CN109355403A - 一种psr检测耐甲氧西林金葡菌的引物、试剂盒与方法 - Google Patents

一种psr检测耐甲氧西林金葡菌的引物、试剂盒与方法 Download PDF

Info

Publication number
CN109355403A
CN109355403A CN201810909427.1A CN201810909427A CN109355403A CN 109355403 A CN109355403 A CN 109355403A CN 201810909427 A CN201810909427 A CN 201810909427A CN 109355403 A CN109355403 A CN 109355403A
Authority
CN
China
Prior art keywords
methicillin
staphylococcus aureus
resistant staphylococcus
detection
primer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810909427.1A
Other languages
English (en)
Other versions
CN109355403B (zh
Inventor
徐振波
苗健
徐行勇
刘君彦
陈定强
苏健裕
陈玲
李晓玺
李冰
李琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810909427.1A priority Critical patent/CN109355403B/zh
Publication of CN109355403A publication Critical patent/CN109355403A/zh
Application granted granted Critical
Publication of CN109355403B publication Critical patent/CN109355403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种PSR检测耐甲氧西林金葡菌的引物、试剂盒与方法。本发明提供了如SEQ ID NO.1~SEQ ID NO.4所示的PSR检测耐甲氧西林金黄色葡萄球菌的引物,通过检测特异性靶序列femA及mecA,实现了耐甲氧西林金黄色葡萄球菌的特异、灵敏和可靠的检测。本发明基于所述的引物,还提供PSR检测耐甲氧西林金葡菌的试剂盒与检测方法,所述的方法具有灵敏度高、特异性好,操作简便快速,结果准确可靠,检测成本低,适合现场检测应用的特点,无需特殊、昂贵的仪器和试剂,直接用荧光染料显色可凭肉眼判断结果,特别适用中小型单位及现场检测,具有良好的应用前景。

Description

一种PSR检测耐甲氧西林金葡菌的引物、试剂盒与方法
技术领域
本发明属于生物技术领域,特别涉及一种PSR检测耐甲氧西林金葡菌的引物、试剂盒与方法。
背景技术
金黄色葡萄球菌是医院和社区感染的重要致病菌,近年来随着广谱抗菌药的广泛使用,金黄色葡萄球菌的耐药性在逐渐升高,其中耐甲氧西林金黄色葡萄球菌(Meticillin-resistant staphylococcus aureus,MRSA)分离率日趋升高,MRSA不仅对甲氧西林耐药,还对多种抗生素耐药,具有多重耐药特性,已是临床抗感染化疗的难题之一。因此,快速、准确的检测MRSA菌株,不仅可以指导临床选择合适的抗生素,还有利于控制MRSA的传播。
目前对耐甲氧西林金黄色葡萄球菌的检测方法主要有传统的纸片法,以及分子生物技术的PCR方法,还有以免疫学为主的酶联免疫试剂盒和应用各类生化自动鉴定仪的检测方法,以及最新出现的基因芯片检测手段。常规检测鉴定方法工作量相对较大,且检测结果一般4~5天才能得出结果,耗时长,根据实验现象判断鉴定结果,很难满足快速鉴定的需要。近年发展起来的基因芯片检测及PCR扩增方法具有较强的特异性、快速、灵敏,但是成本较高。免疫学检测方法,如ELISA,免疫层析等,灵敏度高,但是操作过程复杂,成本偏高,不宜于大规模检测样品。目前应用最广泛的恒温扩增技术-LAMP也有它的局限性,如引物设计复杂、假阳性率高、试剂价高偏高,且由于日本知识产权的保护,我国在转化应用上局限性强。聚合酶螺旋反应(Polymerase Spiral Reaction,PSR)技术与其他核酸扩增技术相比,可以在等温条件下快速、高效、特异地扩增靶序列,且操作简便,不需要精准的变温设备,成本较低,在食源性微生物检测领域显示出广阔的发展前景。
要实现有效地利用PSR技术,合适的引物设计是研发关键;同时,由于PSR一般通过显色直接进行结果判读,显色体系对于整个PSR扩增反应结果判读具有重要的影响,而在本领域的研发实践中如何通过简单的显色实现准确、快速的结果判读也是目前亟需攻克的技术难题。
因此,建立一种针对耐甲氧西林金黄色葡萄球菌新型的具有独立知识产权的等温核酸扩增方法具有重要的意义。
发明内容
本发明的首要目的在于克服现有技术的缺点与不足,提供一种PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的引物。
本发明的另一目的在于提供一种PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的试剂盒。
本发明的又一目的在于提供一种PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的方法。该方法具有灵敏度高、特异性好,操作简便快速,结果准确可靠,检测成本低,适合现场检测应用的特点。
本发明的目的通过下述技术方案实现:
一组PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的两个靶点femA及mecA的引物,包括检测引物Ft和检测引物Bt,其核苷酸序列如下所示:
靶点femA检测引物Ft:
5’-AGGTATAGACTTCGATGTTTCAAATCGCGGTCCAGTG-3’(SEQ ID NO.1);
靶点femA检测引物Bt:
5’-TTGTAGCTTCAGATATGGAAACCAATCATTACCAGCA-3’(SEQ ID NO.2);
靶点mecA检测引物Ft:
5’-CCAATAACTGCATCATCTGCGACTTCACATCTATTAGG-3’(SEQ ID NO.3);
靶点mecA检测引物Bt:
5’-TCTACTACGTCAATAACCGACACGATAGCCATCTTCA-3’(SEQ ID NO.4)
一种PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的试剂盒,包括上述PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的引物。
所述的PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的试剂盒中检测引物Ft和检测引物Bt的浓度均为50μM。
所述的PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的试剂盒,还包括如下组分:
A、2×反应缓冲液:40.0mM的Tris-HCl,20.0mM的硫酸铵,20.0mM的氯化钾,16.0mM的硫酸镁,0.2%(v/v)的Tween 20,1.4M的甜菜碱,10.0mM的dNTPs(each);
B、Bst DNA聚合酶;
C、钙黄绿素和氯化锰的混合溶液。
组分B中所述的Bst DNA聚合酶优选为浓度为8U/μL的Bst DNA聚合酶水溶液。
发明人研究发现,在组分C的显色体系中,锰离子比例过高会造成阳性样品不产生荧光,浓度过低又会造成阴性样本钙黄绿素自身产生荧光,这将对结果的判读造成一定的影响,合适的钙黄绿素与氯化锰的浓度比对于整个PSR扩增反应结果判读具有重要的影响,因此本发明还对PSR扩增反应显色剂各物质浓度进行一定的优化;组分C中所述的钙黄绿素和氯化锰的混合溶液的钙黄绿素与氯化锰的浓度比优选为1:(4~8);进一步优选为1:4。
所述的黄绿素和氯化锰的混合溶液优选通过如下方法制备得到:
(i)将钙黄绿素溶于二甲基亚砜(DMSO)中,配置50μM的钙黄绿素溶液;将氯化锰溶于水中,配置1mM的氯化锰水溶液;
(ii)取25μL 50μM的钙黄绿素溶液与10μL 1mM的氯化锰水溶液混合均匀,得到钙黄绿素和氯化锰的混合溶液。
所述的PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的引物或所述的PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的试剂盒在检测耐甲氧西林金黄色葡萄球菌中的应用。
一种PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的方法,利用如SEQ IDNO.1~SEQ ID NO.4所示的检测引物进行PSR等温扩增反应,检测待检样品中的耐甲氧西林金黄色葡萄球菌。
所述的方法具体包括如下步骤:
(1)提取待检样品的细菌DNA作为模板DNA,并控制模板DNA水溶液的OD260/OD280值为1.8~2.0;
(2)分别建立检测femA及mecA的聚合酶螺旋反应体系,于65℃水浴中保温40~45分钟进行聚合酶螺旋扩增反应;其中,所述的聚合酶螺旋扩增反应体系为26μL反应体系:2×反应缓冲液12.5μL,50μM的检测引物Ft和50μM的检测引物Bt各0.8μL,DNA模板2.0μL,8U/μL的Bst DNA聚合酶1.0μL,加水补足至25μL;最后加入1μL的钙黄绿素与氯化锰的混合溶液;
(3)待反应完成后于80℃水浴中保温2分钟终止反应,然后用肉眼观察颜色变化,如其中一个反应管颜色为黄色或两个反应体系都未变色,说明待检样品中不含有耐甲氧西林金黄色葡萄球菌;如两个反应管颜色全部变为绿色,说明待检样品中含有耐甲氧西林金黄色葡萄球菌。
步骤(2)中所述的检测引物Ft的核苷酸序列如SEQ ID NO.1,SEQ ID NO.3所示,检测引物Bt的核苷酸序列如SEQ ID NO.2,SEQ ID NO.4所示。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明提供了一组PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的引物,所述的引物对于不同的MRSA菌株均可实现快速、准确的检出,适用性好。
(2)本发明提供了一种耐甲氧西林金黄色葡萄球菌所设计的聚合酶螺旋检测鉴定体系,解决了现有技术中的方法所需周期长,灵敏度低,成本高,现场应用困难等缺陷。
(3)由于本发明构建的检测方法通过显色剂对结果直接进行肉眼判读,合适显色体系对整个PSR扩增反应结果判读具有重要的影响,本发明经过大量试验研究获得了一种适用于所述的PSR扩增反应结果判读的最优浓度比的钙黄绿素与氯化锰混合溶液方案,进一步实现了对结果的准确、直观的判读。
(4)本发明的方法可以将检测时间减少到60分钟,同传统环介导等温扩增技术相比缩短了检测周期,对新型恒温扩增技术扩增的开发及微生物的现场检测具有重要的意义。同时,本发明还公开了针对耐甲氧西林金黄色葡萄球菌的特异性靶序列femA及mecA保守区的特异区域设计了两对检测引物,从而保证了检测结果的可靠性。其次,本发明在等温条件下扩增,不会因温度的改变而造成时间损失,耗时短,在60分钟就可完成结果判读。此外,该技术不需要特殊、昂贵的仪器和试剂,扩增产物不需要凝胶电泳,直接用荧光染料显色可凭肉眼判断结果,操作简便快捷,检测成本较低。本发明的试剂盒及方法特别适用中小型单位及现场检测。
附图说明
图1为femA引物筛选实验的电泳结果图,其中,1:耐甲氧西林金黄色葡萄球菌NCTC10442;2:耐甲氧西林金黄色葡萄球菌N315;3:耐甲氧西林金黄色葡萄球菌85/2082;4:耐甲氧西林金黄色葡萄球菌CA05;5:耐甲氧西林金黄色葡萄球菌JCSC 4469;NG为阴性对照。
图2为mecA引物筛选试验的电泳结果图,其中,1:耐甲氧西林金黄色葡萄球菌NCTC10442;2:耐甲氧西林金黄色葡萄球菌N315;3:耐甲氧西林金黄色葡萄球菌85/2082;4:耐甲氧西林金黄色葡萄球菌CA05;5:耐甲氧西林金黄色葡萄球菌JCSC 4469;NG为阴性对照。
图3为聚合酶螺旋反应技术检测耐甲氧西林金黄色葡萄球菌特异性靶序列femA及mecA的结果图,其中,1:femA基因扩增阴性对照;2:femA检测结果;3:mecA基因扩增阴性对照;4:mecA检测结果。
图4为特异性检测实验结果图;A图检测femA特异性检测结果,B图为检测mecA的特异性结果,其中,1:耐甲氧西林金黄色葡萄球菌NCTC10442;2:耐甲氧西林金黄色葡萄球菌N315;3:耐甲氧西林金黄色葡萄球菌85/2082;4:耐甲氧西林金黄色葡萄球菌CA05;5:耐甲氧西林金黄色葡萄球菌JCSC 4469;6:沙门氏菌ATCC29629;7:沙门氏菌ATCC19585;8:沙门氏菌ATCC14028;9:沙门氏菌ATCC13076;10:沙门氏菌ATCC29629;10:单增李斯特菌ATCC19116;11:单增李斯特菌ATCC19114,12:单增李斯特菌ATCC19115;13:单增李斯特菌ATCC15313;14:单增李斯特菌ATCC19113;15:铜绿假单胞菌ATCC27853;16:大肠杆菌ATCC43895;17:大肠杆菌E019;18:大肠杆菌E020;19:大肠杆菌E043;20:大肠杆菌E044;21:副溶血性弧菌ATCC17802;22:副溶血性弧菌ATCC27969;23:干酪乳杆菌BM-LC14617;24:阴性对照。
图5为敏感性实验结果图;图A为靶点femA检测结果,B为mecA检测结果;其中1为53ng/μL;2为5.3ng/μL;3为530pg/μL;4为53pg/μL;5为5.3pg/μL;6为530fg/μL;7为53fg/μL;NG为阴性对照。
图6为不同配比的钙黄绿素与氯化锰混合水溶液的显色结果图,NG为阴性对照。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
以下实施例中所涉及部分菌株已在如下文献中公开(相应菌株右上角标注的数字分别对应如下编号的文献),并由本实验室保存。如无特殊说明,相关菌株均可通过市售途径购买得到。
[1]Zhenbo Xu,Lin Li,Jin Chu,Brian M.Peters.M,Megan L.Harris,Bing Li,Lei Shi,Mark E.Shirliff.Development and application of loop-mediatedisothermal amplification assays on rapid detection of various types ofstaphylococci strains.Food Research International.47:166-173,2012.
[2]周蓉.低温储藏对肠出血大肠杆菌VBNC状态的诱导及毒素表达量的影响研究[D].华南理工大学,2015.
[3]Junyan Liu,Lin Li,Bing Li,Brian M.Peters,Yang Deng*,Zhenbo Xu*,Mark E.Shirtliff.The viable but nonculturable state induction and genomicanalyses of Lactobacillus casei BM-LC14617,a beer-spoilagebacterium.MicrobiologyOpen.2017;e506.
实施例1聚合酶螺旋反应检测耐甲氧西林金黄色葡萄球菌引物筛选
1.设计引物
根据PSR扩增反应原理,使用PrimerPremier软件针对femA及mecA靶点分别设计如表1所示的多组引物。
表1引物信息
2.建立聚合酶螺旋反应检测方法
(1)反应体系
①表1中浓度各为50μM的引物对组合。
②2×反应储液:由浓度为40.0mM的Tris-HCl,硫酸铵20.0mM,氯化钾20.0mM,硫酸镁16.0mM,0.2%(v/v)Tween 20,甜菜碱1.4M,dNTPs(each)10.0mM的混合液组成。
③浓度为8U/μL的Bst DNA聚合酶(Bst DNA Polymerase,Large Fragment,购自NEB公司)水溶液;
(2)检测方法
①提取待检样品的细菌DNA作为模板DNA:
以耐甲氧西林金黄色葡萄球菌NCTC10442[1],耐甲氧西林金黄色葡萄球菌N315[1],耐甲氧西林金黄色葡萄球菌85/2082[1],耐甲氧西林金黄色葡萄球菌CA05[1],耐甲氧西林金黄色葡萄球菌JCSC 4469[1]五株耐甲氧西林金黄色葡萄球菌为研究对象,对所设计的引物进行筛选。
采用DNA提取试剂盒(购自广东东盛生物科技有限公司,货号N1152)提取各组细菌DNA,按照试剂盒说明书操作,实验组所得细菌DNA水溶液的OD260/OD280的值(260nm和280nm下吸光光度比值)为1.8;以去核酸水做空白对照。
(2)耐甲氧西林金黄色葡萄球菌的聚合酶螺旋扩增反应:针对靶点femA、mecA,分别在反应管中配置总体积为26μL的聚合酶螺旋扩增反应体系;加入2×反应储液12.5μL,对应的Ft与Bt等体积混合引物混合液1.6μL,Bst DNA聚合酶1μL,DNA模板2.0μL,用去离子水补充体积至25μL。此时各物质浓度为:Tris-HCl20.0mM,硫酸铵10.0mM,氯化钾10.0mM,硫酸镁8.0mM,Tween 20 0.1%(v/v),甜菜碱0.7M,dNTPs(each)1.4mM,Bst DNA聚合酶8U,引物Ft、Bt各1.6μM。将反应管置于65℃水浴中保温反应60分钟,再于80℃水浴中保温2分钟终止反应。
对扩增结束后的产物进行2%的琼脂糖凝胶电泳。
结果如图1、图2所示,图1为靶点femA引物筛选的结果,靶点femA所设计的第一套引物中泳道5的MRSA菌株未检出,第二套引物中全部检出,加入去核酸水无条带,此引物的效果较好。第三套引物中只有泳道5检出,其余未检出,第四套引物均未出现扩增条带。因此选用第二套引物为检测femA靶点的最优引物。图2为靶点mecA引物筛选的结果,针对靶点mecA所设计三套引物中,仅有第三套引物出现扩增条带,因此选用第三套引物为检测mecA的最佳引物。本发明的引物对于不同的MRSA菌株均可实现快速、准确的检出,引物适用性好。
实施例2基于聚合酶螺旋反应等温扩增技术检测耐甲氧西林金黄色葡萄球菌的微生物方法
1、基于聚合酶螺旋等温扩增技术检测病原微生物的方法,选择实施例1优选得到的引物组合,本实施例以耐甲氧西林金黄色葡萄球菌为例,其使用试剂如下:
(1)引物
浓度各为50μM的检测引物Ft水溶液和Bt水溶液,引物序列如下(5’-3’):
靶点femA检测引物Ft:
5’-AGGTATAGACTTCGATGTTTCAAATCGCGGTCCAGTG-3’(SEQ ID NO.1);
靶点femA检测引物Bt:
5’-TTGTAGCTTCAGATATGGAAACCAATCATTACCAGCA-3’(SEQ ID NO.2);
靶点mecA检测引物Ft
5’-CCAATAACTGCATCATCT-GCGACTTCACATCTATTAGG-3’(SEQ ID NO.3);
靶点mecA检测引物Bt
5’-TCTACTACGTCAATAACC-GACACGATAGCCATCTTCA-3’(SEQ ID NO.4)
(2)其他试剂
A、2×反应储液:由浓度为40.0mM的Tris-HCl,硫酸铵20.0mM,氯化钾20.0mM,硫酸镁16.0mM,0.2%(v/v)Tween 20,甜菜碱1.4M,dNTPs(each)10.0mM的混合液组成。
B、浓度为8U/μL的Bst DNA聚合酶(Bst DNA Polymerase,Large Fragment,购自NEB公司)水溶液;
C、钙黄绿素和氯化锰的混合溶液。
组分C中所述的钙黄绿素和氯化锰的混合溶液通过如下方法制备得到:
(i)将钙黄绿素溶于二甲基亚砜(DMSO)中,配置50μM的钙黄绿素溶液;将氯化锰溶于水中,配置1mM的氯化锰水溶液;
(ii)取25μL 50μM的钙黄绿素溶液与10μL 1mM的氯化锰水溶液混合均匀,得到钙黄绿素和氯化锰的混合溶液(钙黄绿素溶液与氯化锰溶液的浓度比为1:4)。
2、使用上述试剂利用聚合酶螺旋反应扩增技术检测耐甲氧西林金黄色葡萄球菌,包括如下步骤:
(1)提取待检样品的细菌DNA作为模板DNA:
本实施例同时设置实验组和空白对照组,其中实验组来自耐甲氧西林金黄色葡萄球菌NCTC10442[1];采用DNA提取试剂盒(购自广东东盛生物科技有限公司,货号N1152)提取细菌DNA,按照试剂盒说明书操作,实验组所得细菌DNA水溶液的OD260/OD280的值(260nm和280nm下吸光光度比值)为1.8;以去核酸水做空白对照。
(2)耐甲氧西林金黄色葡萄球菌的聚合酶螺旋扩增反应:针对靶点femA、mecA,分别在反应管中配置总体积为26μL的聚合酶螺旋扩增反应体系;加入2×反应储液12.5μL,对应的Ft与Bt等体积混合引物混合液1.6μL,Bst DNA聚合酶1μL,DNA模板2.0μL,用去离子水补充体积至25μL,最后加入上述浓度的钙黄绿素及氯化锰混合液水溶液1μL,混匀即可。此时各物质浓度为:Tris-HCl 20.0mM,硫酸铵10.0mM,氯化钾10.0mM,硫酸镁8.0mM,Tween 200.1%(v/v),甜菜碱0.7M,dNTPs(each)1.4mM,Bst DNA聚合酶8U,引物Ft、Bt各1.6μM。将反应管置于65℃水浴中保温反应60分钟,再于80℃水浴中保温2分钟终止反应。
(3)显色检测:待反应结束后,用肉眼观察颜色变化
结果如图3所示,1:femA基因扩增阴性对照;2:femA检测结果;3:mecA基因扩增阴性对照;4:mecA检测结果。结果显示:空白对照组(1和3)的颜色为黄色;实验组的两个靶序列的靶点扩增后均变为绿色(2和4),与预期结果一致。
实施例3聚合酶螺旋反应检测耐甲氧西林金黄色葡萄球菌特异性试验
将如下菌株的基因组DNA按照实施例2的反应体系和条件建立聚合酶螺旋反应检测方法,进行特异性试验:
(1)耐甲氧西林金黄色葡萄球菌:耐甲氧西林金黄色葡萄球菌NCTC10442[1];耐甲氧西林金黄色葡萄球菌N315[1];耐甲氧西林金黄色葡萄球菌85/2082[1];耐甲氧西林金黄色葡萄球菌CA05[1];耐甲氧西林金黄色葡萄球菌JCSC4469[1]
(2)非耐甲氧西林金黄色葡萄球菌:沙门氏菌ATCC29629;沙门氏菌ATCC19585;沙门氏菌ATCC14028;沙门氏菌ATCC13076;沙门氏菌ATCC29629;单增李斯特菌ATCC19116;单增李斯特菌ATCC19114;增李斯特菌ATCC19115;单增李斯特菌ATCC15313;单增李斯特菌ATCC19113;铜绿假单胞菌ATCC27853;大肠杆菌ATCC43895;大肠杆菌E019[2];肠杆菌E020[2];肠杆菌E043[2];大肠杆菌E044[2];副溶血性弧菌ATCC17802;副溶血性弧菌ATCC27969;干酪乳杆菌BM-LC14617[3]
设置耐甲氧西林金黄色葡萄球菌的基因组为阳性对照,超纯水为阴性对照,进行2%的琼脂糖凝胶电泳,结果如图4所示。A图检测femA特异性检测结果,B图为检测mecA的特异性结果。结果表明,只有含有耐甲氧西林金黄色葡萄球菌出现梯形条带,非耐甲氧西林金黄色葡萄球菌则无。本发明所设计的引物及构建的检测方法具有较高的特异性。
实施例4PSR检测耐甲氧西林金黄色葡萄球菌的敏感性试验
将耐甲氧西林金黄色葡萄球菌NCTC10442[1]的基因组进行10倍浓度梯度稀释,分别为53ng/μL,5.3ng/μL,530pg/μL,53pg/μL,5.3pg/μL,530fg/μL,53fg/μL,同时设置阴性对照(去离子水),按照上述实施例2的反应体系构建聚合酶螺旋反应扩增方法,以确定检测方法的敏感性,结果如图5所示。图A为靶点femA检测结果,B为mecA检测结果。结果表明:建立的耐甲氧西林金黄色葡萄球菌femA及mecA靶点聚合酶螺旋反应方法可检测样品中53pg/μL(femA),5.3pg/μL(mecA)的耐甲氧西林金黄色葡萄球菌DNA。
实施例5显色剂浓度比对PSR扩增反应显色的影响研究
将初始浓度为50μM的钙黄绿素水溶液及1mM的氯化锰溶液混合,按照表2分别配置成钙黄绿素与氯化锰浓度比为1:2、1:4、1:8、1:12、1:16、1:20的显色指示剂,按照上述实施例2的反应体系构建聚合酶螺旋反应扩增方法,以确定最优添加浓度比,按照实施例2构建反应体系,无菌水作空白对照,在正常光线下观察反应结果。图6结果表明:当浓度比为1:2时,由于锰离子浓度过低,造成阴性样本钙黄绿素自身产生荧光,这将对结果的判读造成一定的影响;在钙黄绿素与氯化锰的浓度比为1:4或1:8时,在正常光线下可判断反应结果。其中,在以上述浓度配置的钙黄绿素与氯化锰的混合溶液在1:4时效果最优,能够更好地判断PSR反应扩增的结果。
表2显色液配方
从上述实验结果可以看出,聚合酶螺旋反应扩增方法与常规PCR和荧光PCR具有如下优点:
(1)操作和鉴定简便快捷:常规PCR整个过程在2~4个小时才能出结果,荧光定量PCR需要1~1.5小时,本发明所提供的检测方法在60分钟就可出现阳性结果。其次对仪器要求低,仅需要一个普通水浴锅,并可以通过荧光染料直接观测检测结果,省去了传统的电泳检测步骤。在快速检测及现场检测的实践中有广泛的应用前景。
(2)特异性强:仅通过是否扩增就可判断目的基因的存在与否,从而完成了细菌的定性检测。
(3)灵敏度高:针对耐甲氧西林金黄色葡萄球菌femA及mecA的检测限为53pg/μL,5.3pg/μL,是常规PCR的10~100倍左右,具有较高的灵敏度。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
序列表
<110> 华南理工大学
<120> 一种PSR检测耐甲氧西林金葡菌的引物、试剂盒与方法
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 靶点femA检测引物Ft
<400> 1
aggtatagac ttcgatgttt caaatcgcgg tccagtg 37
<210> 2
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 靶点femA检测引物Bt
<400> 2
ttgtagcttc agatatggaa accaatcatt accagca 37
<210> 3
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 靶点mecA检测引物Ft
<400> 3
ccaataactg catcatctgc gacttcacat ctattagg 38
<210> 4
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 靶点mecA检测引物Bt
<400> 4
tctactacgt caataaccga cacgatagcc atcttca 37
<210> 5
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> Ft-femA-1
<400> 5
cataatcgat cactggtcca ctgctgtacc tgttatg 37
<210> 6
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> Bt-femA-1
<400> 6
cctggtcact agctaataca cctgtaatct cgccatc 37
<210> 7
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> Ft-femA-3
<400> 7
gagtaactta ggatttggat ggcgagatta cagg 34
<210> 8
<211> 35
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> Bt-femA-3
<400> 8
gtttaggatt caatgagcac tgagtgataa cgaat 35
<210> 9
<211> 35
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> Ft-femA-4
<400> 9
cgctcttcgt ttagttctaa gaccgtttgt tagta 35
<210> 10
<211> 35
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> Bt-femA-4
<400> 10
tcttgatttg cttctcgctt atctcgcttg ttgtg 35
<210> 11
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> Ft-mecA-1
<400> 11
atcttcaatt gcatcaatag gttgtagttg tcgggtttg 39
<210> 12
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> Bt-mecA-1
<400> 12
gataactacg ttaacttcta tcggacgttc agtcatttc 39
<210> 13
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> Ft-mecA-2
<400> 13
gtggaacgaa ggtatcatct tgtgggacca acataaccta 40
<210> 14
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> Bt-mecA-2
<400> 14
gttctactat ggaagcaagg tgtaggttat gttggtccca 40

Claims (10)

1.一种PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的引物,其特征在于,包含femA的检测引物及mecA的检测引物,所述的检测引物的核苷酸序列如下所示:
靶点femA检测引物Ft:
5’-AGGTATAGACTTCGATGTTTCAAATCGCGGTCCAGTG-3;
靶点femA检测引物Bt:
5’-TTGTAGCTTCAGATATGGAAACCAATCATTACCAGCA-3’;
靶点mecA检测引物Ft:
5’-CCAATAACTGCATCATCTGCGACTTCACATCTATTAGG-3’;
靶点mecA检测引物Bt:
5’-TCTACTACGTCAATAACCGACACGATAGCCATCTTCA-3’。
2.一种PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的试剂盒,其特征在于:
包括权利要求1所述的PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的引物。
3.根据权利要求2所述的PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的试剂盒,其特征在于:
所述的引物的浓度为50μM。
4.根据权利要求2所述的PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的试剂盒,其特征在于,还包括如下组分:
A、2×反应缓冲液:40mM的Tris-HCl,20mM的硫酸铵,20mM的氯化钾,16mM的硫酸镁,0.2%(v/v)的Tween 20,1.4M的甜菜碱,10mM的dNTPs;
B、Bst DNA聚合酶;
C、钙黄绿素和氯化锰的混合溶液。
5.根据权利要求4所述的PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的试剂盒,其特征在于:
组分B中所述的Bst DNA聚合酶的浓度为8U/μL;
组分C中所述的钙黄绿素和氯化锰的混合溶液中钙黄绿素与氯化锰的浓度比为1:(4~8)。
6.根据权利要求4所述的PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的试剂盒,其特征在于:
组分C中所述的钙黄绿素和氯化锰的混合溶液中钙黄绿素与氯化锰的浓度比为1:4。
7.根据权利要求4所述的PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的试剂盒,其特征在于,组分C通过如下方法制备得到:
(i)将钙黄绿素溶于二甲基亚砜中,配置50μM的钙黄绿素溶液;将氯化锰溶于水中,配置1mM的氯化锰水溶液;
(ii)取25μL 50μM的钙黄绿素溶液与10μL 1mM的氯化锰水溶液混合均匀,得到钙黄绿素和氯化锰的混合溶液。
8.权利要求1所述的PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的引物或权利要求2~7任一项所述的PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的试剂盒在检测耐甲氧西林金黄色葡萄球菌中的应用。
9.一种PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的方法,其特征在于:
利用如SEQ ID NO.1~SEQ ID NO.4所示的检测引物进行PSR等温扩增反应,检测待检样品中的耐甲氧西林金黄色葡萄球菌。
10.根据权利要求9所述的PSR等温扩增反应检测耐甲氧西林金黄色葡萄球菌的方法,其特征在于,具体包括如下步骤:
(1)提取待检样品的细菌DNA作为模板DNA,并控制模板DNA水溶液的OD260/OD280值为1.8~2.0;
(2)分别建立检测femA及mecA的聚合酶螺旋反应体系,于65℃水浴中保温40~45分钟进行聚合酶螺旋扩增反应;其中,所述的聚合酶螺旋扩增反应体系为26μL反应体系:2×反应缓冲液12.5μL,50μM的检测引物Ft和50μM的检测引物Bt各0.8μL,DNA模板2μL,8U/μL的Bst DNA聚合酶1μL,加水补足至25μL;最后加入1μL的钙黄绿素与氯化锰的混合溶液;
(3)待反应完成后于80℃水浴中保温2分钟终止反应,然后用肉眼观察颜色变化,如其中一个反应管颜色为黄色或两个反应体系都未变色,说明待检样品中不含有耐甲氧西林金黄色葡萄球菌;如两个反应管颜色全部变为绿色,说明待检样品中含有耐甲氧西林金黄色葡萄球菌。
CN201810909427.1A 2018-08-10 2018-08-10 一种psr检测耐甲氧西林金葡菌的引物、试剂盒与方法 Active CN109355403B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810909427.1A CN109355403B (zh) 2018-08-10 2018-08-10 一种psr检测耐甲氧西林金葡菌的引物、试剂盒与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810909427.1A CN109355403B (zh) 2018-08-10 2018-08-10 一种psr检测耐甲氧西林金葡菌的引物、试剂盒与方法

Publications (2)

Publication Number Publication Date
CN109355403A true CN109355403A (zh) 2019-02-19
CN109355403B CN109355403B (zh) 2021-03-30

Family

ID=65349851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810909427.1A Active CN109355403B (zh) 2018-08-10 2018-08-10 一种psr检测耐甲氧西林金葡菌的引物、试剂盒与方法

Country Status (1)

Country Link
CN (1) CN109355403B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195121A (zh) * 2019-07-08 2019-09-03 华南理工大学 一种检测耐甲氧西林金葡菌的cpa引物及试剂盒和检测方法
CN113736869A (zh) * 2020-10-14 2021-12-03 南通大学附属医院 基于耐药基因MecA检测耐甲氧西林葡萄球菌的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421898A (zh) * 2013-08-08 2013-12-04 广东出入境检验检疫局检验检疫技术中心 耐甲氧西林金黄色葡萄球菌三重实时荧光pcr检测引物、探针、检测试剂盒和检测方法
CN104232622A (zh) * 2014-09-24 2014-12-24 中国人民解放军疾病预防控制所 一种用聚合酶螺旋反应恒温扩增核酸的方法及其应用
CN105219874A (zh) * 2015-11-04 2016-01-06 中国人民解放军疾病预防控制所 铜绿假单胞菌的psr检测方法及其专用引物与试剂盒
CN105793436A (zh) * 2013-09-23 2016-07-20 奎斯特诊断投资股份有限公司 对生物样品中耐甲氧西林金黄色葡萄球菌的检测
CN106222248A (zh) * 2016-07-08 2016-12-14 宁波基内生物技术有限公司 一种检测耐甲氧西林金黄色葡萄球菌耐药性基因的引物、探针、方法及试剂盒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421898A (zh) * 2013-08-08 2013-12-04 广东出入境检验检疫局检验检疫技术中心 耐甲氧西林金黄色葡萄球菌三重实时荧光pcr检测引物、探针、检测试剂盒和检测方法
CN105793436A (zh) * 2013-09-23 2016-07-20 奎斯特诊断投资股份有限公司 对生物样品中耐甲氧西林金黄色葡萄球菌的检测
CN104232622A (zh) * 2014-09-24 2014-12-24 中国人民解放军疾病预防控制所 一种用聚合酶螺旋反应恒温扩增核酸的方法及其应用
CN105219874A (zh) * 2015-11-04 2016-01-06 中国人民解放军疾病预防控制所 铜绿假单胞菌的psr检测方法及其专用引物与试剂盒
CN106222248A (zh) * 2016-07-08 2016-12-14 宁波基内生物技术有限公司 一种检测耐甲氧西林金黄色葡萄球菌耐药性基因的引物、探针、方法及试剂盒

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195121A (zh) * 2019-07-08 2019-09-03 华南理工大学 一种检测耐甲氧西林金葡菌的cpa引物及试剂盒和检测方法
CN110195121B (zh) * 2019-07-08 2023-07-18 华南理工大学 一种检测耐甲氧西林金葡菌的cpa引物及试剂盒和检测方法
CN113736869A (zh) * 2020-10-14 2021-12-03 南通大学附属医院 基于耐药基因MecA检测耐甲氧西林葡萄球菌的方法

Also Published As

Publication number Publication date
CN109355403B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
Rohde et al. Overview of validated alternative methods for the detection of foodborne bacterial pathogens
CN110195121B (zh) 一种检测耐甲氧西林金葡菌的cpa引物及试剂盒和检测方法
Liu et al. Rapid detection of P–35S and T-nos in genetically modified organisms by recombinase polymerase amplification combined with a lateral flow strip
Xiong et al. A closed-tube loop-mediated isothermal amplification assay for the visual detection of Staphylococcus aureus
WO2021129118A1 (zh) 一种铜绿假单胞菌的cpa检测引物、试剂盒及方法
CN109355403A (zh) 一种psr检测耐甲氧西林金葡菌的引物、试剂盒与方法
CN101748201B (zh) 环介导恒温扩增方法检测单核细胞增生李斯特菌
CN109355407B (zh) 一种psr等温扩增反应检测铜绿假单胞菌的引物、试剂盒及其方法
Liu et al. Development and application of multiple polymerase spiral reaction (PSR) assays for rapid detection of methicillin resistant Staphylococcus aureus and toxins from rice and flour products
CN109735636A (zh) 一种psr检测金黄色葡萄球菌杀白细胞毒素的引物、试剂盒与方法
CN109355405B (zh) 一种psr等温扩增反应检测副溶血性弧菌的引物、试剂盒及其方法
CN108796098A (zh) 一种psr等温扩增反应检测大肠杆菌志贺毒素的引物、试剂盒及其方法
Nakajima et al. Rapid detection of the red fire ant Solenopsis invicta (Hymenoptera: Formicidae) by loop-mediated isothermal amplification
CN109355404A (zh) 基于聚合酶螺旋反应恒温检测单增李斯特菌的引物、试剂盒及检测方法
CN109355408B (zh) 一种psr检测大肠杆菌i型志贺毒素的引物、试剂盒及其方法
CN103993090A (zh) 对普罗威登斯菌o31,o41,o42,o43和o50特异的核苷酸及其应用
CN111500691A (zh) 微生物高通量dna测序数据的质量控制标准品和质量控制方法
CN108192988B (zh) 一种金黄色葡萄球菌链交换扩增检测方法
CN106086209A (zh) 一种快速鉴定鸡白痢和鸡伤寒沙门菌的pcr检测试剂盒
CN109517913B (zh) 一种psr检测耐热直接溶血毒素及耐热相关溶血毒素的引物、试剂盒与方法
CN104630333B (zh) 澳洲坚果过敏原的恒温扩增检测引物、试剂盒及方法
CN104328209A (zh) 白血病微小残留病wt1基因快速检测方法的引物和试剂盒
CN111004854B (zh) 同时针对创伤弧菌和霍乱弧菌的快速恒温检测方法、引物组及试剂盒
CN108754001A (zh) 基于聚合酶螺旋反应恒温检测沙门氏菌的引物、试剂盒及检测方法
CN108796099A (zh) 一种大肠杆菌o157:h7的psr检测引物、试剂盒及其检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant