CN109354499A - 一种TiAl基合金过滤用Ti-MAX基开口陶瓷及其制备方法 - Google Patents

一种TiAl基合金过滤用Ti-MAX基开口陶瓷及其制备方法 Download PDF

Info

Publication number
CN109354499A
CN109354499A CN201811229228.2A CN201811229228A CN109354499A CN 109354499 A CN109354499 A CN 109354499A CN 201811229228 A CN201811229228 A CN 201811229228A CN 109354499 A CN109354499 A CN 109354499A
Authority
CN
China
Prior art keywords
max
tial
mass parts
ceramics
base alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811229228.2A
Other languages
English (en)
Inventor
陈俊峰
肖俊李
蔡伏玲
魏耀武
韩兵强
鄢文
李楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201811229228.2A priority Critical patent/CN109354499A/zh
Publication of CN109354499A publication Critical patent/CN109354499A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Powder Metallurgy (AREA)
  • Filtering Materials (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明涉及一种TiAl基合金过滤用Ti‑MAX基开口陶瓷及其制备方法。其技术方案是:先将Ti‑MAX细粉、碳黑细粉、含碳结合剂、去离子水、聚丙二醇、聚羧酸减水剂、聚甲基纤维素钠和木质素磺酸氨混匀,得浆料Ⅰ;再将Ti‑MAX细粉、去离子水、聚羧酸减水剂和聚甲基纤维素钠混合,得浆料Ⅱ。将聚氨酯泡沫基板于浆料Ⅰ中浸渍,取出挤压,养护,再于浆料Ⅱ中浸渍,养护,然后在弱氧化保护气氛中升温至1100~1300℃,保温,再升温至1400~1600℃,保温,制得TiAl基合金过滤用Ti‑MAX基开口陶瓷。本发明所制制品不仅原位涂层与基体间结合强度高、抗热震性能优异和能够有效避免热剥落产生新夹杂的不利影响,且能有效避免相互反应从而防止污染TiAl基合金。

Description

一种TiAl基合金过滤用Ti-MAX基开口陶瓷及其制备方法
技术领域
本发明属于过滤用开口陶瓷技术领域。具体涉及一种TiAl基合金过滤用Ti-MAX基开口陶瓷及其制备方法。
背景技术
在利用坩埚真空感应炉熔炼TiAl基合金过程中,由于熔融态的TiAl基合金反应活性极强,坩埚基体元素会向TiAl基合金中溶解从而形成夹杂物,这对精确控制TiAl基合金成分以及防止夹杂是一项重大的挑战。近年来,为了能有效去除细小夹杂物制备高纯净钢铸件,许多研究者提出通过在过滤陶瓷基体表面喷涂氧化物涂层的工艺制备“第二代过滤陶瓷”(活性涂层过滤陶瓷)。活性吸附夹杂物的主要机理是通过夹杂与活性涂层形成有效的碰撞接触,通过化学反应形成固态产物并有效附着在活性涂层表面,最终达到去除夹杂的目的。
目前,活性涂层过滤陶瓷主要材质是以碳结合的Al2O3作为基体,在过滤陶瓷表面冷喷涂不同种类的氧化物或者碳纳米管涂层,主要应用在铝、洁净钢或者特殊钢种的铸造过程。考虑到熔融态下TiAl合金反应活性极强,TiAl合金溶体极易与传统过滤陶瓷基体或涂层材料反应,若选用传统氧化物基或SiC基过滤陶瓷,陶瓷基体或者涂层材料极易与TiAl合金反应,不仅起不到过滤夹杂的效果反而污染合金。此外,采用冷喷涂技术制备的涂层在高温熔体热冲击作用下容易剥落,会成为新的夹杂物来源,这在很大程度上限制了过滤陶瓷使用的稳定性。
发明内容
本发明旨在克服现有技术缺陷,目的在于提供一种原位涂层结构可控的TiAl基合金过滤用Ti-MAX基开口陶瓷的制备方法;所制备的TiAl基合金过滤用Ti-MAX基开口陶瓷不仅原位涂层与基体间结合强度高、在熔体热冲击条件下抗热震性能优异和能够有效避免热剥落产生新夹杂的不利影响,且能有效避免相互反应从而防止污染TiAl基合金。
为实现上述目的,本发明采用的技术方案是:
步骤一、以50~75质量份的Ti-MAX细粉、18~36质量份的碳黑细粉和2~15质量份的含碳结合剂为原料,以35~70质量份的去离子水、0.2~2质量份的聚丙二醇、0.2~1.2质量份的聚羧酸减水剂、0.2~1.5质量份的聚甲基纤维素钠和0.2~1.5质量份的木质素磺酸氨为添加剂,将所述原料和所述添加剂置于球磨罐中,混合1~3h,得到浆料Ⅰ。
步骤二、将100质量份的Ti-MAX细粉、35~70质量份的去离子水、0.2~1.2质量份的聚羧酸减水剂和0.2~1.5质量份的聚甲基纤维素钠置于球磨罐中,混合4~6h,得到浆料Ⅱ。
步骤三、将聚氨酯泡沫基板置于所述浆料Ⅰ中浸渍,取出后挤压,再于20~40℃条件下养护6~12h,得到挂浆坯体Ⅰ。
步骤四、在绝对压力值小于0.02MPa的真空条件下,将所述挂浆坯体Ⅰ置于所述浆料Ⅱ中进行第二次浸渍,再于20-40℃条件下养护6~12h,得到挂浆坯体Ⅱ。
步骤五、将所述挂浆坯体Ⅱ置于弱氧化保护气氛中,先升温至1100~1300℃,保温1~3h;再升温至1400~1600℃,保温1~~3h,制得TiAl基合金过滤用Ti-MAX基开口陶瓷。
所述Ti-MAX细粉为Ti3AlC2、Ti2AlC、Ti3AlN2和Ti2AlN中的任意两种物质的混合物,所述Ti-MAX细粉纯度大于98wt%,粒径小于88μm。
所述碳黑细粉纯度大于99.5wt%,粒径小于0.80μm。
所述含碳结合剂的残碳量大于82wt%,苯并芘含量小于500ppm。
所述聚氨酯泡沫基板的孔径特征在10ppi-40ppi之间。
所述弱氧化保护气氛为埋碳气氛、N2-CO混合气氛和氮气气氛中的一种。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
本发明采用含Ti的MAX相作为基体材料,Ti-MAX相材料是一种能兼顾陶瓷和金属优良性能的层状型结构的功能材料;像陶瓷,它具有低密度、低膨胀系数和高的弹性模量;同时也能像金属材料一样具有高的导电导热性能、耐损伤以及高的抗热震性能。更重要的含Ti-MAX相与TiAl合金具有相似的化学组成,使其对TiAl基合金呈化学惰性,能有效避免过滤陶瓷与TiAl合金熔体的相互反应,能有效避免过滤陶瓷成为新夹杂物来源的问题。
此外,MAX相这类材料具有非常独特的高温行为,经过热处理后,利用MAX相中[A]元素在高温下优先迁移到材料表面,在Ti-MAX相表面原位形成一层连续致密保护层,且温度和气氛能够显著影响MAX相表面保护层的物相组成和显微结构。利用Ti-MAX相特殊的高温行为,通过调节温度参数及热处理参数,制得具有原位活性涂层可控的TiAl基合金过滤用Ti-MAX基开口陶瓷,不仅原位涂层与基体结合强度高,且在熔体热冲击条件下抗热冲击性能优异,能为实现高效低成本熔铸TiAl基合金提供技术保障。
相比于传统采用冷喷涂方式制备的涂层,原位涂层与基体之间具有更高的结合强度,在热冲击条件下,能够保持更加优异的抗热震性能和高温强度,能够有效避免热剥落产生新夹杂的不利影响。同时原位形成涂层的化学组成与目标合金的元素组成(Ti/Al)相似,能有效避免基体、原位涂层与TiAl合金相互反应而污染合金的问题。
本发明制备的TiAl基合金过滤用Ti-MAX基开口陶瓷经检测:常温耐压强度为1.9~3.6MPa;1100℃~20℃水冷循环热冲击测试3次,弹性模量保持率为40~58%。
因此,本发明的原位涂层结构可控;所制备的TiAl基合金过滤用Ti-MAX基开口陶瓷不仅原位涂层与基体间结合强度高、在熔体热冲击条件下抗热震性能优异和能够有效避免热剥落产生新夹杂的不利影响,且能有效避免相互反应从而防止污染TiAl基合金;本发明制备的Ti-MAX基开口陶瓷适用于TiAl基合金铸造过程并能高效去除其中的夹杂。
具体实施方式
下面结合具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。
为避免重复,先将本具体实施方式中的原料统一描述如下,实施例中不再赘述:
所述Ti-MAX细粉纯度大于98wt%,粒径小于88μm。
所述碳黑细粉纯度大于99.5wt%,粒径小于0.80μm。
所述含碳结合剂的残碳量大于82wt%,苯并芘含量小于500ppm。
所述聚氨酯泡沫基板的孔径特征在10ppi-40ppi之间。
实施例1
一种TiAl基合金过滤用Ti-MAX基开口陶瓷及其制备方法。本实施例所述制备方法是:
步骤一、以50~58质量份的Ti-MAX细粉、29~36质量份的碳黑细粉和12~15质量份的含碳结合剂为原料,以35~45质量份的去离子水、0.2~2质量份的聚丙二醇、0.2~1.2质量份的聚羧酸减水剂、0.2~1.5质量份的聚甲基纤维素钠和0.2~1.5质量份的木质素磺酸氨为添加剂,将所述原料和所述添加剂置于球磨罐中,混合1~3h,得到浆料Ⅰ。
步骤二、将100质量份的Ti-MAX细粉、35~45质量份的去离子水、0.2~1.2质量份的聚羧酸减水剂和0.2~1.5质量份的聚甲基纤维素钠置于球磨罐中,混合4~6h,得到浆料Ⅱ。
步骤三、将聚氨酯泡沫基板置于所述浆料Ⅰ中浸渍,取出后挤压,再于20~40℃条件下养护6~12h,得到挂浆坯体Ⅰ。
步骤四、在绝对压力值小于0.02MPa的真空条件下,将所述挂浆坯体Ⅰ置于所述浆料Ⅱ中进行第二次浸渍,再于20~40℃条件下养护6~12h,得到挂浆坯体Ⅱ。
步骤五、将所述挂浆坯体Ⅱ置于弱氧化保护气氛中,先升温至1100~1150℃,保温1~3h;再升温至1400~1450℃,保温1~3h,制得TiAl基合金过滤用Ti-MAX基开口陶瓷。
所述Ti-MAX细粉为Ti3AlC2和Ti2AlC两种物质的混合物。
所述弱氧化保护气氛为埋碳气氛;其中:CO的体积含量为35%,O2的体积含量≤1.5%。
本实施例制备的TiAl基合金过滤用Ti-MAX基开口陶瓷的原位涂层以Ti-Al-C-O体系为主体,原位涂层的主要物相组成为TiC、TiO2、刚玉相和TiAl2O5。本实施例制备的TiAl基合金过滤用Ti-MAX基开口陶瓷经检测:常温耐压强度为2.2~3.5MPa;1100℃~20℃水冷循环热冲击测试3次,弹性模量保持率为45~55%。
实施例2
一种TiAl基合金过滤用Ti-MAX基开口陶瓷及其制备方法。本实施例所述制备方法是:
步骤一、以57~66质量份的Ti-MAX细粉、25~30质量份的碳黑细粉和6~13质量份的含碳结合剂为原料,以43~53质量份的去离子水、0.2~2质量份的聚丙二醇、0.2~1.2质量份的聚羧酸减水剂、0.2~1.5质量份的聚甲基纤维素钠和0.2~1.5质量份的木质素磺酸氨为添加剂,将所述原料和所述添加剂置于球磨罐中,混合1~3h,得到浆料Ⅰ。
步骤二、将100质量份的Ti-MAX细粉、43~53质量份的去离子水、0.2~1.2质量份的聚羧酸减水剂和0.2~1.5质量份的聚甲基纤维素钠置于球磨罐中,混合4~6h,得到浆料Ⅱ。
步骤三、将聚氨酯泡沫基板置于所述浆料Ⅰ中浸渍,取出后挤压,再于20~40℃条件下养护6~12h,得到挂浆坯体Ⅰ。
步骤四、在绝对压力值小于0.02MPa的真空条件下,将所述挂浆坯体Ⅰ置于所述浆料Ⅱ中进行第二次浸渍,再于20~40℃条件下养护6~12h,得到挂浆坯体Ⅱ。
步骤五、将所述挂浆坯体Ⅱ置于弱氧化保护气氛中,先升温至1150~1200℃,保温1~3h;再升温至1450~1500℃,保温1~3h,制得TiAl基合金过滤用Ti-MAX基开口陶瓷。
所述Ti-MAX细粉为Ti3AlN2和Ti2AlN两种物质的混合物。
所述弱氧化保护气氛为N2-CO混合气氛;其中:CO的体积含量为10%。
本实施例制备的TiAl基合金过滤用Ti-MAX基开口陶瓷的原位涂层以Ti-Al-C-O-N体系为主体,原位涂层的主要物相组成为TiC、TiO2、刚玉相和TiAl2O5。本实施例制备的TiAl基合金过滤用Ti-MAX基开口陶瓷经检测:常温耐压强度为2.5~4.0MPa;1100℃~20℃水冷循环热冲击测试3次后,弹性模量保持率为48-58%。
实施例3
一种TiAl基合金过滤用Ti-MAX基开口陶瓷及其制备方法。本实施例所述制备方法是:
步骤一、以65~72质量份的Ti-MAX细粉、21~26质量份的碳黑细粉和4~9质量份的含碳结合剂为原料,以52~62质量份的去离子水、0.2~2质量份的聚丙二醇、0.2~1.2质量份的聚羧酸减水剂、0.2~1.5质量份的聚甲基纤维素钠和0.2~1.5质量份的木质素磺酸氨为添加剂,将所述原料和所述添加剂置于球磨罐中,混合1~3h,得到浆料Ⅰ。
步骤二、将100质量份的Ti-MAX细粉、52~62质量份的去离子水、0.2~1.2质量份的聚羧酸减水剂和0.2~1.5质量份的聚甲基纤维素钠置于球磨罐中,混合4~6h,得到浆料Ⅱ。
步骤三、将聚氨酯泡沫基板置于所述浆料Ⅰ中浸渍,取出后挤压,再于20~40℃条件下养护6~12h,得到挂浆坯体Ⅰ。
步骤四、在绝对压力值小于0.02MPa的真空条件下,将所述挂浆坯体Ⅰ置于所述浆料Ⅱ中进行第二次浸渍,再于20~40℃条件下养护6~12h,得到挂浆坯体Ⅱ。
步骤五、将所述挂浆坯体Ⅱ置于弱氧化保护气氛中,先升温至1200~1250℃,保温1~3h;再升温至1500~1550℃,保温1~3h,制得TiAl基合金过滤用Ti-MAX基开口陶瓷。
所述Ti-MAX细粉为Ti3AlC2和Ti2AlN两种物质的混合物。
所述弱氧化保护气氛为氮气气氛;其中:N2的体积含量>99%。
本实施例制备的TiAl基合金过滤用Ti-MAX基开口陶瓷的原位涂层以Ti-Al-N体系为主体,原位涂层的主要物相组成为TiC、AlN和TiN。本实施例制备的TiAl基合金过滤用Ti-MAX基开口陶瓷经检测:常温耐压强度为1.9~3.1MPa;1100℃~20℃水冷循环热冲击测试3次,弹性模量保持率为40~46%。
实施例4
一种TiAl基合金过滤用Ti-MAX基开口陶瓷及其制备方法。本实施例所述制备方法是:
步骤一、以70~75质量份的Ti-MAX细粉、18~24质量份的碳黑细粉和2~7质量份的含碳结合剂为原料,以60~70质量份的去离子水、0.2~2质量份的聚丙二醇、0.2~1.2质量份的聚羧酸减水剂、0.2~1.5质量份的聚甲基纤维素钠和0.2~1.5质量份的木质素磺酸氨为添加剂,将所述原料和所述添加剂置于球磨罐中,混合1~3h,得到浆料Ⅰ。
步骤二、将100质量份的Ti-MAX细粉、60~70质量份的去离子水、0.2~1.2质量份的聚羧酸减水剂和0.2~1.5质量份的聚甲基纤维素钠置于球磨罐中,混合4~6h,得到浆料Ⅱ。
步骤三、将聚氨酯泡沫基板置于所述浆料Ⅰ中浸渍,取出后挤压,再于20~40℃条件下养护6~12h,得到挂浆坯体Ⅰ。
步骤四、在绝对压力值小于0.02MPa的真空条件下,将所述挂浆坯体Ⅰ置于所述浆料Ⅱ中进行第二次浸渍,再于20~40℃条件下养护6~12h,得到挂浆坯体Ⅱ。
步骤五、将所述挂浆坯体Ⅱ置于弱氧化保护气氛中,先升温至1250~1300℃,保温1~3h;再升温至1550~1600℃,保温1~3h,制得TiAl基合金过滤用Ti-MAX基开口陶瓷。
所述Ti-MAX细粉为Ti2AlC和Ti3AlN2两种物质的混合物。
所述弱氧化保护气氛为N2-CO混合气氛;其中:CO的体积含量为10%。
本实施例制备的TiAl基合金过滤用Ti-MAX基开口陶瓷的原位涂层以Ti-Al-C-O-N体系为主体,原位涂层的主要物相组成为TiC、刚玉相、TiAl2O5和AlN。本实施例制备的TiAl基合金过滤用Ti-MAX基开口陶瓷经检测:常温耐压强度为2.4~3.6MPa;1100℃~20℃水冷循环热冲击测试3次后,弹性模量保持率为46~55%。
本具体实施方式与现有技术相比具有如下积极效果:
本具体实施方式采用含Ti的MAX相作为基体材料,Ti-MAX相材料是一种能兼顾陶瓷和金属优良性能的层状型结构的功能材料;像陶瓷,它具有低密度、低膨胀系数和高的弹性模量;同时也能像金属材料一样具有高的导电导热性能、耐损伤以及高的抗热震性能。更重要的含Ti-MAX相与TiAl合金具有相似的化学组成,使其对TiAl基合金呈化学惰性,能有效避免过滤陶瓷与TiAl合金熔体的相互反应,能有效避免过滤陶瓷成为新夹杂物来源的问题。
此外,MAX相这类材料具有非常独特的高温行为,经过热处理后,利用MAX相中[A]元素在高温下优先迁移到材料表面,在Ti-MAX相表面原位形成一层连续致密保护层,且温度和气氛能够显著影响MAX相表面保护层的物相组成和显微结构。利用Ti-MAX相特殊的高温行为,通过调节温度参数及热处理参数,制得具有TiAl基合金过滤用Ti-MAX基开口陶瓷不仅原位涂层与基体结合强度高,且在熔体热冲击条件下抗热冲击性能优异,能为实现高效低成本熔铸TiAl基合金提供技术保障。
相比于传统采用冷喷涂方式制备的涂层,原位涂层与基体之间具有更高的结合强度,在热冲击条件下,能够保持更加优异的抗热震性能和高温强度,能够有效避免热剥落产生新夹杂的不利影响。同时原位形成涂层的化学组成与目标合金的元素组成(Ti/Al)相似,能有效避免基体、原位涂层与TiAl合金相互反应而污染合金的问题。
本具体实施方式性制备的TiAl基合金过滤用Ti-MAX基开口陶瓷经检测:常温耐压强度为1.9~3.6MPa;1100℃~20℃水冷循环热冲击测试3次,弹性模量保持率为40~58%。
因此,本具体实施方式的原位涂层结构可控;所制备的TiAl基合金过滤用Ti-MAX基开口陶瓷不仅原位涂层与基体间结合强度高、在熔体热冲击条件下抗热震性能优异和能够有效避免热剥落产生新夹杂的不利影响,且能有效避免相互反应从而防止污染TiAl基合金。本具体实施方式制备的Ti-MAX基开口陶瓷适用于TiAl基合金铸造过程并能高效去除其中的夹杂。

Claims (7)

1.一种TiAl基合金过滤用Ti-MAX基开口陶瓷的制备方法,其特征在于:
步骤一、以50~75质量份的Ti-MAX细粉、18~36质量份的碳黑细粉和2~15质量份的含碳结合剂为原料,以35~70质量份的去离子水、0.2~2质量份的聚丙二醇、0.2~1.2质量份的聚羧酸减水剂、0.2~1.5质量份的聚甲基纤维素钠和0.2~1.5质量份的木质素磺酸氨为添加剂,将所述原料和所述添加剂置于球磨罐中,混合1~3h,得到浆料Ⅰ;
步骤二、将100质量份的Ti-MAX细粉、35~70质量份的去离子水、0.2~1.2质量份的聚羧酸减水剂和0.2~1.5质量份的聚甲基纤维素钠置于球磨罐中,混合4~6h,得到浆料Ⅱ;
步骤三、将聚氨酯泡沫基板置于所述浆料Ⅰ中浸渍,取出后挤压,再于20~40℃条件下养护6~12h,得到挂浆坯体Ⅰ;
步骤四、在绝对压力值小于0.02MPa的真空条件下,将所述挂浆坯体Ⅰ置于所述浆料Ⅱ中进行第二次浸渍,再于20-40℃条件下养护6~12h,得到挂浆坯体Ⅱ;
步骤五、将所述挂浆坯体Ⅱ置于弱氧化保护气氛中,先升温至1100~1300℃,保温1~3h;再升温至1400~1600℃,保温1~3h,制得TiAl基合金过滤用Ti-MAX基开口陶瓷。
2.根据权利要求1所述的TiAl基合金过滤用Ti-MAX基开口陶瓷的制备方法,其特征在于所述Ti-MAX细粉为Ti3AlC2、Ti2AlC、Ti3AlN2和Ti2AlN中的任意两种物质的混合物,所述Ti-MAX细粉纯度大于98wt%,粒径小于88μm。
3.根据权利要求1所述的TiAl基合金过滤用Ti-MAX基开口陶瓷的制备方法,其特征在于所述碳黑细粉纯度大于99.5wt%,粒径小于0.80μm。
4.根据权利要求1所述的TiAl基合金过滤用Ti-MAX基开口陶瓷的制备方法,其特征在于所述含碳结合剂的残碳量大于82wt%,苯并芘含量小于500ppm。
5.根据权利要求1所述的TiAl基合金过滤用Ti-MAX基开口陶瓷的制备方法,其特征在于所述聚氨酯泡沫基板的孔径特征在10ppi-40ppi之间。
6.根据权利要求1所述的TiAl基合金过滤用Ti-MAX基开口陶瓷的制备方法,其特征在于所述弱氧化保护气氛为埋碳气氛、N2-CO混合气氛和氮气气氛中的一种。
7.一种TiAl基合金过滤用Ti-MAX基开口陶瓷,其特征在于所述TiAl基合金过滤用Ti-MAX基开口陶瓷是根据权利要求1~6项中任一项所述TiAl基合金过滤用Ti-MAX基开口陶瓷的制备方法所制备的TiAl基合金过滤用Ti-MAX基开口陶瓷。
CN201811229228.2A 2018-10-22 2018-10-22 一种TiAl基合金过滤用Ti-MAX基开口陶瓷及其制备方法 Withdrawn CN109354499A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811229228.2A CN109354499A (zh) 2018-10-22 2018-10-22 一种TiAl基合金过滤用Ti-MAX基开口陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811229228.2A CN109354499A (zh) 2018-10-22 2018-10-22 一种TiAl基合金过滤用Ti-MAX基开口陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN109354499A true CN109354499A (zh) 2019-02-19

Family

ID=65346206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811229228.2A Withdrawn CN109354499A (zh) 2018-10-22 2018-10-22 一种TiAl基合金过滤用Ti-MAX基开口陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN109354499A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023096777A1 (en) * 2021-11-29 2023-06-01 Corning Incorporated Water miscible batch components for ceramic extrudates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978967A (ja) * 1982-10-22 1984-05-08 井上エムテ−ピ−株式会社 平均的セルサイズが部分的に異なるセラミツクフオ−ムと、その製造方法
CN101745432A (zh) * 2008-12-03 2010-06-23 中国科学院金属研究所 一种湿化学制备max相多孔催化剂载体材料的方法
CN102372499A (zh) * 2010-08-20 2012-03-14 湖北工业大学 有机泡沫浸渍工艺制备多孔Ti2AlN陶瓷的方法
CN104402517A (zh) * 2014-10-27 2015-03-11 武汉科技大学 一种Al2O3-SiC泡沫陶瓷及其制备方法
CN107857577A (zh) * 2017-11-10 2018-03-30 南京航空航天大学 一种Al2O3‑ZrO2基泡沫陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978967A (ja) * 1982-10-22 1984-05-08 井上エムテ−ピ−株式会社 平均的セルサイズが部分的に異なるセラミツクフオ−ムと、その製造方法
CN101745432A (zh) * 2008-12-03 2010-06-23 中国科学院金属研究所 一种湿化学制备max相多孔催化剂载体材料的方法
CN102372499A (zh) * 2010-08-20 2012-03-14 湖北工业大学 有机泡沫浸渍工艺制备多孔Ti2AlN陶瓷的方法
CN104402517A (zh) * 2014-10-27 2015-03-11 武汉科技大学 一种Al2O3-SiC泡沫陶瓷及其制备方法
CN107857577A (zh) * 2017-11-10 2018-03-30 南京航空航天大学 一种Al2O3‑ZrO2基泡沫陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C.R.BOWEN ET AL.: "Macro-porous Ti2AlC MAX-phase ceramics by the foam replication method", 《CERAMICS INTERNATIONAL》 *
王刚: "聚氨酯海绵表面改性对Ti2AlN多孔陶瓷挂浆量的影响", 《现代技术陶瓷》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023096777A1 (en) * 2021-11-29 2023-06-01 Corning Incorporated Water miscible batch components for ceramic extrudates

Similar Documents

Publication Publication Date Title
CN105541334B (zh) 多层孔筋结构的碳化硅基复合泡沫陶瓷及其制备方法
CN105254323B (zh) 一种微孔刚玉‑莫来石陶瓷分离膜支撑体及其制备方法
CN105884394B (zh) 一种低温制备多孔碳化硅支撑体的方法
CN101323538B (zh) 高温泡沫陶瓷的制备方法
CN107857577A (zh) 一种Al2O3‑ZrO2基泡沫陶瓷及其制备方法
CN108585905A (zh) 一种高强度碳化硅陶瓷及其制备方法
CN113461418B (zh) 一种钢包无碳罐衬用抗渣侵蚀涂料及其制备方法
CN104073673B (zh) 一种陶瓷增强金属基复合材料的制备方法
CN108569895A (zh) 一种新能源电动汽车用氧化铝陶瓷的制备方法
CN105130403A (zh) 一种自结合氧化钙材料及其制备方法
CN109354499A (zh) 一种TiAl基合金过滤用Ti-MAX基开口陶瓷及其制备方法
CN111484347A (zh) 一种高强Al2O3-SiC-C耐火浇注料及其制备方法
CN106631121A (zh) 一种氧化钙泡沫陶瓷及其制备方法
CN112679226B (zh) 一种氧化铝-碳化硅-碳多孔陶瓷过滤器及其制备方法
CN101805201B (zh) 一种高抗热震性多孔碳化硅陶瓷的制备方法
CN105481407A (zh) 一种氧化钙材料及其制备方法
CN108164274A (zh) 一种钙锆耐火材料及其制备方法
CN102989235B (zh) 用于过滤熔融金属的过滤器及其制造方法
CN112079639A (zh) 一种采用聚合物前驱体制备多孔碳化锆陶瓷的方法
CN104086195A (zh) 含碳纤维的氧化铝-碳化硅-碳砖及其制备方法
CN107282857B (zh) MgO-SrZrO3复合型壳、应用及其制备方法
CN108002854B (zh) 一种高导热高抗蚀电煅煤基炭砖及其制备方法
CN107840677A (zh) 一种氧化铝基泡沫陶瓷及其制备方法
CN105060901B (zh) 一种轻量刚玉耐火骨料及其制备方法
CN106587956B (zh) 一种纳米晶内孔轻量刚玉复相耐火骨料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190219

WW01 Invention patent application withdrawn after publication