矩阵;
(3)应用所述模糊核分解模型,并结合TV正则项和小波正则项构建去模糊模型;
(4)将所述去模糊模型转化为增广拉格朗日形式的去模糊模型后,在对增广拉格朗日形式的去模糊模型进行改进,得到新去模糊模型;
(5)采用ADMM算法对新去模糊模型进行数值迭代求解,获得复原图像。
本发明具有的有益效果为:
建立基于奇异值分解技术的模糊核分解模型,该模型解决了常用的加性卷积模型不适用于空间变化模糊图像复原的问题。采用TV函数和小波框架为正则项,将两者的线性组合作为先验信息用于图像复原算法中,使阶梯效应得到较好的抑制和纹理细节的保持。最后利用ADMM算法对图像去模糊图像进行求解,实现模型快速收敛。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动前提下,还可以根据这些附图获得其他附图。
图1是实施例提供的空间变化模糊图像复原方法的流程图;
图2是实验图像,其中,(a)为清晰图像,(b)~(g)为不同模糊程度的模糊图像;
图3是对比算法对模糊图像的复原结果图,其中,(a)~(f)是对图2中的(b)~(g)模糊图像的复原结果图;
图4是本发明方法对模糊图像的复原结果图,其中,(a)~(f)是对图2中的(b)~(g)模糊图像的复原结果图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不限定本发明的保护范围。
图1为空间变化模糊图像复原方法的流程图。如图1所示,该空间变化模糊图像复原方法包括以下步骤:
S101,输入模糊图像g,并对模糊图像g进行灰度化;
S102,设置相关参数。
在采用ADMM算法对新去模糊模型进行数值迭代求解前,设置相关参数,具体包括分解基数k,保真项参数μ,正则项参数α和θ,ADMM 迭代辅助变量ω,v,H,q,p,t的初值和相应的增广拉格朗日项参数γ,β和ρ;ADMM的最大迭代次数MAX,并设其迭代次数i的初值为0,其中MAX的取值为1,2,3,……,N,N为正整数。
S103,根据灰度化的模糊图像构建模糊核分解模型。
具体地,在所述模糊核分解模型中,采用奇异值分解方法将模糊图像的模糊核分解为:
其中,A为待分解的模糊核矩阵,Y,Z分别为模糊核矩阵A的左奇异矩阵和右奇异矩阵,S为模糊核矩阵A的奇异值矩阵,分解出的奇异值个数为分解基数k,模糊核分解后的基滤波矩阵B=Y,模糊核分解后的系数矩阵M=S×ZT
S104,应用模糊核分解模型,并结合TV正则项和小波正则项构建去模糊模型。
具体地,构建的去模糊模型为:
E(u,g)=Q(u,g)+λJ(u)
其中,Q(u,g)为保真项,λJ(u)为正则项,λ为正则化参数,用于平衡正则化项所占的权重,保真项Q(u,g)为:
其中,u表示清晰图像的矩阵表示;g表示模糊图像的矩阵表示;
正则项用来恢复图像的轮廓信息,正则项λJ(u)具体为:
λJ(u)=α||Cu||1+θ||Wu||1
其中,C为差分算子;W为用来恢复图像的细节信息的小波框架变换,为简化后续计算,取W为紧框架变换,即WTW=I(I表示单位矩阵),α,θ分别为非负正则化参数;
将保真项和正则项带入到去模糊模型中,则将求解去模糊模型转化为求最小化问题,即
S105,将去模糊模型转化为增广拉格朗日形式后,在对增广拉格朗日形式的去模糊模型进行改进,得到新去模糊模型。
具体地,在去模糊模型中,引入辅助变量ω,v,H,转化为约束最优化问题:
将约束项ω=Mu,v=Cu,H=Wu代入到去模糊模型中,获得增广拉格朗日形式的去模糊模型:
其中,q,p,t为增广拉格朗日形式引入的辅助变量。
采用ADMM算法(可以参见文献Wahlberg B,Boyd S,Annergren M,et al.An ADMMalgorithm for a class of total variation regularized estimation problems[J].IFAC Proceedings Volumes,2012,45(16):83-88)对增广拉格朗日形式的去模糊模型进行数值迭代求解,迭代算法如下:
求解式(2)的变量u,ω,v,H,只需在对应项令关于该变量的导数为零即可,即求解极小化问题,函数ui+1是关于u的极小化问题,可得:
(γMTM+βCTC+ρWTW)u=γMT(ω+q)+βCT(v+p)+ρWT(H+t) (3)
若要求解式子(3),需要求出(γMTM+βCTC+ρWTW)-1,其中W为紧小波框架分解算子,所以有WTW=I,I表示单位矩阵;C为差分算子,CTC为拉普拉斯算子矩阵,因此,βCTC和ρWTW都可以在频域中快速计算。
然而,由于MTM无法在频域中表示,(MTM)-1无法在频域中求解,所以在式子(1)中引入广义逆矩阵M+=(MTM)-1MT,将转化为即得到新去模糊模型:
S106,采用ADMM算法对新去模糊模型进行数值迭代求解,获得复原图像。
具体地,迭代过程如下式(5)所示:
式(5)中第一行所示的关于u的极小化问题的解如式(6)中第一行所示;式(5)中第二行为变量ω的极小化问题,则同样可以利用FFT 快速求解,如式(6)中第二行所示;式(5)中第三行、第四行分别是变量v和H的极小化问题,分别可以使用二维收缩算法和一维收缩算法快速求解,结果如式(6)中第三行和第四行所示。其中,二维收缩算法和一维收缩算法参见文献WANG Y,YANG J,YIN W,et al.A new alternating minimization algorithmfor total variation image reconstruction[J].SIAM journal on imaging sciences,2008,1(3):248-272.
式(6)中,F和F-1分别代表傅里叶变换和傅里叶反变换。
具体地,求解的具体过程为:
(a)按照公式(3)的迭代过程求出ui+1,并计算ui+1的峰值信噪比(PSNR) P2和ui的峰值信噪比P1
(b)令迭代次数i加1,即i=i+1后,若迭代次数i大于等于最大迭代次数MAX,执行步骤(d),若迭代次数i小于最大迭代次数MAX,执行步骤(c);
(c)若峰值信噪比P2大于峰值信噪比P1,执行步骤(a),若峰值信噪比P2小于等于峰值信噪比P1,执行步骤(d);
(d)输出复原图像ufinal=ui-1
下面利用具体实验表明本发明提供的空间变化模糊图像复原方法的去噪效果。
实验条件:
实验原始图像分别选取分辨率为256×256的“Lena”图像如图2中(a)所示。实验编程环境为Matlab2016b。实验需要添加空间变化模糊,采用与对比算法(TV正则化算法)相同散焦模糊图像来模拟模糊图像,如图2所示,具体地,(b)~(g)为PSNR分别为18.5190、18.6569、19.0230、 19.1244、19.2189以及19.3087的模糊图像。
本发明的参数为:分解基数k=10,保真项参数μ=8e5,正则项参数α=1、θ=1、增广拉格朗日项参数β=γ=800、ρ=6e-3,和ADMM迭代辅助变量ω、v、H、q、p、t初始值均设为0,迭代次数i的初值设为0。ADMM 的最大迭代次数MAX=500。
每迭代一次,计算出迭代结果的评价值,即ui+1的峰值信噪比(PSNR) 和结构相似度(SSIM)。
用来对比的空间变化TV正则化方法(即参考文献SROUBEK F, KAMENICKY J,LU YM.Decomposition of space-variant blur in image deconvolution.IEEE signalprocessing letters,2016,23(3):346-350中提出的方法)参数:分解基数k=10,保真项参数μ=1e5,正则项参数α=1,增广拉格朗日项参数ADMM迭代辅助变量ω、v、q、p 初始值均设为0;迭代次数i的初值设为0。ADMM的最大迭代次数 MAX=500。每迭代一次,计算出迭代结果的评价值,即u1 i+1的峰值信噪比 (PSNR)和结构相似度(SSIM),迭代停止条件是先判断迭代次数是否达到设定的最大迭代次数MAX,如果达到,则结束迭代,将上一次迭代输出图像u1 i作为最终去模糊结果图像u1final输出,如果迭代次数没有达到最大迭代次数MAX,则通过比较本次迭代后的输出图像u1 i+1的峰值信噪比是否大于上一次迭代输出图像u1 i的峰值信噪比,来决定是否继续迭代:如果本次迭代后的输出图像u1 i+1的峰值信噪比大于上一次迭代输出图像u1 i的峰值信噪比,则继续迭代;如果本次迭代结果u1 i+1的峰值信噪比小于等于上一次迭代输出图像u1 i的峰值信噪比则将上一次迭代输出图像u1 i作为最优值u1final输出。
实验内容:
按照上面所述的实验步骤进行实验仿真,并将本发明方法与空间变化TV正则化方法进行比较。
实验结果见表1和图3和图4,其中,图3为对比算法(空间变化TV 正则化方法)对图2中的(b)~(g)所示的模糊图像的复原结果图,具体地,(a)~(f)分别为PSNR为29.6647、29.5755、30.0782、29.8154、 29.6329以及30.0227的复原图像。图4为本发明方法对图2中的(b)~ (g)所示的模糊图像的复原结果图,具体地,(a)~(f)分别为PSNR 为32.0919、31.4006、31.1590、30.6378、29.5806以及30.0313的复原图像。
表1本发明方法和空间变化TV正则化方法去模糊后图像的峰值信噪比和结构相似度
经分析,实验结果表明本发明去空间变化模糊方法与空间变化TV正则化去模糊方法相比,本发明去模糊后图像的峰值信噪比和结构相似度更高,去模糊效果更好。
以上所述的具体实施方式对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的最优选实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于TV和小波正则化的空间变化模糊图像复原方法,包括以下步骤:
(1)对模糊图像进行灰度化;
(2)根据灰度化的模糊图像构建模糊核分解模型,在所述模糊核分解模型中,采用奇异值分解方法将模糊核分解为基滤波矩阵和系数矩阵;
(3)应用所述模糊核分解模型,并结合TV正则项和小波正则项构建去模糊模型;
(4)将所述去模糊模型转化为增广拉格朗日形式后,在对增广拉格朗日形式的去模糊模型进行改进,得到新去模糊模型;
(5)采用ADMM算法对新去模糊模型进行数值迭代求解,获得复原图像。
2.如权利要求1所述的基于TV和小波正则化的空间变化模糊图像复原方法,其特征在于,在所述模糊核分解模型中,采用奇异值分解方法将模糊图像的模糊核分解为:
其中,A为待分解的模糊核矩阵,Y,Z分别为模糊核矩阵A的左奇异矩阵和右奇异矩阵,S为模糊核矩阵A的奇异值矩阵,分解出的奇异值个数为分解基数k,模糊核分解后的基滤波矩阵B=Y,模糊核分解后的系数矩阵M=S×ZT
3.如权利要求2所述的基于TV和小波正则化的空间变化模糊图像复原方法,其特征在于,步骤(3)中,构建的去模糊模型为:
E(u,g)=Q(u,g)+λJ(u)
其中,Q(u,g)为保真项,λJ(u)为正则项,λ为正则化参数,用于平衡正则化项所占的权重,保真项Q(u,g)为:
其中,u表示清晰图像的矩阵表示;g表示模糊图像的矩阵表示;
正则项用来恢复图像的轮廓信息,正则项λJ(u)具体为:
λJ(u)=α||Cu||1+θ||Wu||1
其中,C为差分算子;W为用来恢复图像的细节信息的小波框架变换,为简化后续计算,取W为紧框架变换,即WTW=I(I表示单位矩阵),α,θ分别为非负正则化参数;
将保真项和正则项带入到去模糊模型中,则将求解去模糊模型转化为求最小化问题,即
4.如权利要求3所述的基于TV和小波正则化的空间变化模糊图像复原方法,其特征在于,步骤(4)中,在去模糊模型中,引入辅助变量ω,v,H,转化为约束最优化问题:
将约束项ω=Mu,v=Cu,H=Wu代入到去模糊模型中,获得增广拉格朗日形式的去模糊模型:
其中,q,p,t为增广拉格朗日形式引入的辅助变量。
5.如权利要求4所述的基于TV和小波正则化的空间变化模糊图像复原方法,其特征在于,在式子(1)中引入广义逆矩阵M+=(MΤM)-1MΤ,将转化为即得到新去模糊模型:
6.如权利要求5所述的基于TV和小波正则化的空间变化模糊图像复原方法,其特征在于,步骤(5)中,迭代过程如下式(3)所示:
7.如权利要求6所述的基于TV和小波正则化的空间变化模糊图像复原方法,其特征在于,步骤(5)中,求解的具体过程为:
(a)按照公式(3)的迭代过程求出ui+1,并计算ui+1的峰值信噪比(PSNR)P2和ui的峰值信噪比P1
(b)令迭代次数i加1,即i=i+1后,若迭代次数i大于等于最大迭代次数MAX,执行步骤(d),若迭代次数i小于最大迭代次数MAX,执行步骤(c);
(c)若峰值信噪比P2大于峰值信噪比P1,执行步骤(a),若峰值信噪比P2小于等于峰值信噪比P1,执行步骤(d);
(d)输出复原图像ufinal=ui-1
8.如权利要求1~7任一项所述的基于TV和小波正则化的空间变化模糊图像复原方法,其特征在于,在采用ADMM算法对新去模糊模型进行数值迭代求解前,设置相关参数,具体包括分解基数k,保真项参数μ,正则项参数α和θ,ADMM迭代辅助变量ω,v,H,q,p,t的初值和相应的增广拉格朗日项参数γ,β和ρ;ADMM的最大迭代次数MAX,并设其迭代次数i的初值为0,其中MAX的取值为1,2,3,……,N,N为正整数。
CN201810961332.4A 2018-08-22 2018-08-22 基于tv和小波正则化的空间变化模糊图像复原方法 Active CN109360157B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810961332.4A CN109360157B (zh) 2018-08-22 2018-08-22 基于tv和小波正则化的空间变化模糊图像复原方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810961332.4A CN109360157B (zh) 2018-08-22 2018-08-22 基于tv和小波正则化的空间变化模糊图像复原方法

Publications (2)

Publication Number Publication Date
CN109360157A true CN109360157A (zh) 2019-02-19
CN109360157B CN109360157B (zh) 2020-08-25

Family

ID=65349863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810961332.4A Active CN109360157B (zh) 2018-08-22 2018-08-22 基于tv和小波正则化的空间变化模糊图像复原方法

Country Status (1)

Country Link
CN (1) CN109360157B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111369460A (zh) * 2020-03-03 2020-07-03 辽宁师范大学 基于admm神经网络的图像去模糊方法
CN111657936A (zh) * 2020-06-16 2020-09-15 河南大学 基于小波变换和全变差正则化的信号去噪方法
CN112233046A (zh) * 2020-11-16 2021-01-15 山东科技大学 一种柯西噪声下的图像复原方法及其应用
CN115082333A (zh) * 2022-05-16 2022-09-20 西北核技术研究所 基于归一化加权总变分法的图像去模糊方法、计算机程序产品
CN117173058A (zh) * 2023-11-03 2023-12-05 武汉工程大学 空变模糊图像统一复原方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100054564A1 (en) * 2008-09-04 2010-03-04 Siemens Medical Solutions Usa, Inc. Reconstructing a Tomographic Image
CN102147915A (zh) * 2011-05-06 2011-08-10 重庆大学 一种权重的稀疏边缘正则化图像复原方法
CN102236887A (zh) * 2011-03-11 2011-11-09 贵州大学 基于旋转差分和加权总变分的运动模糊图像复原方法
CN102968762A (zh) * 2012-10-24 2013-03-13 浙江理工大学 一种基于稀疏化和泊松模型的pet重建方法
CN104112261A (zh) * 2014-07-17 2014-10-22 五邑大学 基于范数比值正则化的快速图像盲去模糊方法
CN104408707A (zh) * 2014-10-28 2015-03-11 哈尔滨工业大学 一种快速数字成像模糊鉴别与复原图像质量评估方法
CN105427259A (zh) * 2015-11-26 2016-03-23 天津大学 多方向加权tv和非局部自相似性正则化图像去模糊方法
CN106530258A (zh) * 2016-11-22 2017-03-22 哈尔滨工业大学 基于高阶全变分正则化的快速迭代磁共振图像重建方法
CN106875345A (zh) * 2016-12-26 2017-06-20 浙江工业大学 基于奇异值权重函数的非局部tv模型图像去噪方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100054564A1 (en) * 2008-09-04 2010-03-04 Siemens Medical Solutions Usa, Inc. Reconstructing a Tomographic Image
CN102236887A (zh) * 2011-03-11 2011-11-09 贵州大学 基于旋转差分和加权总变分的运动模糊图像复原方法
CN102147915A (zh) * 2011-05-06 2011-08-10 重庆大学 一种权重的稀疏边缘正则化图像复原方法
CN102968762A (zh) * 2012-10-24 2013-03-13 浙江理工大学 一种基于稀疏化和泊松模型的pet重建方法
CN104112261A (zh) * 2014-07-17 2014-10-22 五邑大学 基于范数比值正则化的快速图像盲去模糊方法
CN104408707A (zh) * 2014-10-28 2015-03-11 哈尔滨工业大学 一种快速数字成像模糊鉴别与复原图像质量评估方法
CN105427259A (zh) * 2015-11-26 2016-03-23 天津大学 多方向加权tv和非局部自相似性正则化图像去模糊方法
CN106530258A (zh) * 2016-11-22 2017-03-22 哈尔滨工业大学 基于高阶全变分正则化的快速迭代磁共振图像重建方法
CN106875345A (zh) * 2016-12-26 2017-06-20 浙江工业大学 基于奇异值权重函数的非局部tv模型图像去噪方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
YOUWEI: "Primal-dual algorithms for total variation based image restoration under Poisson noise", 《SCIENCE CHINA MATHEMATICS》 *
李丽荣: "基于学习和全变分正则化的超分辨率图像复原问题的研究", 《中国优秀硕士学位论文全文数据库》 *
石明珠: "运动模糊图像全变分复原理论及关键技术研究", 《中国博士学位论文全文数据库》 *
蒋丹丹: "图像复原中的正则化模型与算法的研究", 《中国博士学位论文全文数据库》 *
赵晓飞: "基于增广拉格朗日法的图像复原方法与应用", 《中国优秀硕士学位论文全文数据库》 *
邓琼 等: "基于小波变换的正则化盲图像复原算法", 《光学精密工程》 *
金 燕等: "基于稀疏优化字典的图像去噪算法", 《浙江工业大学学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111369460A (zh) * 2020-03-03 2020-07-03 辽宁师范大学 基于admm神经网络的图像去模糊方法
CN111369460B (zh) * 2020-03-03 2023-06-20 大连厚仁科技有限公司 基于admm神经网络的图像去模糊方法
CN111657936A (zh) * 2020-06-16 2020-09-15 河南大学 基于小波变换和全变差正则化的信号去噪方法
CN111657936B (zh) * 2020-06-16 2022-04-12 河南大学 基于小波变换和全变差正则化的信号去噪方法
CN112233046A (zh) * 2020-11-16 2021-01-15 山东科技大学 一种柯西噪声下的图像复原方法及其应用
CN115082333A (zh) * 2022-05-16 2022-09-20 西北核技术研究所 基于归一化加权总变分法的图像去模糊方法、计算机程序产品
CN117173058A (zh) * 2023-11-03 2023-12-05 武汉工程大学 空变模糊图像统一复原方法及系统
CN117173058B (zh) * 2023-11-03 2024-02-02 武汉工程大学 空变模糊图像统一复原方法及系统

Also Published As

Publication number Publication date
CN109360157B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN109360157A (zh) 基于tv和小波正则化的空间变化模糊图像复原方法
Cai et al. Linearized Bregman iterations for frame-based image deblurring
Xiao et al. An enhancement method for X-ray image via fuzzy noise removal and homomorphic filtering
CN101441764B (zh) 一种mtfc遥感图像复原方法
CN103136734B (zh) 一种凸集投影超分辨率图像重建时边缘晕轮效应的抑制方法
Chen et al. Adaptively regularized constrained total least-squares image restoration
Dong et al. A piecewise local regularized Richardson–Lucy algorithm for remote sensing image deconvolution
CN110827212B (zh) 基于交叠组合稀疏高阶全变分的图像复原方法
Dong et al. Multi-frame blind deconvolution using sparse priors
Zhang et al. Group-based sparse representation for Fourier ptychography microscopy
Goto et al. Learning-based super-resolution image reconstruction on multi-core processor
Wang et al. Convex regularized inverse filtering methods for blind image deconvolution
Chen et al. Inexact alternating direction method based on proximity projection operator for image inpainting in wavelet domain
CN106127692A (zh) 可用于灰度和彩色图像的双边回归滤波方法
Gao et al. High performance super-resolution reconstruction of multi-frame degraded images with local weighted anisotropy and successive regularization
CN112508807B (zh) 一种基于多方向全变分的图像去噪方法
Goto et al. Fast and high quality learning-based super-resolution utilizing TV regularization method
Liu et al. A robust iterative algorithm for image restoration
CN113379647A (zh) 一种优化psf估计的多特征图像复原方法
Lixuan et al. Non-blind image deblurring method using shear high order total variation norm
Wang et al. Remote sensing image on-board restoration based on adaptive wiener filter
Yang et al. An adaptive super-resolution method based on regional pixel information and ringing artifacts suppression
CN113822823B (zh) 气动光学效应图像空变模糊核的点近邻复原方法及系统
Nicolae et al. ADAPTIVE IMAGE DENOISING SOLUTION
Liu et al. Single image super-resolution reconstruction technique based on a single hybrid dictionary

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant