CN109293355A - 一种生物陶瓷及其制备方法和应用 - Google Patents

一种生物陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN109293355A
CN109293355A CN201811444094.6A CN201811444094A CN109293355A CN 109293355 A CN109293355 A CN 109293355A CN 201811444094 A CN201811444094 A CN 201811444094A CN 109293355 A CN109293355 A CN 109293355A
Authority
CN
China
Prior art keywords
bioceramic
obtains
preparation
ceramic
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811444094.6A
Other languages
English (en)
Other versions
CN109293355B (zh
Inventor
王晓龙
蒋盼
闫昌友
张昀
周峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201811444094.6A priority Critical patent/CN109293355B/zh
Publication of CN109293355A publication Critical patent/CN109293355A/zh
Application granted granted Critical
Publication of CN109293355B publication Critical patent/CN109293355B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/818Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/838Phosphorus compounds, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • C04B35/6309Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Composite Materials (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种生物陶瓷的制备方法,将氢氧化铝和磷酸在95~105℃下混合,得到含磷粘结剂;将陶瓷粉体与含磷粘结剂混合后球磨,得到陶瓷浆料;采用3D打印技术将陶瓷浆料打印成具有结构设计的陶瓷坯体;将陶瓷坯体依次进行脱水和烧结处理,得到生物陶瓷。本发明提供的方法制备得到的生物陶瓷表面无明显的裂纹,致密化高,材质均匀;线收缩率为3.26~5.45%,孔隙率为5~8%,表观密度为2.56~3.12g/cm3;细胞毒性测试表明,本发明提供的生物陶瓷的细胞毒性为Ⅰ级,能够满足生物医用要求。

Description

一种生物陶瓷及其制备方法和应用
技术领域
本发明涉及生物医用陶瓷领域,尤其涉及一种生物陶瓷及其制备方法和应用。
背景技术
常用的生物陶瓷材料包括氧化铝陶瓷和氧化锆陶瓷,在生物机体的硬组织修复中,相比于传统金属材料和高分子材料,生物陶瓷材料具有硬度大、理化性能稳定、美学效果优良以及生物兼容性好等特性。
陶瓷的传统制备方法包括:粉末烧结、凝胶注模、热压烧结等,这些成型方法限制了陶瓷材料的结构成型,特别是在口腔临床中需要根据患者的实际病情做出定制修复,使得传统成型方法面临巨大挑战。3D打印技术在材料的结构成型方面具有显著的优势,针对实际需求,设计开发相应的材料体系,是解决上述问题的关键。
目前,在3D打印技术领域,应用于陶瓷浆料配制的粘结剂主要为高分子凝胶,但是高分子凝胶在烧结过程中容易出现排胶,导致胚体发生开裂、大的开孔、低的致密度和均匀性。例如目前已报道的3D凝胶打印氧化锆部件(Ceramics International,2017,7,124),虽然打印得到的陶瓷体结构具有高的固含量,但是凝胶的热分解使得陶瓷体结构收缩严重,达到17%。因此,研究一种致密度高、材质均匀的生物陶瓷,具有重要意义。
发明内容
为了解决上述技术问题,本发明提供了一种生物陶瓷及其制备方法和应用,本发明制得的生物陶瓷具有致密度高、材质均匀的特点。
本发明提供了一种生物陶瓷的制备方法,包括以下步骤:
(1)将氢氧化铝和磷酸在95~105℃下混合,得到含磷粘结剂;
(2)将陶瓷粉体与所述步骤(1)得到的含磷粘结剂混合后球磨,得到陶瓷浆料;
(3)采用3D打印技术将所述步骤(2)得到的陶瓷浆料打印成陶瓷坯体;
(4)将所述步骤(3)得到的陶瓷坯体依次进行脱水和烧结处理,得到生物陶瓷。
优选的,所述步骤(1)中氢氧化铝和磷酸的摩尔比为1:2.5~3.5。
优选的,所述步骤(1)得到的含磷粘结剂包括磷酸一氢盐、磷酸二氢盐和磷酸正盐中的一种或多种。
优选的,所述步骤(2)中陶瓷粉体包括钇稳定氧化锆、氧化铝、二氧化硅、羟基磷灰石和磷酸三钙中的一种或多种;所述陶瓷粉体的平均尺寸为20~30nm;所述陶瓷粉体为医用级的市售产品。
优选的,所述步骤(2)中陶瓷粉体与含磷粘结剂的质量比为0.3~1:1。
优选的,所述步骤(3)中3D打印技术包括挤出成型;所述挤出成型的挤出流量为0.1~1.5mL/min,挤出喷头的移动速度为3~10mm/s。
优选的,所述步骤(4)中脱水包括依次进行的自然晾干和烘干;所述自然晾干的环境湿度为30%~40%,温度为20~25℃;所述烘干依次包括第一烘干和第二烘干;所述第一烘干的温度为75~85℃,时间为11~13h;所述第二烘干的温度为110~130℃,时间为11~13h。
优选的,所述步骤(4)中烧结处理依次包括第一烧结和第二烧结,所述第一烧结的温度为750~850℃,时间为0.5~1.5h;所述第二烧结的温度为1450~1550℃,时间为1.5~2.5h。
本发明还提供了上述技术方案所述方法制备得到的生物陶瓷,所述生物陶瓷的线收缩率为3.26~5.45%,孔隙率为5~8%,表观密度为2.56~3.12g/cm3
本发明还提供了上述技术方案所述生物陶瓷在制备人类牙齿材料中的应用。
本发明提供了一种生物陶瓷的制备方法,将氢氧化铝和磷酸在95~105℃下混合,得到含磷粘结剂;将陶瓷粉体与含磷粘结剂混合后球磨,得到陶瓷浆料;采用3D打印技术将陶瓷浆料打印成具有结构设计的陶瓷坯体;将陶瓷坯体依次进行脱水和烧结处理,得到生物陶瓷。本发明提供的方法采用磷酸盐类无机粘结剂,在保证良好粘结性能的情况下,无机粘结剂本身会在烧结过程中转变为相应的结晶相,进一步增加生物陶瓷的固含量(40~50vol%)和致密性,而且本发明采用磷酸盐类无机粘结剂,有利于降低生物陶瓷的孔隙率和线收缩率。另外,在本发明中,所述陶瓷粉体具有良好的生物相容性。与传统的粉末烧结制备陶瓷工艺相比,本发明提供的制备方法简单,成本低廉,成型设备要求低,结构可设计性强。实施例结果表明,本发明提供的方法制备得到的生物陶瓷表面无明显的裂纹,致密化高,材质均匀;线收缩率为3.26~5.45%,孔隙率为5~8%,表观密度约为2.56~3.12g/cm3,本发明制备得到的生物陶瓷的表观密度与人类牙齿的表观密度(3.3g/cm3)接近,使得本发明制备得到的生物陶瓷可作为人类牙齿材料;本发明提供的生物陶瓷机械强度高,达到850MPa以上;细胞毒性测试表明,本发明提供的生物陶瓷的细胞毒性为Ⅰ级,能够满足生物医用要求。
附图说明
图1为本发明实施例1制备得到的生物陶瓷的照片;
图2为本发明实施例1制备得到的生物陶瓷的SEM图。
具体实施方式
本发明提供了一种生物陶瓷的制备方法,包括以下步骤:
(1)将氢氧化铝和磷酸在95~105℃下混合,得到含磷粘结剂;
(2)将陶瓷粉体与所述步骤(1)得到的含磷粘结剂混合后球磨,得到陶瓷浆料;
(3)采用3D打印技术将所述步骤(2)得到的陶瓷浆料打印成陶瓷坯体;
(4)将所述步骤(3)得到的陶瓷坯体依次进行脱水和烧结处理,得到生物陶瓷。
本发明将氢氧化铝和磷酸在95~105℃下混合,得到含磷粘结剂。在本发明中,所述氢氧化铝和磷酸的摩尔比优选为1:2.5~3.5,进一步优选为1:2.8~3.2,更优选为1:3。在本发明中,所述磷酸优选为磷酸水溶液,所述磷酸水溶液的浓度优选为60~70%,进一步优选为63%。本发明将氢氧化铝和磷酸混合,所述混合优选为搅拌混合,所述搅拌混合的时间优选为2.5~3.5h,进一步优选为3h;所述混合的温度为95~105℃,优选为100℃。本发明通过在上述温度下将氢氧化铝和磷酸混合,得到了磷酸盐溶胶,即含磷粘结剂。在本发明中,所述含磷粘结剂的化学成分优选包括磷酸一氢盐、磷酸二氢盐和磷酸正盐中的一种或多种,所述含磷粘结剂中磷酸铝的质量分数优选为10~20wt%,进一步优选为12~17wt%。
得到含磷粘结剂后,本发明优选将含磷粘结剂冷却至室温,然后将陶瓷粉体与含磷粘结剂混合后球磨,得到陶瓷浆料。本发明对所述冷却的方式没有特别限制,采用本领域所熟知的方式即可。在本发明中,所述陶瓷粉体优选包括钇稳定氧化锆、氧化铝、二氧化硅、羟基磷灰石和磷酸三钙中的一种或多种。在本发明中,所述氧化铝优选为氧化铝纳米粉体,所述二氧化硅优选为气相二氧化硅纳米粉体,本发明对钇稳定氧化锆、氧化铝、二氧化硅、羟基磷灰石和磷酸三钙的来源没有特别要求,采用市售商品即可。在本发明中,所述陶瓷粉体的平均尺寸优选为20~30nm,进一步优选为20~25nm;所述陶瓷粉体优选为医用级的市售产品。在本发明中,所述陶瓷粉体与含磷粘结剂的质量比优选为0.3~1:1,进一步优选为0.5~0.8:1。
本发明将陶瓷粉体与含磷粘结剂混合后球磨,在本发明中,所述球磨的转速优选为2000~2200rpm,所述球磨的时间优选为2.5~3.5h,进一步优选为3h。本发明以含磷粘结剂作为制备生物陶瓷的粘结剂,有利于使最终制备得到的生物陶瓷具有低的孔隙率和低的线收缩率。
得到陶瓷浆料后,本发明采用3D打印技术将陶瓷浆料打印成陶瓷坯体。在本发明中,所述3D打印技术优选为墨水直写打印技术,本发明对所述墨水直写打印技术的具体实施方式没有特别限制,采用本领域技术人员所常用的方法即可。在本发明中,所述3D打印技术优选包括挤出成型,本发明在挤出成型过程中,不需要外场辅助,利用陶瓷浆料的流变学性能控制挤出成型;所述挤出成型的挤出流量优选为0.1~1.5mL/min,进一步优选为1.0mL/min,挤出喷头的移动速度优选为3~10mm/s,进一步优选为5~8mm/s。本发明对陶瓷坯体的结构没有特别限制,任意结构设计的陶瓷坯体均可。
得到陶瓷坯体后,本发明将所述陶瓷坯体依次进行脱水和烧结处理,得到生物陶瓷。在本发明中,所述脱水优选包括依次进行的自然晾干和烘干;所述自然晾干的环境湿度优选为30%~40%,进一步优选为35%,温度优选为20~25℃,本发明对自然晾干的程度采用本领域技术人员所熟知的自然晾干的程度即可;所述烘干优选包括第一烘干和第二烘干;所述第一烘干的温度优选为75~85℃,进一步优选为80℃,时间优选为11~13h,进一步优选为12h;所述第二烘干的温度优选为110~130℃,进一步优选为120℃,时间优选为11~13h,进一步优选为12h。在本发明中,所述第一烘干和第二烘干的升温速率独立地优选为2~5℃/min,进一步优选为3℃/min。
烘干完成后,本发明对所得烘干后的陶瓷坯体进行烧结处理。在本发明中,所述烧结处理优选为程序升温烧结,所述程序升温烧结优选依次包括第一烧结和第二烧结,所述第一烧结的温度优选为750~850℃,进一步优选为800℃,时间优选为0.5~1.5h,进一步优选为1.0h,升温速率优选为5~15℃min,进一步优选为10℃/min;所述第二烧结的温度优选为1450~1550℃,进一步优选为1500℃,时间优选为1.5~2.5h,进一步优选为2.0h,升温速率优选为2~5℃/min,进一步优选为3℃/min。在本发明中,所述烧结的压力优选为常压。本发明在烧结过程中,陶瓷坯体中无定型的含磷粘结剂和陶瓷粉体发生相变,转变为相应的晶体结构,本发明以含磷粘结剂作为无机粘结剂,在保证良好粘结性能的情况下,粘结剂本身会在烧结过程中转变为相应的结晶相,进一步增加陶瓷的固含量。在本发明中,所述最终制备得到的生物陶瓷的固含量优选为40~50vol%,在本发明中,所述固含量指的是陶瓷粉体占陶瓷浆料的体积分数。
本发明还提供了上述技术方案所述方法制备得到的生物陶瓷,所述生物陶瓷的线收缩率为3.26~5.45%,孔隙率为5~8%,表观密度为2.56~3.12g/cm3
本发明还提供了上述技术方案所述生物陶瓷在制备人类牙齿材料中的应用。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。
实施例1
将磷酸和氢氧化铝,按照摩尔比3:1投料,在100℃下搅拌3小时获得透明均匀的含磷粘结剂,反应过程中持续机械搅拌,最终含磷粘结剂中磷酸铝的质量分数为15wt%。将含磷粘结剂冷却至室温,然后将钇稳定氧化锆纳米粉体分批加入到含磷粘结剂中,其中钇稳定氧化锆纳米粉体的平均晶粒尺寸为25nm,钇稳定氧化锆纳米粉体与含磷粘结剂的质量比为1:1,机械搅拌3小时,获得均匀的陶瓷浆料。
将陶瓷浆料注入3D打印机的料筒,调节好打印参数,利用计算机控制程序打印出设计的陶瓷坯体。将陶瓷坯体在室温下自然晾干,然后置于真空烘箱中真空烘干,采用两步脱水烘干,具体为:在80℃下保温12小时,然后升温至120℃保温12小时,获得脱水的陶瓷坯体。将脱水的陶瓷坯体经过程序升温烧结得到生物陶瓷,其中程序升温烧结为:以10℃/min的速率升温至800℃后保温1小时,然后再以3℃/min的速率升温至1500℃后保温2小时。
采用本发明所述方法制备得到的生物陶瓷照片如图1所示,图1中的生物陶瓷包括不同形状,本发明对生物陶瓷的形状没有具体限制,可根据实际需要,设置成不同的形状。在图1中,尺子为毫米刻度尺,最小刻度为毫米。由图1可知,本发明提供的生物陶瓷无裂纹。
采用本发明所述方法制备得到的生物陶瓷的SEM图如图2所示,由图2可知,本发明提供的生物陶瓷致密化高,材质均匀。本发明制备得到的生物陶瓷的线收缩率约为3.26%,孔隙率约5%,表观密度约为3.12g/cm3。在本发明中,线收缩率=(L0-L)/L0,其中,L0为陶瓷纤维的长度,L为烧结后陶瓷纤维的长度。孔隙率Πa=(m3-m1)/(m3-m2),其中,m1为清洗干净的陶瓷样品的干重,m2为饱和试样在水中的浮重,m3为饱和试样在空气中的湿重。表观密度ρ=m/V,其中,m为陶瓷样品的质量,V为陶瓷样品的体积。
另外,本发明制备得到的生物陶瓷的表观密度与人类牙齿的表观密度(3.3g/cm3)接近,使得本发明制备得到的生物陶瓷可作为人类牙齿材料。
而且,本发明提供的生物陶瓷机械强度高,可以达到850MPa。
细胞毒性测试表明,本发明提供的生物陶瓷的细胞毒性为Ⅰ级,能够满足生物医用要求。
实施例2
按照实施例1的方法进行试验,区别在于将钇稳定氧化锆替换为氧化铝,其中氧化铝纳米粉体与含磷粘结剂的质量比为0.9:1。
实施例3
按照实施例1的方法进行试验,区别在于将钇稳定氧化锆替换为气相二氧化硅,其中气相二氧化硅纳米粉体与含磷粘结剂的质量比为0.3:1。
实施例4
按照实施例1的方法进行试验,区别在于将钇稳定氧化锆替换为羟基磷灰石,其中钇稳定氧化锆纳米粉体与含磷粘结剂的质量比为0.4:1。
实施例5
按照实施例1的方法进行试验,区别在于将钇稳定氧化锆替换为磷酸三钙(骨水泥),其中磷酸三钙与含磷粘结剂的质量比为1:1。
实施例2~5制备得到的生物陶瓷与实施例1制备得到的生物陶瓷类似,同样具有光滑无裂纹的外表,且致密化高,材质均匀;表观密度与人类牙齿的表观密度(3.3g/cm3)接近,可作为人类牙齿材料;机械强度高,可以达到800~1100MPa,可用于机体硬组织修复;细胞毒性为Ⅰ级,能够满足生物医用要求。
综上所述,本发明提供的方法制备得到的生物陶瓷致密化高,材质均匀,线收缩率约为3.26~5.45%,孔隙率约5~8%,表观密度约为2.56~3.12g/cm3;机械强度高,可以达到800~1100MPa。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种生物陶瓷的制备方法,包括以下步骤:
(1)将氢氧化铝和磷酸在95~105℃下混合,得到含磷粘结剂;
(2)将陶瓷粉体与所述步骤(1)得到的含磷粘结剂混合后球磨,得到陶瓷浆料;
(3)采用3D打印技术将所述步骤(2)得到的陶瓷浆料打印成陶瓷坯体;
(4)将所述步骤(3)得到的陶瓷坯体依次进行脱水和烧结处理,得到生物陶瓷。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中氢氧化铝和磷酸的摩尔比为1:2.5~3.5。
3.根据权利要求1或2所述的制备方法,其特征在于,所述步骤(1)得到的含磷粘结剂包括磷酸一氢盐、磷酸二氢盐和磷酸正盐中的一种或多种。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中陶瓷粉体包括钇稳定氧化锆、氧化铝、二氧化硅、羟基磷灰石和磷酸三钙中的一种或多种;所述陶瓷粉体的平均尺寸为20~30nm;所述陶瓷粉体为医用级的市售产品。
5.根据权利要求1或4所述的制备方法,其特征在于,所述步骤(2)中陶瓷粉体与含磷粘结剂的质量比为0.3~1:1。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中3D打印技术包括挤出成型;所述挤出成型的挤出流量为0.1~1.5mL/min,挤出喷头的移动速度为3~10mm/s。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤(4)中脱水包括依次进行的自然晾干和烘干;所述自然晾干的环境湿度为30%~40%,温度为20~25℃;所述烘干依次包括第一烘干和第二烘干;所述第一烘干的温度为75~85℃,时间为11~13h;所述第二烘干的温度为110~130℃,时间为11~13h。
8.根据权利要求1或7所述的制备方法,其特征在于,所述步骤(4)中烧结处理依次包括第一烧结和第二烧结,所述第一烧结的温度为750~850℃,时间为0.5~1.5h;所述第二烧结的温度为1450~1550℃,时间为1.5~2.5h。
9.权利要求1~8任一项所述方法制备得到的生物陶瓷,所述生物陶瓷的线收缩率为3.26~5.45%,孔隙率为5~8%,表观密度为2.56~3.12g/cm3
10.权利要求9所述生物陶瓷在制备人类牙齿材料中的应用。
CN201811444094.6A 2018-11-29 2018-11-29 一种生物陶瓷及其制备方法和应用 Active CN109293355B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811444094.6A CN109293355B (zh) 2018-11-29 2018-11-29 一种生物陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811444094.6A CN109293355B (zh) 2018-11-29 2018-11-29 一种生物陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109293355A true CN109293355A (zh) 2019-02-01
CN109293355B CN109293355B (zh) 2020-06-09

Family

ID=65141899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811444094.6A Active CN109293355B (zh) 2018-11-29 2018-11-29 一种生物陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109293355B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041066A (zh) * 2019-05-21 2019-07-23 中国科学院兰州化学物理研究所 一种牙科陶瓷材料及其制备方法和应用
CN110743626A (zh) * 2019-10-29 2020-02-04 中国科学院兰州化学物理研究所 一种3d打印多孔催化器件的方法及一种多孔催化器件
CN110950651A (zh) * 2019-11-26 2020-04-03 兰州大学 一种基于墨水直书写3d打印技术制备多级多孔陶瓷的方法
CN113480308A (zh) * 2021-07-02 2021-10-08 中南大学 一种耐高温抗烧蚀低温化学键合磷酸基可陶瓷化材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0501662A2 (en) * 1991-02-27 1992-09-02 Richard Dudley Shaw Manufacture of shaped articles from refractory powders
CN108484131A (zh) * 2018-02-02 2018-09-04 航天特种材料及工艺技术研究所 适用于3d打印的氧化铝陶瓷料浆、制备方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0501662A2 (en) * 1991-02-27 1992-09-02 Richard Dudley Shaw Manufacture of shaped articles from refractory powders
CN108484131A (zh) * 2018-02-02 2018-09-04 航天特种材料及工艺技术研究所 适用于3d打印的氧化铝陶瓷料浆、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邓琦林等: "激光烧结陶瓷粉末成型零件的机理分析和实验研究", 《激光杂志》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041066A (zh) * 2019-05-21 2019-07-23 中国科学院兰州化学物理研究所 一种牙科陶瓷材料及其制备方法和应用
CN110743626A (zh) * 2019-10-29 2020-02-04 中国科学院兰州化学物理研究所 一种3d打印多孔催化器件的方法及一种多孔催化器件
CN110950651A (zh) * 2019-11-26 2020-04-03 兰州大学 一种基于墨水直书写3d打印技术制备多级多孔陶瓷的方法
CN113480308A (zh) * 2021-07-02 2021-10-08 中南大学 一种耐高温抗烧蚀低温化学键合磷酸基可陶瓷化材料及其制备方法
CN113480308B (zh) * 2021-07-02 2022-07-19 中南大学 一种耐高温抗烧蚀低温化学键合磷酸基可陶瓷化材料及其制备方法

Also Published As

Publication number Publication date
CN109293355B (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN109293355A (zh) 一种生物陶瓷及其制备方法和应用
Franks et al. Colloidal processing: enabling complex shaped ceramics with unique multiscale structures
CN105196398B (zh) 用于气压挤出式三维打印的陶瓷浆料及生物陶瓷支架的制备方法
Franco et al. Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel
CN107573035B (zh) 氧化物陶瓷的烧结动力学的控制
Jiao et al. Preparation of Al2O3-ZrO2 scaffolds with controllable multi-level pores via digital light processing
Zhu et al. Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy
KR100783587B1 (ko) 소결성이 우수한 β-트리칼슘포스페이트 분말 및 이의소결체의 제조방법
CN108285343A (zh) 一种生物活性玻璃包覆改性氧化锆牙科陶瓷材料的制备方法
RU2476406C2 (ru) Способ получения пористого керамического материала
CN106830899A (zh) 一种复合陶瓷材料及其制备方法与应用
CN109678488A (zh) 一种离子掺杂和蛋白浸渍双重改性多孔磷酸钙陶瓷及其制备方法
Ghomi et al. Fabrication and characterization of bioactive glass/hydroxyapatite nanocomposite foam by gelcasting method
Chen et al. Aqueous gel-casting of hydroxyapatite
CN108653804B (zh) 一种掺硅磷酸钙骨修复材料的制备方法
CN112778016B (zh) 一种牙科陶瓷材料及其制备方法和应用
US20090191111A1 (en) Preparation method of calcium phosphate-based ceramic powder and compact thereof
Swain et al. Physicochemical, mechanical, dielectric, and biological properties of sintered hydroxyapatite/barium titanate nanocomposites for bone regeneration
Aktas et al. DLP 3D printing of TiO2-doped Al2O3 bioceramics: Manufacturing, mechanical properties, and biological evaluation
CN110078500A (zh) 一种牙科氧化锆全瓷材料及其制备方法
JP3718708B2 (ja) リン酸カルシウム系生体用セラミック焼結体およびその製造方法
CN108395237B (zh) 一种高强度硅磷酸钙生物陶瓷材料及其制备方法
CN108383516B (zh) 一种兼具力学强度和降解性的生物活性陶瓷材料及其制备方法
RU2569113C1 (ru) Композиционный керамический материал и способ его получения
CN110041066A (zh) 一种牙科陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant