CN109326768A - 一种钠离子电池负极及制备方法与钠离子电池 - Google Patents

一种钠离子电池负极及制备方法与钠离子电池 Download PDF

Info

Publication number
CN109326768A
CN109326768A CN201811169404.8A CN201811169404A CN109326768A CN 109326768 A CN109326768 A CN 109326768A CN 201811169404 A CN201811169404 A CN 201811169404A CN 109326768 A CN109326768 A CN 109326768A
Authority
CN
China
Prior art keywords
sodium
sno
ion battery
batio
battery cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811169404.8A
Other languages
English (en)
Other versions
CN109326768B (zh
Inventor
张培新
王营涛
米宏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201811169404.8A priority Critical patent/CN109326768B/zh
Publication of CN109326768A publication Critical patent/CN109326768A/zh
Application granted granted Critical
Publication of CN109326768B publication Critical patent/CN109326768B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开一种钠离子电池负极及其制备方法与钠离子电池,其中,方法包括步骤:采用化学气相沉积法,在碳纸上生长SnO2纳米线;采用水热法,在SnO2纳米线的表面包覆BaTiO3,得到BaTiO3@SnO2材料;采用原位聚合的方式,在BaTiO3@SnO2表面包覆聚合物前驱体,继而碳化得到生长在碳纸上的C@BaTiO3@SnO2,裁成极片作为钠离子电池负极;或者在BaTiO3@SnO2表面包覆葡萄糖,继而碳化得到生长在碳纸上的C@BaTiO3@SnO2,裁成极片作为钠离子电池负极。本发明所述钠离子电池负极具有优秀的电化学性能,比容量高、倍率性能好、长期循环稳定。

Description

一种钠离子电池负极及制备方法与钠离子电池
技术领域
本发明涉及电池领域,尤其涉及一种钠离子电池负极及制备方法与钠离子电池。
背景技术
随着化石能源的过度消耗造成的环境问题日益突出,具有清洁可再生属性的化学电池正在逐渐成为一种主流的能源供应模式。锂离子电池由于其出色的性能,包括高质量比容量、高能量密度、高功率密度、循环寿命强、储能效率高等优势,地广泛应 车等。但是由于其资源有限、全球分布不均匀、开采难度大等问题,使得锂离子电池不能满足未来大规模储能对于化学电源的要求,日益攀升的价格会最终导致锂离子电池难以为继。
钠离子电池在上世纪80年代先于锂离子电池被系统地研究,但是由于锂离子电池更出色的电化学性能,使得钠离子电池暂时失去了理论研究和工业化应用的价值。钠离子电池拥有和锂离子电池相似的工作机理,都是通过锂离子/钠离子在正负极之间的迁入/脱出获得电流。相比于锂资源短缺的问题,钠资源较为丰富地多,海水中几乎有取之不尽的钠资源。在锂离子电池价格逐渐攀升的背景下,钠离子电池由于其资源优势,有望取代锂离子电池成为下一代广泛应用的储能模式,尤其适用于大规模储能装置中。但是相比于锂离子,钠离子的离子半径较之大55%,这就导致了钠离子电池在电化学性能上表现较差的问题。更严重地,传统的商业化的锂离子电池的负极材料石墨无法有效地脱嵌钠离子。钠离子电池领域有必要开发出一种全新的负极材料,该材料需要拥有比容量高、能量密度大、功率密度大、价格低廉等优势,进而满足未来大规模储能、电动汽车、便携式电子设备对于高品质化学电源的庞大需求。
近年来,由于高比容量、低廉的成本,储钠电位较低等优势,合金类材料(如红磷、锡、锗、铋等)成为一类很有前景的负极材料,有望助力实现钠离子电池的商业化应用。合金类材料的金属氧化物,如SnO2,可以先和钠离子反应还原为Sn金属,然后Sn金属继续与钠离子进行合金化反应,最终生成Na15Sn4,获得667 mAh·g-1的理论容量。但是,SnO2存在如下缺陷:导电性差、钠离子传输动力学慢、由于第一步还原反应的不可逆性导致的本质固有的较低的首次库伦效率,以及第二步合金化反应造成的巨大的体积膨胀。目前改善上述缺陷的方案主要集中于采用价格低廉的碳材料包覆来提升材料整体的导电性、以及缓解SnO2的体积膨胀;或者更有效地,采用硫化的方式将SnO2硫化形成SnS2或SnS,从而提升材料的导电性。就钠离子传输动力学较慢的问题,传统的解决方法多采用进行结构优化设计的方式提升钠离子传输动力学,如采用纳米线或者制备多孔材料来提供钠离子扩散通道、缩短钠离子传输路径。虽然这样的方案获得了不错的效果,但很少有研究可以一次性解决多个缺陷,比如既提升材料的导电性,又抑制了材料的体积膨胀,同时还大幅度提升钠离子扩散动力学。而且,目前很少有研究通过加入功能性材料的方式来改善SnO2负极材料的钠离子扩散动力学较慢的问题。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种钠离子电池负极及制备方法与钠离子电池,旨在解决现有SnO2负极材料钠离子扩散系数较低,导电性较差,且Sn金属与钠离子合金化反应过程中产生巨大体积膨胀的问题。
本发明的技术方案如下:
一种钠离子电池负极的制备方法,其中,包括:
步骤(1)、采用化学气相沉积法,在碳纸上生长SnO2纳米线;
步骤(2)、采用水热法,在SnO2纳米线的表面包覆BaTiO3,得到BaTiO3@SnO2材料;
步骤(3)、采用原位聚合的方式,在BaTiO3@SnO2表面包覆聚合物前驱体,继而碳化得到生长在碳纸上的C@BaTiO3@SnO2,裁成极片作为钠离子电池负极;或者在BaTiO3@SnO2表面包覆葡萄糖,继而碳化得到生长在碳纸上的C@BaTiO3@SnO2,裁成极片作为钠离子电池负极。
所述的钠离子电池负极的制备方法,其中,所述步骤(3)之后还包括:步骤(4)、将极片在电场中进行极化处理,使得BaTiO3获得统一的极化方向。
所述的钠离子电池负极的制备方法,其中,所述步骤(1)包括:将一块2×3 cm的碳纸,采用乙醇超声、清洗、烘干以后,采用离子溅射仪在正反两面溅射金纳米颗粒作为SnO2纳米线生长的催化剂,厚度为3 nm;采用200目Sn金属粉末作为前驱体,质量为0.1~0.2 g,将碳纸和Sn金属粉末放入瓷舟,碳纸位于Sn金属粉末的下游1 cm处;通入气体,气体流速设定为50~200 sccm,气体组成:体积百分比计,0.5% ~ 5%氧气 + 99.5%~95%氩气,炉管内的压力为100 Pa;升温程序设定为:以20℃/min升到750~950℃,保温1~3 h,得到SnO2纳米线。
所述的钠离子电池负极的制备方法,其中,所述步骤(2)包括:将8 g NaOH溶解到100 ml去离子水中,配制2 mol/L的NaOH溶液,加入0.6 g草酸,加热搅拌0.5 h;将0.002~0.01 mol钛酸四丁酯逐滴加入到NaOH溶液中,再加入已经配制好的0.003~0.015 molBaCl2·2 H2O/20 ml水溶液转移到NaOH溶液中,加入生长有SnO2纳米线的碳纸,加热搅拌1h;将溶液转移到200 ml水热釜中,140~200℃保温12~20 h。
所述的钠离子电池负极的制备方法,其中,所述步骤(3)包括:将0.2~1 g聚合物单体分散在50 ml去离子水中,加入2 g 50wt%植酸水溶液,搅拌0.5 h使聚合物单体分散均匀;将0.32~1.6 g过硫酸铵和BaTiO3@SnO2材料加入聚合物单体分散液中,在5℃条件下逐渐聚合5 h得到聚合物包覆层;将聚合物包覆后的碳纸进行碳化处理,以5℃/min升温速度升到500℃保温3 h,即得到C@BaTiO3@SnO2,裁成极片作为钠离子电池负极;其中所述聚合物单体为苯胺、多巴胺或者吡咯,所述聚合物为聚苯胺、聚多巴胺或者聚吡咯;
或者,所述步骤(3)包括:将6~12 g葡萄糖溶解到120 g去离子水中,制备0.25~0.5mol/L的葡萄糖溶液,然后将BaTiO3@SnO2材料浸入葡萄糖溶液中70℃搅拌2 h,接着转移到水热反应釜中180℃处理3 h,即得到C@BaTiO3@SnO2,裁成极片作为钠离子电池负极。
所述的钠离子电池负极的制备方法,其中,所述步骤(4)包括:将极片放置在8~12kv电场中极化5~24 h,使得BaTiO3获得统一的极化方向。
一种钠离子电池负极,其中,采用本发明所述的钠离子电池负极的制备方法制备而成。
一种钠离子电池,其中,包括本发明所述的钠离子电池负极。
有益效果:本发明以价格低廉的锡金属作为前驱体,所制备的BaTiO3是一种广泛使用的压电材料,工业生产过程成熟。碳包覆所采用的苯胺、多巴胺、吡咯或葡萄糖是基本廉价的工业原料。所有的原料价格低廉易得。整体制备过程绿色可靠,不涉及有毒有害品的引入或排放。所制备的钠离子电池负极材料电化学性能表现出色,循环稳定性极好,倍率充放电性能优良。
附图说明
图1为本发明实施例1中的钠离子电池负极材料的SEM图;
图2为本发明实施例1中的钠离子电池负极材料的XRD图;
图3为本发明实施例和比较例中的钠离子电池负极材料的循环性能图。
具体实施方式
本发明提供一种钠离子电池负极及其制备方法与钠离子电池,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种钠离子电池负极的制备方法,其中,包括:
步骤(1)、采用化学气相沉积法,在碳纸上生长SnO2纳米线;
步骤(2)、采用水热法,在SnO2纳米线的表面包覆BaTiO3,得到BaTiO3@SnO2材料;
步骤(3)、采用原位聚合的方式,在BaTiO3@SnO2表面包覆聚合物前驱体,继而碳化得到生长在碳纸上的C@BaTiO3@SnO2,裁成极片作为钠离子电池负极;或者在BaTiO3@SnO2表面包覆葡萄糖,继而碳化得到生长在碳纸上的C@BaTiO3@SnO2,裁成极片作为钠离子电池负极。
本发明基于SnO2负极材料钠离子扩散动力学缓慢的缺陷背景,利用Sn金属与钠离子合金化反应过程中产生巨大体积膨胀的事实,借助BaTiO3压电材料受到压力产生压电电压的特性,将体积膨胀的缺陷转化为优势,通过体积膨胀和压电效应之间的协同作用,共同促进钠离子的转运,提升SnO2负极材料中钠离子的传输动力学。
与现有技术相比,本发明以价格低廉的锡金属作为前驱体,所制备的BaTiO3是一种广泛使用的压电材料,工业生产过程成熟。碳包覆所采用的苯胺、多巴胺、吡咯或葡萄糖是基本廉价的工业原料。所有的原料价格低廉易得。整体制备过程绿色可靠,不涉及有毒有害品的引入或排放。所制备的钠离子电池负极材料电化学性能表现出色,循环稳定性极好,倍率充放电性能优良。
进一步地,所述步骤(1)具体包括:将一块2×3 cm的碳纸,采用乙醇超声、清洗、烘干以后,采用离子溅射仪在正反两面溅射金纳米颗粒作为SnO2纳米线生长的催化剂,厚度约为3 nm;采用200目Sn金属粉末作为前驱体,质量为0.1~0.2 g,将碳纸和Sn金属粉末放入瓷舟,碳纸位于Sn金属粉末的下游约1 cm处;通入气体,流速设定为50~200 sccm,气体组成:体积百分比计,0.5% ~ 5%氧气+ 99.5%~95%氩气,炉管内的压力约为100 Pa;升温程序设定为:以20 ℃/min升到750~950℃,保温1~3 h,得到SnO2纳米线,直径为40nm左右。
进一步地,所述步骤(2)具体包括:将8 g NaOH溶解到100 ml去离子水中,配制2mol/L的NaOH溶液,加入0.6 g草酸,加热搅拌0.5 h;将0.002~0.01 mol钛酸四丁酯逐滴加入到NaOH溶液中,再加入已经配制好的0.003~0.015 mol BaCl2 ·2 H2O/20 ml水溶液转移到NaOH溶液中,加入生长有SnO2纳米线的碳纸,加热搅拌1 h;将溶液转移到200 ml水热釜中,140~200℃保温12~20 h。
进一步地,所述步骤(3)单体聚合得到有机聚合物继而碳化的方案具体包括:将0.2~1 g苯胺(或者多巴胺、吡咯等)分散在50 ml去离子水中,加入2 g 50wt%植酸水溶液,搅拌0.5 h使苯胺(或者多巴胺、吡咯等)分散均匀;将0.32~1.6 g过硫酸铵和BaTiO3@SnO2碳纸加入苯胺(或者多巴胺、吡咯等)分散液中,在5℃条件下逐渐聚合5 h得到聚苯胺(或者聚多巴胺、聚吡咯等)包覆层;将聚苯胺(或者聚多巴胺、聚吡咯等)包覆后的碳纸进行高温碳化处理,以5℃/min升温速度升到500℃保温3 h,即可得到C@BaTiO3@SnO2
进一步地,所述步骤(3)葡萄糖包覆继而碳化的方案包括:将6~12 g葡萄糖溶解到120 g去离子水中,制备0.25~0.5 mol/L的葡萄糖溶液,然后将BaTiO3@SnO2材料浸入葡萄糖溶液中70℃搅拌2 h,接着转移到水热反应釜中180℃处理3 h,即可得到C@BaTiO3@SnO2
进一步地,本发明所述之步骤(3)之后还包括:步骤(4)、将极片放置在高压电场中进行极化处理,使得BaTiO3获得统一的极化方向,提升材料的电化学性能。
更进一步地,所述步骤(4)具体包括:将极片放置在8~12 kv高压电场中极化5~24h,选择两个方向:正向极化、逆向极化,实现BaTiO3不同程度、不同方向的极化。
本发明采用高压电场对钛酸钡进行极化处理之后,钛酸钡的极化方向基本一致,可以使得钛酸钡的压电效应得到最大程度的发挥,钛酸钡产生的局部压电电场可以有效地促进钠离子向负极深处移动,提升钠离子扩散系数,可以有效实现大电流充放电应用。
由于理论容量高、成本低廉,储钠电位较低等优势,SnO2作为锂离子或钠离子负极材料在实验室被广泛地研究。纳米线结构被普遍认为可以有效提升材料的导电子和导离子速率,从而使得电池充放电过程中发生的电化学反应更加活泼容易。BaTiO3与SnO2纳米线构成的核壳结构中,内部SnO2的体积膨胀会压迫BaTiO3,从而产生压电效应。在合适的压电电场方向的作用下,外部的钠离子受到电场的作用,积极地向SnO2区域迁移,从而有效提升钠离子迁移速率。SnO2导电性差,BaTiO3本身是电绝缘材料,这样的结构需要继续进行碳包覆来提升材料的导电性,而且不同材料的电化学性能对比表明,碳包覆步骤是不可或缺的。高压电场对钛酸钡进行极化处理之后,钛酸钡的极化方向基本一致,可以使得钛酸钡的压电效应得到最大程度的发挥,钛酸钡产生的局部压电电场可以有效地促进钠离子向负极深处移动,提升钠离子扩散系数,可以有效实现大电流充放电应用。
本发明还提供一种钠离子电池负极,其中,采用本发明所述的钠离子电池负极的制备方法制备而成。本发明所获得的钠离子电池负极拥有较高的质量比容量、优秀的倍率性能、稳定的循环性能和满足大电流充放电的要求。
本发明提供一种钠离子电池,其中,包括本发明所述的钠离子电池负极。
下面通过实施例对本发明进行详细说明。
实施例1
1. 本实施例钠离子电池负极的制备方法,包括以下步骤:
采用CVD(化学气相沉积)方法制备SnO2纳米线:取1块2×3 cm的碳纸,乙醇超声、清洗、烘干后,在正反两面溅射金纳米颗粒作为SnO2纳米线生长的催化剂,厚度约为3 nm;将处理过的碳纸和0.1 g Sn金属粉末放入瓷舟,碳纸位于Sn金属粉末的下游约1 cm处,通入50sccm的气体,气体组成是:体积百分比计,99.5%的氩气+0.5%的氧气,真空泵抽气保持炉管内气压为100 Pa,以20 ℃/min的升温速率升到750℃保温2 h,自然冷却至室温即可得到SnO2纳米线。
采用水热法制备BaTiO3@SnO2材料:将8 g NaOH溶解到100 ml去离子水中,配制2mol/L的NaOH溶液,加入0.6 g草酸,加热搅拌0.5 h;将0.005 mol钛酸四丁酯逐滴加入到NaOH溶液中,再加入已经配制好的0.0075 mol BaCl2·2 H2O/20 ml水溶液转移到NaOH溶液中,加入碳纸,加热搅拌1 h;将溶液转移到200 ml水热釜中,180℃保温20 h。
碳包覆制备C@BaTiO3@SnO2材料:将0.5 g苯胺分散在50 ml去离子水中,加入2 g50%植酸水溶液,搅拌0.5 h使苯胺分散均匀;将0.8 g过硫酸铵和BaTiO3@SnO2材料加入苯胺分散液中,在5℃条件下逐渐聚合5 h得到聚苯胺包覆层;将聚苯胺包覆后的碳纸进行高温碳化处理,以5℃/min升温速度升到500℃保温3 h,即可得到C@BaTiO3@SnO2负极材料。其中所述C@BaTiO3@SnO2负极材料的SEM图见图1,所述C@BaTiO3@SnO2负极材料的XRD图见图2。
2. 电化学性能测试:
将按照上述方法制好的钠离子电池负极材料制成工作电极,钠片作为对电极,电解液选取1M NaClO4 溶解在EC/DEC(碳酸乙烯酯/碳酸二乙酯,体积比为1:1)溶剂中,另外添加体积含量为5% FEC(氟代碳酸乙烯酯),以玻璃纤维为隔膜,在充满氩气的手套箱中组装CR2032扣式电池。
对上述电池进行电化学性能测试,在0.2 A·g-1电流密度下进行充放电测试,参见图3。测试结果表明,本实施例制得的钠离子电池负极表现出极高的质量比容量和循环稳定性。如初始放电容量为1834 mAh·g-1,可逆容量为587 mAh·g-1。经过100圈的循环,容量稳定在525 mAh·g-1,容量保持率达90%。
实施例2
SnO2纳米线以及最后的碳包覆步骤同实施例1,只是在BaTiO3包覆的时候,采用的钛酸四丁酯的量为0.008 mol,BaCl2·2 H2O的量为0.012 mol。
电化学性能测试与实施例1相同。在0.2 A·g-1电流密度下进行充放电测试,参见图3。测试结果表明,本实施例制得的钠离子电池负极表现出极高的质量比容量和循环稳定性。如初始放电容量为1412 mAh·g-1,可逆容量为335 mAh·g-1。经过100圈的循环,容量稳定在532 mAh·g-1,存在上升的趋势。
实施例3
SnO2纳米线以及BaTiO3的包覆步骤同实施例1,只是在碳包覆的时候,采用的苯胺的质量为1 g,过硫酸铵的质量为1.6 g。
电化学性能测试与实施例1相同。在0.2 A·g-1电流密度下进行充放电测试,参见图3。测试结果表明,本实施例制得的钠离子电池负极表现出极高的质量比容量和循环稳定性。如初始放电容量为1045 mAh·g-1,可逆容量为236 mAh·g-1。经过100圈的循环,容量稳定在340 mAh·g-1,存在上升趋势。
实施例4
SnO2纳米线以及BaTiO3的包覆步骤同实施例1,只是在碳包覆的时候,选择葡萄糖作为碳前驱体。具体方案如下:将6 g葡萄糖溶解到120 g水中,制备0.25 mol/L的葡萄糖溶液,然后将碳纸浸入葡萄糖溶液中70℃搅拌2 h;接着再转移到水热反应釜中180℃处理3 h;最后实现碳化,碳化条件设置为5℃/min升到500℃保温3 h。
电化学性能测试与实施例1相同。在0.2 A·g-1电流密度下进行充放电测试,参见图3。测试结果表明,本实施例制得的钠离子电池负极表现出极高的质量比容量和循环稳定性。如初始放电容量为1502 mAh·g-1,可逆容量为388 mAh·g-1。经过100圈的循环,容量上升到836 mAh·g-1,而且还存在大幅上升趋势。
比较例1
SnO2纳米线以及BaTiO3的包覆步骤同实施例1,只是不再进行后续的碳包覆过程,制备的材料是BaTiO3@SnO2材料。
电化学性能测试与实施例1相同。在0.2 A·g-1电流密度下进行充放电测试,参见图3。测试结果表明,本比较例制得的钠离子电池负极表现出较差的容量。如初始放电容量为142 mAh·g-1,可逆容量为18 mAh·g-1。经过100圈的循环,容量衰减到5 mAh·g-1
比较例2
SnO2纳米线以及碳包覆过程同实施例1,只是不再进行BaTiO3的包覆过程,制备的材料是C@SnO2材料。
电化学性能测试与实施例1相同。在0.2 A·g-1电流密度下进行充放电测试,参见图3。测试结果表明,本实施例制得的钠离子电池负极表现出极高的质量比容量和循环稳定性。如初始放电容量为578 mAh·g-1,可逆容量为87 mAh·g-1。经过100圈的循环,容量稳定在48 mAh·g-1
综上所述,本发明实施例中,制备的C@BaTiO3@SnO2材料用于钠离子电池负极材料,可以使钠离子电池获得更好的比容量和循环稳定性。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (8)

1.一种钠离子电池负极的制备方法,其特征在于,包括:
步骤(1)、采用化学气相沉积法,在碳纸上生长SnO2纳米线;
步骤(2)、采用水热法,在SnO2纳米线的表面包覆BaTiO3,得到BaTiO3@SnO2材料;
步骤(3)、采用原位聚合的方式,在BaTiO3@SnO2表面包覆聚合物前驱体,继而碳化得到生长在碳纸上的C@BaTiO3@SnO2,裁成极片作为钠离子电池负极;或者在BaTiO3@SnO2表面包覆葡萄糖,继而碳化得到生长在碳纸上的C@BaTiO3@SnO2,裁成极片作为钠离子电池负极。
2.根据权利要求1所述的钠离子电池负极的制备方法,其特征在于,所述步骤(3)之后还包括:步骤(4)、将极片在电场中进行极化处理,使得BaTiO3获得统一的极化方向。
3.根据权利要求1所述的钠离子电池负极的制备方法,其特征在于,所述步骤(1)包括:将一块2×3 cm的碳纸,采用乙醇超声、清洗、烘干以后,采用离子溅射仪在正反两面溅射金纳米颗粒作为SnO2纳米线生长的催化剂,厚度为3 nm;采用200目Sn金属粉末作为前驱体,质量为0.1~0.2 g,将碳纸和Sn金属粉末放入瓷舟,碳纸位于Sn金属粉末的下游1 cm处;通入气体,气体流速设定为50~200 sccm,气体组成:体积百分比计,0.5% ~ 5%氧气 + 99.5%~95%氩气,炉管内的压力为100 Pa;升温程序设定为:以20℃/min升到750~950℃,保温1~3h,得到SnO2纳米线。
4.根据权利要求1所述的钠离子电池负极的制备方法,其特征在于,所述步骤(2)包括:将8 g NaOH溶解到100 ml去离子水中,配制2 mol/L的NaOH溶液,加入0.6 g草酸,加热搅拌0.5 h;将0.002~0.01 mol钛酸四丁酯逐滴加入到NaOH溶液中,再加入已经配制好的0.003~0.015 mol BaCl2·2 H2O/20 ml水溶液转移到NaOH溶液中,加入生长有SnO2纳米线的碳纸,加热搅拌1 h;将溶液转移到200 ml水热釜中,140~200℃保温12~20 h。
5.根据权利要求1所述的钠离子电池负极的制备方法,其特征在于,所述步骤(3)包括:将0.2~1 g聚合物单体分散在50 ml去离子水中,加入2 g 50wt%植酸水溶液,搅拌0.5 h使聚合物单体分散均匀;将0.32~1.6 g过硫酸铵和BaTiO3@SnO2材料加入聚合物单体分散液中,在5℃条件下逐渐聚合5 h得到聚合物包覆层;将聚合物包覆后的碳纸进行碳化处理,以5℃/min升温速度升到500℃保温3 h,即得到C@BaTiO3@SnO2,裁成极片作为钠离子电池负极;其中所述聚合物单体为苯胺、多巴胺或者吡咯,所述聚合物为聚苯胺、聚多巴胺或者聚吡咯;
或者,所述步骤(3)包括:将6~12 g葡萄糖溶解到120 g去离子水中,制备0.25~0.5mol/L的葡萄糖溶液,然后将BaTiO3@SnO2材料浸入葡萄糖溶液中70℃搅拌2 h,接着转移到水热反应釜中180℃处理3 h,即得到C@BaTiO3@SnO2,裁成极片作为钠离子电池负极。
6.根据权利要求1所述的钠离子电池负极的制备方法,其特征在于,所述步骤(4)包括:将极片放置在8~12 kv电场中极化5~24 h,使得BaTiO3获得统一的极化方向。
7.一种钠离子电池负极,其特征在于,采用权利要求1-6任一项所述的钠离子电池负极的制备方法制备而成。
8.一种钠离子电池,其特征在于,包括权利要求7所述的钠离子电池负极。
CN201811169404.8A 2018-10-08 2018-10-08 一种钠离子电池负极及制备方法与钠离子电池 Active CN109326768B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811169404.8A CN109326768B (zh) 2018-10-08 2018-10-08 一种钠离子电池负极及制备方法与钠离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811169404.8A CN109326768B (zh) 2018-10-08 2018-10-08 一种钠离子电池负极及制备方法与钠离子电池

Publications (2)

Publication Number Publication Date
CN109326768A true CN109326768A (zh) 2019-02-12
CN109326768B CN109326768B (zh) 2021-04-13

Family

ID=65261641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811169404.8A Active CN109326768B (zh) 2018-10-08 2018-10-08 一种钠离子电池负极及制备方法与钠离子电池

Country Status (1)

Country Link
CN (1) CN109326768B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038614A (zh) * 2020-09-22 2020-12-04 四川轻化工大学 一种钠离子电池用负极材料及其制备方法
CN112072105A (zh) * 2020-08-24 2020-12-11 湖南科技大学 一种电极用涂料及其制备方法和应用
CN112582185A (zh) * 2020-11-06 2021-03-30 广东工业大学 一种具有三重核壳结构的柔性自支撑氮化钛/硫化亚锡/碳电极材料及其制备方法和应用
CN112886014A (zh) * 2021-01-29 2021-06-01 南方科技大学 中空核壳型锑碳复合负极材料及其制备方法、二次电池
CN115020645A (zh) * 2022-07-26 2022-09-06 山东仁丰特种材料股份有限公司 一种复合电极材料及其制备方法和固态电池
WO2022205135A1 (zh) * 2021-03-31 2022-10-06 宁德新能源科技有限公司 一种负极极片、包含该负极极片的锂金属电池和电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608953A (zh) * 2011-06-15 2014-02-26 诺基亚公司 具有可逆地可变形致动基体的电极和关联方法
CN105489853A (zh) * 2014-10-02 2016-04-13 三星电子株式会社 复合负极活性材料及其制备方法、负极和锂二次电池
US20170125814A1 (en) * 2015-10-30 2017-05-04 Nissan North America, Inc. Electrode having an actuating binder
CN106654199A (zh) * 2016-11-29 2017-05-10 中航锂电(洛阳)有限公司 一种锂离子电池复合负极极片及其制备方法、锂离子电池
CN106876660A (zh) * 2017-03-24 2017-06-20 江苏乐能电池股份有限公司 一种锂离子电池压电正极复合极片及其锂离子电池应用
WO2018038417A1 (ko) * 2016-08-22 2018-03-01 삼성에스디아이주식회사 리튬금속전지용 전해질 및 이를 포함하는 리튬금속전지
WO2018073691A1 (en) * 2016-10-18 2018-04-26 Sabic Global Technologies B.V. Methods for producing carbon material-graphene composite films

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608953A (zh) * 2011-06-15 2014-02-26 诺基亚公司 具有可逆地可变形致动基体的电极和关联方法
CN105489853A (zh) * 2014-10-02 2016-04-13 三星电子株式会社 复合负极活性材料及其制备方法、负极和锂二次电池
US20170125814A1 (en) * 2015-10-30 2017-05-04 Nissan North America, Inc. Electrode having an actuating binder
WO2018038417A1 (ko) * 2016-08-22 2018-03-01 삼성에스디아이주식회사 리튬금속전지용 전해질 및 이를 포함하는 리튬금속전지
WO2018073691A1 (en) * 2016-10-18 2018-04-26 Sabic Global Technologies B.V. Methods for producing carbon material-graphene composite films
CN106654199A (zh) * 2016-11-29 2017-05-10 中航锂电(洛阳)有限公司 一种锂离子电池复合负极极片及其制备方法、锂离子电池
CN106876660A (zh) * 2017-03-24 2017-06-20 江苏乐能电池股份有限公司 一种锂离子电池压电正极复合极片及其锂离子电池应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BYOUNG-SUN LEE: "Silicon/Carbon Nanotube/BaTiO3 Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the LocalPiezoelectric Potential", 《NANO》 *
DA KANG ETAL: "Decorating TiO2 Nanowires with BaTiO3 Nanoparticles: Approach Leading to Substantially Enhanced Energy Storage Capability of High‑k Polymer Nanocomposites", 《 APPL. MATER. INTERFACES》 *
ZHIGUO WANG ETAL: "Composites of Piezoelectric Materials and Silicon as Anode for Lithium Ion Batteries", 《CHEMELECTROCHEM》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112072105A (zh) * 2020-08-24 2020-12-11 湖南科技大学 一种电极用涂料及其制备方法和应用
CN112072105B (zh) * 2020-08-24 2021-12-14 湖南科技大学 一种电极用涂料及其制备方法和应用
CN112038614A (zh) * 2020-09-22 2020-12-04 四川轻化工大学 一种钠离子电池用负极材料及其制备方法
CN112582185A (zh) * 2020-11-06 2021-03-30 广东工业大学 一种具有三重核壳结构的柔性自支撑氮化钛/硫化亚锡/碳电极材料及其制备方法和应用
CN112582185B (zh) * 2020-11-06 2022-03-11 广东工业大学 一种具有三重核壳结构的柔性自支撑氮化钛/硫化亚锡/碳电极材料及其制备方法和应用
CN112886014A (zh) * 2021-01-29 2021-06-01 南方科技大学 中空核壳型锑碳复合负极材料及其制备方法、二次电池
WO2022205135A1 (zh) * 2021-03-31 2022-10-06 宁德新能源科技有限公司 一种负极极片、包含该负极极片的锂金属电池和电子装置
CN115020645A (zh) * 2022-07-26 2022-09-06 山东仁丰特种材料股份有限公司 一种复合电极材料及其制备方法和固态电池
CN115020645B (zh) * 2022-07-26 2023-12-08 山东仁丰特种材料股份有限公司 一种复合电极材料及其制备方法和固态电池

Also Published As

Publication number Publication date
CN109326768B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
CN108520985B (zh) 一种提高锌电池循环寿命的方法及其应用
CN109326768A (zh) 一种钠离子电池负极及制备方法与钠离子电池
CN107275611B (zh) 一种聚吡咯包覆的纳米球状氧化锌材料及制备方法
CN104201389B (zh) 一种锂硒电池正极的制备方法
CN108063219B (zh) 一种高效液态碱金属合金电极及其制备方法和应用
CN112909234A (zh) 一种锂负极或钠负极的制备方法与应用
CN103682272B (zh) 一种锂离子电池负极材料及其制备方法
CN105870452A (zh) 一种正极材料,含有该正极材料的锂离子电池及制备方法
CN111362254A (zh) 一种氮掺杂碳纳米管负载磷掺杂四氧化三钴复合材料的制备方法及应用
KR102139318B1 (ko) 나트륨 이온 전지 전극 재료 및 그의 제작방법
CN108807842B (zh) 硅@碳-石墨烯基柔性复合材料及其制备方法、锂电池
CN114436237A (zh) 一种硬碳材料及其制备方法和应用
CN112421017B (zh) 一种无粘结剂水系锌离子电池正极复合材料的制备方法
CN101521273B (zh) 一种制备锡-碳/核-壳纳米粒子完全填充碳纳米管复合负极材料的原位合成方法
CN111354929A (zh) 一种多层核壳结构的碳纤维-二硫化锡电极材料的制备
CN113161533A (zh) 一种MOF衍生的ZnO@C复合材料及其应用
CN103035925A (zh) 一种锂离子动力电池、锂离子动力电池集流体及负极极片
CN105938905A (zh) 一种富氮掺杂改性多孔碳材料的制备方法
CN104300113A (zh) 一种碳包覆氧化铁锂离子电池电极及其制备方法和用途
CN111477852B (zh) 具有网道结构的复合负极材料及其制备方法和应用
CN113488343A (zh) 一种基于MOFs多孔碳的多组分柔性电极、制备方法及应用
CN110350146B (zh) 一种改性三维多孔锑电极、制备方法及应用
CN109417158A (zh) 一种负极材料及其制备方法、含所述负极材料的负极及二次电池
CN115995351A (zh) 一种过渡金属镍掺杂二氧化锰电极材料的制备方法
CN110137456A (zh) 一种Ag/SnS2@rGO、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant