CN109293355B - 一种生物陶瓷及其制备方法和应用 - Google Patents
一种生物陶瓷及其制备方法和应用 Download PDFInfo
- Publication number
- CN109293355B CN109293355B CN201811444094.6A CN201811444094A CN109293355B CN 109293355 B CN109293355 B CN 109293355B CN 201811444094 A CN201811444094 A CN 201811444094A CN 109293355 B CN109293355 B CN 109293355B
- Authority
- CN
- China
- Prior art keywords
- ceramic
- sintering
- phosphorus
- drying
- containing binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
- A61K6/818—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/831—Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
- A61K6/838—Phosphorus compounds, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/12—Phosphorus-containing materials, e.g. apatite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
- C04B35/6306—Binders based on phosphoric acids or phosphates
- C04B35/6309—Aluminium phosphates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6026—Computer aided shaping, e.g. rapid prototyping
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Animal Behavior & Ethology (AREA)
- Inorganic Chemistry (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Composite Materials (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Transplantation (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明提供了一种生物陶瓷的制备方法,将氢氧化铝和磷酸在95~105℃下混合,得到含磷粘结剂;将陶瓷粉体与含磷粘结剂混合后球磨,得到陶瓷浆料;采用3D打印技术将陶瓷浆料打印成具有结构设计的陶瓷坯体;将陶瓷坯体依次进行脱水和烧结处理,得到生物陶瓷。本发明提供的方法制备得到的生物陶瓷表面无明显的裂纹,致密化高,材质均匀;线收缩率为3.26~5.45%,孔隙率为5~8%,表观密度为2.56~3.12g/cm3;细胞毒性测试表明,本发明提供的生物陶瓷的细胞毒性为Ⅰ级,能够满足生物医用要求。
Description
技术领域
本发明涉及生物医用陶瓷领域,尤其涉及一种生物陶瓷及其制备方法和应用。
背景技术
常用的生物陶瓷材料包括氧化铝陶瓷和氧化锆陶瓷,在生物机体的硬组织修复中,相比于传统金属材料和高分子材料,生物陶瓷材料具有硬度大、理化性能稳定、美学效果优良以及生物兼容性好等特性。
陶瓷的传统制备方法包括:粉末烧结、凝胶注模、热压烧结等,这些成型方法限制了陶瓷材料的结构成型,特别是在口腔临床中需要根据患者的实际病情做出定制修复,使得传统成型方法面临巨大挑战。3D打印技术在材料的结构成型方面具有显著的优势,针对实际需求,设计开发相应的材料体系,是解决上述问题的关键。
目前,在3D打印技术领域,应用于陶瓷浆料配制的粘结剂主要为高分子凝胶,但是高分子凝胶在烧结过程中容易出现排胶,导致胚体发生开裂、大的开孔、低的致密度和均匀性。例如目前已报道的3D凝胶打印氧化锆部件(Ceramics International,2017,7,124),虽然打印得到的陶瓷体结构具有高的固含量,但是凝胶的热分解使得陶瓷体结构收缩严重,达到17%。因此,研究一种致密度高、材质均匀的生物陶瓷,具有重要意义。
发明内容
为了解决上述技术问题,本发明提供了一种生物陶瓷及其制备方法和应用,本发明制得的生物陶瓷具有致密度高、材质均匀的特点。
本发明提供了一种生物陶瓷的制备方法,包括以下步骤:
(1)将氢氧化铝和磷酸在95~105℃下混合,得到含磷粘结剂;
(2)将陶瓷粉体与所述步骤(1)得到的含磷粘结剂混合后球磨,得到陶瓷浆料;
(3)采用3D打印技术将所述步骤(2)得到的陶瓷浆料打印成陶瓷坯体;
(4)将所述步骤(3)得到的陶瓷坯体依次进行脱水和烧结处理,得到生物陶瓷。
优选的,所述步骤(1)中氢氧化铝和磷酸的摩尔比为1:2.5~3.5。
优选的,所述步骤(1)得到的含磷粘结剂包括磷酸一氢盐、磷酸二氢盐和磷酸正盐中的一种或多种。
优选的,所述步骤(2)中陶瓷粉体包括钇稳定氧化锆、氧化铝、二氧化硅、羟基磷灰石和磷酸三钙中的一种或多种;所述陶瓷粉体的平均尺寸为20~30nm;所述陶瓷粉体为医用级的市售产品。
优选的,所述步骤(2)中陶瓷粉体与含磷粘结剂的质量比为0.3~1:1。
优选的,所述步骤(3)中3D打印技术包括挤出成型;所述挤出成型的挤出流量为0.1~1.5mL/min,挤出喷头的移动速度为3~10mm/s。
优选的,所述步骤(4)中脱水包括依次进行的自然晾干和烘干;所述自然晾干的环境湿度为30%~40%,温度为20~25℃;所述烘干依次包括第一烘干和第二烘干;所述第一烘干的温度为75~85℃,时间为11~13h;所述第二烘干的温度为110~130℃,时间为11~13h。
优选的,所述步骤(4)中烧结处理依次包括第一烧结和第二烧结,所述第一烧结的温度为750~850℃,时间为0.5~1.5h;所述第二烧结的温度为1450~1550℃,时间为1.5~2.5h。
本发明还提供了上述技术方案所述方法制备得到的生物陶瓷,所述生物陶瓷的线收缩率为3.26~5.45%,孔隙率为5~8%,表观密度为2.56~3.12g/cm3。
本发明还提供了上述技术方案所述生物陶瓷在制备人类牙齿材料中的应用。
本发明提供了一种生物陶瓷的制备方法,将氢氧化铝和磷酸在95~105℃下混合,得到含磷粘结剂;将陶瓷粉体与含磷粘结剂混合后球磨,得到陶瓷浆料;采用3D打印技术将陶瓷浆料打印成具有结构设计的陶瓷坯体;将陶瓷坯体依次进行脱水和烧结处理,得到生物陶瓷。本发明提供的方法采用磷酸盐类无机粘结剂,在保证良好粘结性能的情况下,无机粘结剂本身会在烧结过程中转变为相应的结晶相,进一步增加生物陶瓷的固含量(40~50vol%)和致密性,而且本发明采用磷酸盐类无机粘结剂,有利于降低生物陶瓷的孔隙率和线收缩率。另外,在本发明中,所述陶瓷粉体具有良好的生物相容性。与传统的粉末烧结制备陶瓷工艺相比,本发明提供的制备方法简单,成本低廉,成型设备要求低,结构可设计性强。实施例结果表明,本发明提供的方法制备得到的生物陶瓷表面无明显的裂纹,致密化高,材质均匀;线收缩率为3.26~5.45%,孔隙率为5~8%,表观密度约为2.56~3.12g/cm3,本发明制备得到的生物陶瓷的表观密度与人类牙齿的表观密度(3.3g/cm3)接近,使得本发明制备得到的生物陶瓷可作为人类牙齿材料;本发明提供的生物陶瓷机械强度高,达到850MPa以上;细胞毒性测试表明,本发明提供的生物陶瓷的细胞毒性为Ⅰ级,能够满足生物医用要求。
附图说明
图1为本发明实施例1制备得到的生物陶瓷的照片;
图2为本发明实施例1制备得到的生物陶瓷的SEM图。
具体实施方式
本发明提供了一种生物陶瓷的制备方法,包括以下步骤:
(1)将氢氧化铝和磷酸在95~105℃下混合,得到含磷粘结剂;
(2)将陶瓷粉体与所述步骤(1)得到的含磷粘结剂混合后球磨,得到陶瓷浆料;
(3)采用3D打印技术将所述步骤(2)得到的陶瓷浆料打印成陶瓷坯体;
(4)将所述步骤(3)得到的陶瓷坯体依次进行脱水和烧结处理,得到生物陶瓷。
本发明将氢氧化铝和磷酸在95~105℃下混合,得到含磷粘结剂。在本发明中,所述氢氧化铝和磷酸的摩尔比优选为1:2.5~3.5,进一步优选为1:2.8~3.2,更优选为1:3。在本发明中,所述磷酸优选为磷酸水溶液,所述磷酸水溶液的浓度优选为60~70%,进一步优选为63%。本发明将氢氧化铝和磷酸混合,所述混合优选为搅拌混合,所述搅拌混合的时间优选为2.5~3.5h,进一步优选为3h;所述混合的温度为95~105℃,优选为100℃。本发明通过在上述温度下将氢氧化铝和磷酸混合,得到了磷酸盐溶胶,即含磷粘结剂。在本发明中,所述含磷粘结剂的化学成分优选包括磷酸一氢盐、磷酸二氢盐和磷酸正盐中的一种或多种,所述含磷粘结剂中磷酸铝的质量分数优选为10~20wt%,进一步优选为12~17wt%。
得到含磷粘结剂后,本发明优选将含磷粘结剂冷却至室温,然后将陶瓷粉体与含磷粘结剂混合后球磨,得到陶瓷浆料。本发明对所述冷却的方式没有特别限制,采用本领域所熟知的方式即可。在本发明中,所述陶瓷粉体优选包括钇稳定氧化锆、氧化铝、二氧化硅、羟基磷灰石和磷酸三钙中的一种或多种。在本发明中,所述氧化铝优选为氧化铝纳米粉体,所述二氧化硅优选为气相二氧化硅纳米粉体,本发明对钇稳定氧化锆、氧化铝、二氧化硅、羟基磷灰石和磷酸三钙的来源没有特别要求,采用市售商品即可。在本发明中,所述陶瓷粉体的平均尺寸优选为20~30nm,进一步优选为20~25nm;所述陶瓷粉体优选为医用级的市售产品。在本发明中,所述陶瓷粉体与含磷粘结剂的质量比优选为0.3~1:1,进一步优选为0.5~0.8:1。
本发明将陶瓷粉体与含磷粘结剂混合后球磨,在本发明中,所述球磨的转速优选为2000~2200rpm,所述球磨的时间优选为2.5~3.5h,进一步优选为3h。本发明以含磷粘结剂作为制备生物陶瓷的粘结剂,有利于使最终制备得到的生物陶瓷具有低的孔隙率和低的线收缩率。
得到陶瓷浆料后,本发明采用3D打印技术将陶瓷浆料打印成陶瓷坯体。在本发明中,所述3D打印技术优选为墨水直写打印技术,本发明对所述墨水直写打印技术的具体实施方式没有特别限制,采用本领域技术人员所常用的方法即可。在本发明中,所述3D打印技术优选包括挤出成型,本发明在挤出成型过程中,不需要外场辅助,利用陶瓷浆料的流变学性能控制挤出成型;所述挤出成型的挤出流量优选为0.1~1.5mL/min,进一步优选为1.0mL/min,挤出喷头的移动速度优选为3~10mm/s,进一步优选为5~8mm/s。本发明对陶瓷坯体的结构没有特别限制,任意结构设计的陶瓷坯体均可。
得到陶瓷坯体后,本发明将所述陶瓷坯体依次进行脱水和烧结处理,得到生物陶瓷。在本发明中,所述脱水优选包括依次进行的自然晾干和烘干;所述自然晾干的环境湿度优选为30%~40%,进一步优选为35%,温度优选为20~25℃,本发明对自然晾干的程度采用本领域技术人员所熟知的自然晾干的程度即可;所述烘干优选包括第一烘干和第二烘干;所述第一烘干的温度优选为75~85℃,进一步优选为80℃,时间优选为11~13h,进一步优选为12h;所述第二烘干的温度优选为110~130℃,进一步优选为120℃,时间优选为11~13h,进一步优选为12h。在本发明中,所述第一烘干和第二烘干的升温速率独立地优选为2~5℃/min,进一步优选为3℃/min。
烘干完成后,本发明对所得烘干后的陶瓷坯体进行烧结处理。在本发明中,所述烧结处理优选为程序升温烧结,所述程序升温烧结优选依次包括第一烧结和第二烧结,所述第一烧结的温度优选为750~850℃,进一步优选为800℃,时间优选为0.5~1.5h,进一步优选为1.0h,升温速率优选为5~15℃min,进一步优选为10℃/min;所述第二烧结的温度优选为1450~1550℃,进一步优选为1500℃,时间优选为1.5~2.5h,进一步优选为2.0h,升温速率优选为2~5℃/min,进一步优选为3℃/min。在本发明中,所述烧结的压力优选为常压。本发明在烧结过程中,陶瓷坯体中无定型的含磷粘结剂和陶瓷粉体发生相变,转变为相应的晶体结构,本发明以含磷粘结剂作为无机粘结剂,在保证良好粘结性能的情况下,粘结剂本身会在烧结过程中转变为相应的结晶相,进一步增加陶瓷的固含量。在本发明中,所述最终制备得到的生物陶瓷的固含量优选为40~50vol%,在本发明中,所述固含量指的是陶瓷粉体占陶瓷浆料的体积分数。
本发明还提供了上述技术方案所述方法制备得到的生物陶瓷,所述生物陶瓷的线收缩率为3.26~5.45%,孔隙率为5~8%,表观密度为2.56~3.12g/cm3。
本发明还提供了上述技术方案所述生物陶瓷在制备人类牙齿材料中的应用。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。
实施例1
将磷酸和氢氧化铝,按照摩尔比3:1投料,在100℃下搅拌3小时获得透明均匀的含磷粘结剂,反应过程中持续机械搅拌,最终含磷粘结剂中磷酸铝的质量分数为15wt%。将含磷粘结剂冷却至室温,然后将钇稳定氧化锆纳米粉体分批加入到含磷粘结剂中,其中钇稳定氧化锆纳米粉体的平均晶粒尺寸为25nm,钇稳定氧化锆纳米粉体与含磷粘结剂的质量比为1:1,机械搅拌3小时,获得均匀的陶瓷浆料。
将陶瓷浆料注入3D打印机的料筒,调节好打印参数,利用计算机控制程序打印出设计的陶瓷坯体。将陶瓷坯体在室温下自然晾干,然后置于真空烘箱中真空烘干,采用两步脱水烘干,具体为:在80℃下保温12小时,然后升温至120℃保温12小时,获得脱水的陶瓷坯体。将脱水的陶瓷坯体经过程序升温烧结得到生物陶瓷,其中程序升温烧结为:以10℃/min的速率升温至800℃后保温1小时,然后再以3℃/min的速率升温至1500℃后保温2小时。
采用本发明所述方法制备得到的生物陶瓷照片如图1所示,图1中的生物陶瓷包括不同形状,本发明对生物陶瓷的形状没有具体限制,可根据实际需要,设置成不同的形状。在图1中,尺子为毫米刻度尺,最小刻度为毫米。由图1可知,本发明提供的生物陶瓷无裂纹。
采用本发明所述方法制备得到的生物陶瓷的SEM图如图2所示,由图2可知,本发明提供的生物陶瓷致密化高,材质均匀。本发明制备得到的生物陶瓷的线收缩率约为3.26%,孔隙率约5%,表观密度约为3.12g/cm3。在本发明中,线收缩率=(L0-L)/L0,其中,L0为陶瓷纤维的长度,L为烧结后陶瓷纤维的长度。孔隙率Πa=(m3-m1)/(m3-m2),其中,m1为清洗干净的陶瓷样品的干重,m2为饱和试样在水中的浮重,m3为饱和试样在空气中的湿重。表观密度ρ=m/V,其中,m为陶瓷样品的质量,V为陶瓷样品的体积。
另外,本发明制备得到的生物陶瓷的表观密度与人类牙齿的表观密度(3.3g/cm3)接近,使得本发明制备得到的生物陶瓷可作为人类牙齿材料。
而且,本发明提供的生物陶瓷机械强度高,可以达到850MPa。
细胞毒性测试表明,本发明提供的生物陶瓷的细胞毒性为Ⅰ级,能够满足生物医用要求。
实施例2
按照实施例1的方法进行试验,区别在于将钇稳定氧化锆替换为氧化铝,其中氧化铝纳米粉体与含磷粘结剂的质量比为0.9:1。
实施例3
按照实施例1的方法进行试验,区别在于将钇稳定氧化锆替换为气相二氧化硅,其中气相二氧化硅纳米粉体与含磷粘结剂的质量比为0.3:1。
实施例4
按照实施例1的方法进行试验,区别在于将钇稳定氧化锆替换为羟基磷灰石,其中钇稳定氧化锆纳米粉体与含磷粘结剂的质量比为0.4:1。
实施例5
按照实施例1的方法进行试验,区别在于将钇稳定氧化锆替换为磷酸三钙(骨水泥),其中磷酸三钙与含磷粘结剂的质量比为1:1。
实施例2~5制备得到的生物陶瓷与实施例1制备得到的生物陶瓷类似,同样具有光滑无裂纹的外表,且致密化高,材质均匀;表观密度与人类牙齿的表观密度(3.3g/cm3)接近,可作为人类牙齿材料;机械强度高,可以达到800~1100MPa,可用于机体硬组织修复;细胞毒性为Ⅰ级,能够满足生物医用要求。
综上所述,本发明提供的方法制备得到的生物陶瓷致密化高,材质均匀,线收缩率约为3.26~5.45%,孔隙率约5~8%,表观密度约为2.56~3.12g/cm3;机械强度高,可以达到800~1100MPa。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (10)
1.一种生物陶瓷的制备方法,包括以下步骤:
(1)将氢氧化铝和磷酸在95~105℃下混合,得到含磷粘结剂;
(2)将陶瓷粉体与所述步骤(1)得到的含磷粘结剂混合后球磨,得到陶瓷浆料;所述陶瓷粉体包括钇稳定氧化锆、氧化铝、二氧化硅、羟基磷灰石和磷酸三钙中的一种或多种;
(3)采用3D打印技术将所述步骤(2)得到的陶瓷浆料打印成陶瓷坯体;
(4)将所述步骤(3)得到的陶瓷坯体依次进行脱水和烧结处理,得到生物陶瓷。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中氢氧化铝和磷酸的摩尔比为1:2.5~3.5。
3.根据权利要求1或2所述的制备方法,其特征在于,所述步骤(1)得到的含磷粘结剂包括磷酸一氢盐、磷酸二氢盐和磷酸正盐中的一种或多种。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中陶瓷粉体的平均尺寸为20~30nm;所述陶瓷粉体为医用级的市售产品。
5.根据权利要求1或4所述的制备方法,其特征在于,所述步骤(2)中陶瓷粉体与含磷粘结剂的质量比为0.3~1:1。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中3D打印技术包括挤出成型;所述挤出成型的挤出流量为0.1~1.5mL/min,挤出喷头的移动速度为3~10mm/s。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤(4)中脱水包括依次进行的自然晾干和烘干;所述自然晾干的环境湿度为30%~40%,温度为20~25℃;所述烘干依次包括第一烘干和第二烘干;所述第一烘干的温度为75~85℃,时间为11~13h;所述第二烘干的温度为110~130℃,时间为11~13h。
8.根据权利要求1或7所述的制备方法,其特征在于,所述步骤(4)中烧结处理依次包括第一烧结和第二烧结,所述第一烧结的温度为750~850℃,时间为0.5~1.5h;所述第二烧结的温度为1450~1550℃,时间为1.5~2.5h。
9.权利要求1~8任一项所述方法制备得到的生物陶瓷,所述生物陶瓷的线收缩率为3.26~5.45%,孔隙率为5~8%,表观密度为2.56~3.12g/cm3。
10.权利要求9所述生物陶瓷在制备人类牙齿材料中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811444094.6A CN109293355B (zh) | 2018-11-29 | 2018-11-29 | 一种生物陶瓷及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811444094.6A CN109293355B (zh) | 2018-11-29 | 2018-11-29 | 一种生物陶瓷及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109293355A CN109293355A (zh) | 2019-02-01 |
CN109293355B true CN109293355B (zh) | 2020-06-09 |
Family
ID=65141899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811444094.6A Active CN109293355B (zh) | 2018-11-29 | 2018-11-29 | 一种生物陶瓷及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109293355B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110041066A (zh) * | 2019-05-21 | 2019-07-23 | 中国科学院兰州化学物理研究所 | 一种牙科陶瓷材料及其制备方法和应用 |
CN110743626B (zh) * | 2019-10-29 | 2021-02-19 | 中国科学院兰州化学物理研究所 | 一种3d打印多孔催化器件的方法及一种多孔催化器件 |
CN110950651A (zh) * | 2019-11-26 | 2020-04-03 | 兰州大学 | 一种基于墨水直书写3d打印技术制备多级多孔陶瓷的方法 |
CN113480308B (zh) * | 2021-07-02 | 2022-07-19 | 中南大学 | 一种耐高温抗烧蚀低温化学键合磷酸基可陶瓷化材料及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0501662A2 (en) * | 1991-02-27 | 1992-09-02 | Richard Dudley Shaw | Manufacture of shaped articles from refractory powders |
CN108484131A (zh) * | 2018-02-02 | 2018-09-04 | 航天特种材料及工艺技术研究所 | 适用于3d打印的氧化铝陶瓷料浆、制备方法及应用 |
-
2018
- 2018-11-29 CN CN201811444094.6A patent/CN109293355B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0501662A2 (en) * | 1991-02-27 | 1992-09-02 | Richard Dudley Shaw | Manufacture of shaped articles from refractory powders |
CN108484131A (zh) * | 2018-02-02 | 2018-09-04 | 航天特种材料及工艺技术研究所 | 适用于3d打印的氧化铝陶瓷料浆、制备方法及应用 |
Non-Patent Citations (1)
Title |
---|
激光烧结陶瓷粉末成型零件的机理分析和实验研究;邓琦林等;《激光杂志》;20011031;第22卷(第5期);第2页第1-2段,第1页右栏第1段 * |
Also Published As
Publication number | Publication date |
---|---|
CN109293355A (zh) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109293355B (zh) | 一种生物陶瓷及其制备方法和应用 | |
EP3385057B1 (en) | Method for additive manufacturing of 3d-printed articles | |
Shen et al. | Dense hydroxyapatite–zirconia ceramic composites with high strength for biological applications | |
DE69409873T2 (de) | Zahnprothese | |
JP6615187B2 (ja) | 歯科用補綴物部材を製造するための印刷および焼結可能な歯科用組成物並びにその製造方法 | |
Carotenuto et al. | Macroporous hydroxyapatite as alloplastic material for dental applications | |
Milosevski et al. | Preparation and properties of dense and porous calcium phosphate | |
CN106830899B (zh) | 一种复合陶瓷材料及其制备方法与应用 | |
Zhu et al. | Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy | |
CN108285343A (zh) | 一种生物活性玻璃包覆改性氧化锆牙科陶瓷材料的制备方法 | |
CN114835401B (zh) | 一种二硅酸锂玻璃陶瓷的3d打印制备方法 | |
CN110194659A (zh) | 一种基于纳米氧化锆和氧化铝复合陶瓷的口腔修复材料 | |
CN107117962B (zh) | 一种基于静电自组装技术的牙科全瓷修复材料的制备方法 | |
Aktas et al. | DLP 3D printing of TiO2-doped Al2O3 bioceramics: manufacturing, mechanical properties, and biological evaluation | |
JP6218617B2 (ja) | 歯科用ジルコニア質焼結体、クラウン用フレーム、ブリッジ用フレーム | |
Kandavalli et al. | A conceptual analysis on ceramic materials used for dental practices: manufacturing techniques and microstructure | |
CN107050513A (zh) | 一种梯度浸涂HA制备ZrO2骨修复生物陶瓷支架材料的方法 | |
CN108424138A (zh) | 含硅晶界相改性羟基磷灰石陶瓷、骨损伤修复材料及其制备方法 | |
KR101483220B1 (ko) | 치과용 지르코니아 코어와 포세린 간 결합강도를 높이는 글라스세라믹분말 제조방법 및 그 방법으로 제조된 글라스세라믹분말 | |
Venkatesh et al. | Effect of addition of nano zirconia in ceramic glazes | |
CN110041066A (zh) | 一种牙科陶瓷材料及其制备方法和应用 | |
CN113979729B (zh) | 一种锂硅化合物增强生物活性陶瓷材料及其制备方法 | |
de Melo Bernardino et al. | Manufacturing of SiO2-coated b-TCP structures by 3D printing using a preceramic polymer as printing binder and silica source | |
CN109865157A (zh) | 一种基于光固化3d打印陶瓷骨支架的制备方法 | |
Vasconcelos | New challenges in the sintering of HA/ZrO2 composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |