CN109290583A - 一种消除7075铝合金选择性激光熔化成型裂纹的方法 - Google Patents

一种消除7075铝合金选择性激光熔化成型裂纹的方法 Download PDF

Info

Publication number
CN109290583A
CN109290583A CN201811367402.XA CN201811367402A CN109290583A CN 109290583 A CN109290583 A CN 109290583A CN 201811367402 A CN201811367402 A CN 201811367402A CN 109290583 A CN109290583 A CN 109290583A
Authority
CN
China
Prior art keywords
aluminium alloy
powder
selective laser
crackle
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811367402.XA
Other languages
English (en)
Other versions
CN109290583B (zh
Inventor
李小强
万达远
赖佳明
刘波
屈盛官
刘允中
李晖云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201811367402.XA priority Critical patent/CN109290583B/zh
Publication of CN109290583A publication Critical patent/CN109290583A/zh
Application granted granted Critical
Publication of CN109290583B publication Critical patent/CN109290583B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种消除7075铝合金选择性激光熔化成型裂纹的方法。该方法包括以下步骤:(1)在保护气氛下,将7075铝合金原粉和TiB2亚微粉进行球磨混粉,取出球磨混粉后的粉末并进行干燥;(2)将步骤(1)所述干燥后的粉末加入到选择性激光熔化型设备的储粉缸中,设置选择性激光熔化成型设备的工作参数后进行选择性激光熔化得到7075铝合金成型件,最后将7075铝合金成型件进行加热加压处理即可。该发明通过在7075铝合金原粉末中加入能促进形核的TiB2亚微粉末,消除7075铝合金选择性激光熔化成型的周期裂纹,并将成型零件放入热压炉加热加压以提高零件的致密度。

Description

一种消除7075铝合金选择性激光熔化成型裂纹的方法
技术领域
本发明涉及3D打印技术领域,更具体地涉及一种消除7075铝合金选择性激光熔化成型裂纹的方法。
背景技术
选择性激光熔化技术是一种增材制造技术,在制造结构复杂的几何形状,增加材料的利用率,减少成本及在生产过程中达到快速冷却方面具有很大的优势。选择性激光熔化技术在航空航天、汽车制造、生物医学等领域具有良好的应用前景,是近年来金属增材制造领域的研究热点。7075铝合金选择性激光熔化技术加工得到的样品存在非常严重的周期性热裂纹,成形得到的样品其强度、韧性、硬度等力学性能都较差。目前已有学者通过静电组装的方法,将ZrH纳米粉末均匀地附着在7075铝合金基体粉末中,将混合的粉末进行选择性激光熔化成形得到了无热裂纹、细小等轴晶的成形试样。但是由于使用静电组装进行混粉后,粉末表面粘附的有机物不易去除,粉末在有机溶液中易氧化,因此该方法工艺上制备合格的混合粉末较为困难。且激光熔化成形的试样存在较多的气孔,影响其力学性能。
发明内容
本发明的目的是克服目前选择性激光熔化技术工艺的不足,提供一种消除7075铝合金选择性激光熔化技术加工裂纹并提高致密度的方法,它通过往7075铝合金原粉末中混入作为形核剂的TiB2亚微粉末,使得混合的粉末在选择性激光熔化过程中抑制了热裂纹的产生,不过尽管抑制了裂纹,但是随着TiB2亚微粉的加入成形零件中TiB2与基体结合不是特别牢固使得零件致密度下降,为此把成形零件放入热压炉中加热加压,使得零件致密度得到提升,且减少零件内部的缺陷。
本发明通过以下技术方案实现:
一种消除7075铝合金选择性激光熔化成型裂纹的方法,包括以下步骤:
(1)在保护气氛下,将7075铝合金原粉和TiB2亚微粉进行球磨混粉,将球磨混粉后的粉末干燥;
(2)将步骤(1)所述干燥后的粉末加入到选择性激光熔化成型设备的储粉缸中,设置选择性激光熔化成型设备的工作参数后进行选择性激光熔化得到7075铝合金成型件,最后将7075铝合金成型件进行加热加压处理即可。
优选的,步骤(1)所述7075铝合金原粉和TiB2亚微粉的质量比为97.0~98.5:3.0~1.5。
优选的,步骤(1)所述TiB2亚微粉的平均粒径为0.6μm~3μm。
优选的,步骤(1)所述7075铝合金原粉的粒径范围为20~70μm。
优选的,步骤(2)所述选择性激光熔化成型设备的工作参数为:预热温度100℃~120℃;铺粉厚度30~50μm;激光功率350~380W;扫描速度800~1200mm/s;扫描间距80~120μm。
优选的,步骤(1)所述7075铝合金原粉的成分组成为:Si:<0.40;Mg:2.1~2.9;Cr:0.18~0.28;Zn:5.1~6.1;Fe:<0.5;Ti:<0.05;O:<0.05;Cu:1.2~2.0;Mn:<0.3;其余为Al。
优选的,步骤(1)所述球磨的转速为130~200r/min,所述球磨的时间为2~5h。
优选的,步骤(1)所述的保护气氛为惰性气体或氮气。
优选的,步骤(2)所述加热的温度为100~150℃。
优选的,步骤(2)所述加压的压强为80~120MPa。
优选的,步骤(2)所述加热加压处理的时间为5~12h。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)本发明通过添加TiB2亚微粉末作为形核剂,在进行选择性激光熔化技术加工时,能够有效地抑制热裂纹的产生,从而提高成型零件的力学性能。
(2)本发明将成型零件放入热压炉中加热加压,有效地提高了成型零件的致密度并减少其内部缺陷。
附图说明
图1是本发明所述一种消除7075铝合金选择性激光熔化成型裂纹的方法的流程图。
图2是实施例1中的7075铝合金原粉、TiB2亚微粉以及球磨混粉后的粉末的XRD图。
图3是实施例1球磨混粉后的粉末的扫描电镜图。
图4是075铝合金原粉按照实施例1步骤(4)中所述的方法进行选择性激光熔化成型,得到的成型件的表面抛光图。
图5是实施例1步骤(5)经过加热加压处理后的7075铝合金成型件的表面抛光图。
具体实施方式
实施例1
一种消除7075铝合金选择性激光熔化成型裂纹的方法,包括以下步骤:
(1)在氩气保护的手套箱中,称量7075铝合金原粉和TiB2亚微粉(纯度为99%)待用,7075铝合金原粉和TiB2亚微粉的质量比为98.5:1.5;
(2)将称量好的7075铝合金原粉和TiB2亚微粉在氩气保护手套箱置于球磨罐后锁紧球磨罐,将球磨罐取出后通入高纯度氩气;
(3)将球磨罐放入卧式球磨机中进行混粉,球磨转速为200r/min,混粉时间为3h,将球磨罐取出,放入真空手套箱中取出混合的粉末,将粉末放入干燥箱中在80℃干燥8h;
(4)在选择性激光熔化成型设备中控制计算机,进行三维模型切片和分层处理,并在选择性激光熔化成型设备的控制计算机中储存激光扫描路径;将步骤3中经干燥处理的粉末放入选择性激光熔化成型设备的的储粉缸中,对3D打印机基板进行预热,预热温度为100℃;混好的粉末经过铺粉装置按粉层厚度为30μm逐层铺粉;3D打印机的激光功率设置为370W,扫描速度设定为1000mm/s,扫描间距为90μm,进行选择性激光熔化,逐层烧结粉末,最后制得7075铝合金成型件;
(5)把7075铝合金成型件放入相匹配的石墨模具中,并将其置入热压炉内进行加热和加压,加热温度为150℃,压力为100MPa,加热加压处理时间为12h。
实施例2
一种消除7075铝合金选择性激光熔化成型裂纹的方法,包括以下步骤:
(1)在氩气保护的手套箱中,称量7075铝合金原粉和TiB2亚微粉(纯度为99%)待用,7075铝合金原粉和TiB2亚微粉的质量比为97.0:3.0;
(2)将称量好的7075铝合金原粉和TiB2亚微粉在氩气保护手套箱置于球磨罐后锁紧球磨罐,将球磨罐取出后通入高纯度氩气;
(3)将球磨罐放入卧式球磨机中进行混粉,球磨转速为200r/min,混粉时间为5h,将球磨罐取出,放入真空手套箱中取出混合的粉末,将粉末放入干燥箱中在80℃干燥8h;
(4)在选择性激光熔化成型设备中控制计算机,进行三维模型切片和分层处理,并在选择性激光熔化成型设备的控制计算机中储存激光扫描路径;将步骤3中经干燥处理的粉末放入选择性激光熔化成型设备的的储粉缸中,对3D打印机基板进行预热,预热温度为100℃;混好的粉末经过铺粉装置按粉层厚度为30μm逐层铺粉;3D打印机的激光功率设置为370W,扫描速度设定为1000mm/s,扫描间距为90μm,进行选择性激光熔化,逐层烧结粉末,最后制得7075铝合金成型件;
(5)把7075铝合金成型件放入相匹配的石墨模具中,并将其置入热压炉内进行加热和加压,加热温度为150℃,压力为100MPa,加热加压处理时间为12h。
将7075铝合金原粉按照实施例1步骤(4)中所述的方法进行选择性激光熔化成型,得到的成型件的表面抛光图如图4所示,从图4中可以看到:成型试样表面存在大量周期性裂纹。
图5是实施例1步骤(5)经过加热加压处理后的7075铝合金成型件的表面抛光图。由图5可以看到:成型试样表面裂纹得到消除。
图3是实施例1球磨混粉后的粉末的扫描电镜图。由图3可以看到:TiB2粉末较为均匀地附着在7075铝合金粉末表面。
实施例2制得的7075铝合金成型件的表面抛光如和实施例1相似,成型试样表面裂纹也得到了消除。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种消除7075铝合金选择性激光熔化成型裂纹的方法,其特征在于,包括以下步骤:
(1)在保护气氛下,将7075铝合金原粉和TiB2亚微粉进行球磨混粉,将球磨混粉后的粉末干燥;
(2)将步骤(1)所述干燥后的粉末加入到选择性激光熔化型设备的储粉缸中,设置选择性激光熔化成型设备的工作参数后进行选择性激光熔化得到7075铝合金成型件,最后将7075铝合金成型件进行加热加压处理即可。
2.根据权利要求1所述的消除7075铝合金选择性激光熔化成型裂纹的方法其特征在于,步骤(1)所述7075铝合金原粉和TiB2亚微粉的质量比为97.0~98.5:3.0~1.5。
3.根据权利要求1或2所述的消除7075铝合金选择性激光熔化成型裂纹的方法其特征在于,步骤(2)所述加压的压强为80~120MPa。
4.根据权利要求1或2所述的消除7075铝合金选择性激光熔化成型裂纹的方法其特征在于,步骤(2)所述加热的温度为100~150℃。
5.根据权利要求1或2所述的消除7075铝合金选择性激光熔化成型裂纹的方法其特征在于,步骤(2)所述加热加压处理的时间为5~12h。
6.根据权利要求1或2所述的消除7075铝合金选择性激光熔化成型裂纹的方法其特征在于,步骤(2)所述选择性激光熔化成型设备的工作参数为:预热温度100℃~120℃;铺粉厚度30~50μm;激光功率350~380W;扫描速度800~1200mm/s;扫描间距80~120μm。
7.根据权利要求1或2所述的消除7075铝合金选择性激光熔化成型裂纹的方法其特征在于,步骤(1)所述7075铝合金原粉的成分组成为:Si:<0.40;Mg:2.1~2.9;Cr:0.18~0.28;Zn:5.1~6.1;Fe:<0.5;Ti:<0.05;O:<0.05;Cu:1.2~2.0;Mn:<0.3;其余为Al。
8.根据权利要求1或2所述的消除7075铝合金选择性激光熔化成型裂纹的方法其特征在于,步骤(1)所述球磨的转速为130~200r/min,所述球磨的时间为2~5h。
9.根据权利要求1或2所述的消除7075铝合金选择性激光熔化成型裂纹的方法其特征在于,步骤(1)所述的保护气氛为惰性气体或氮气。
10.根据权利要求1或2所述的消除7075铝合金选择性激光熔化成型裂纹的方法其特征在于,步骤(1)所述TiB2亚微粉的平均粒径为0.6μm~3μm,所述7075铝合金原粉的粒径范围为20~70μm。
CN201811367402.XA 2018-11-16 2018-11-16 一种消除7075铝合金选择性激光熔化成型裂纹的方法 Active CN109290583B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811367402.XA CN109290583B (zh) 2018-11-16 2018-11-16 一种消除7075铝合金选择性激光熔化成型裂纹的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811367402.XA CN109290583B (zh) 2018-11-16 2018-11-16 一种消除7075铝合金选择性激光熔化成型裂纹的方法

Publications (2)

Publication Number Publication Date
CN109290583A true CN109290583A (zh) 2019-02-01
CN109290583B CN109290583B (zh) 2020-10-27

Family

ID=65144118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811367402.XA Active CN109290583B (zh) 2018-11-16 2018-11-16 一种消除7075铝合金选择性激光熔化成型裂纹的方法

Country Status (1)

Country Link
CN (1) CN109290583B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110508805A (zh) * 2019-09-28 2019-11-29 华南理工大学 一种能实现7075铝合金无裂纹slm成形的复合粉末及其制备方法与应用
CN110976845A (zh) * 2019-12-04 2020-04-10 华南理工大学 一种消除激光3d打印成形7075铝合金热裂纹的粉末改性方法
CN111001800A (zh) * 2019-11-20 2020-04-14 中南大学 一种3D打印高强度Al-Cr-Sc合金
CN113618068A (zh) * 2021-06-19 2021-11-09 西北工业大学 一种无热裂纹高性能gh3536镍基高温合金激光增材制造方法
CN113996807A (zh) * 2021-10-29 2022-02-01 华中科技大学 消除激光选区熔化增材制造2024铝合金微裂纹的方法
CN114210998A (zh) * 2021-11-29 2022-03-22 北京理工大学 一种高强塑性铝合金大型结构件的制备方法
CN114226736A (zh) * 2021-12-21 2022-03-25 北京航空航天大学 一种抑制增材制造铝合金裂纹形成并促进晶粒细化的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087202B2 (en) * 2002-07-31 2006-08-08 Asm Assembly Automation Ltd. Particulate reinforced aluminum composites, their components and the near net shape forming process of the components
CN105112708A (zh) * 2015-09-16 2015-12-02 华中科技大学 一种激光重熔扫描碳化物弥散增强铝合金的快速制造方法
CN105537587A (zh) * 2015-12-18 2016-05-04 绍兴文理学院 一种消除镍基合金选择性激光融化裂纹的方法
CN107774996A (zh) * 2017-10-11 2018-03-09 华中科技大学 一种多材料梯度点阵结构的零件的一体化成形方法
CN107812941A (zh) * 2017-10-20 2018-03-20 华中科技大学 一种激光増材制造铝合金的原位制备方法及其产品
CN108179295A (zh) * 2017-12-28 2018-06-19 华中科技大学 一种增强型随形冷却模具铜的快速制造方法
CN108754242A (zh) * 2018-06-15 2018-11-06 淮阴工学院 一种原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料及其成形方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087202B2 (en) * 2002-07-31 2006-08-08 Asm Assembly Automation Ltd. Particulate reinforced aluminum composites, their components and the near net shape forming process of the components
CN105112708A (zh) * 2015-09-16 2015-12-02 华中科技大学 一种激光重熔扫描碳化物弥散增强铝合金的快速制造方法
CN105537587A (zh) * 2015-12-18 2016-05-04 绍兴文理学院 一种消除镍基合金选择性激光融化裂纹的方法
CN107774996A (zh) * 2017-10-11 2018-03-09 华中科技大学 一种多材料梯度点阵结构的零件的一体化成形方法
CN107812941A (zh) * 2017-10-20 2018-03-20 华中科技大学 一种激光増材制造铝合金的原位制备方法及其产品
CN108179295A (zh) * 2017-12-28 2018-06-19 华中科技大学 一种增强型随形冷却模具铜的快速制造方法
CN108754242A (zh) * 2018-06-15 2018-11-06 淮阴工学院 一种原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料及其成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
戴景杰: "氮气气氛下激光表面铝合金化对TC4抗高温氧化性能的影响", 《材料热处理学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110508805A (zh) * 2019-09-28 2019-11-29 华南理工大学 一种能实现7075铝合金无裂纹slm成形的复合粉末及其制备方法与应用
CN111001800A (zh) * 2019-11-20 2020-04-14 中南大学 一种3D打印高强度Al-Cr-Sc合金
CN111001800B (zh) * 2019-11-20 2021-11-16 中南大学 一种3D打印高强度Al-Cr-Sc合金
CN110976845A (zh) * 2019-12-04 2020-04-10 华南理工大学 一种消除激光3d打印成形7075铝合金热裂纹的粉末改性方法
CN113618068A (zh) * 2021-06-19 2021-11-09 西北工业大学 一种无热裂纹高性能gh3536镍基高温合金激光增材制造方法
CN113996807A (zh) * 2021-10-29 2022-02-01 华中科技大学 消除激光选区熔化增材制造2024铝合金微裂纹的方法
CN114210998A (zh) * 2021-11-29 2022-03-22 北京理工大学 一种高强塑性铝合金大型结构件的制备方法
CN114226736A (zh) * 2021-12-21 2022-03-25 北京航空航天大学 一种抑制增材制造铝合金裂纹形成并促进晶粒细化的方法

Also Published As

Publication number Publication date
CN109290583B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN109290583A (zh) 一种消除7075铝合金选择性激光熔化成型裂纹的方法
CN112935252B (zh) 一种基于激光选区熔化技术制备高强韧共晶高熵合金的方法
CN109439995B (zh) 高熵非晶合金涂层及其制备方法
CN109943786A (zh) 一种基于选区激光熔化3d打印制备钛基纳米复合材料的方法
CN109332695B (zh) 一种增强抗氧化性钼基合金的选区激光熔化制备方法
CN111590079A (zh) 一种纳米氧化物弥散强化钢件及其快速增材制造方法
CN110744047A (zh) 一种铝基复合材料的制备方法
CN111659889A (zh) 一种高强度铝锰合金的3d打印工艺方法
CN109396429B (zh) 一种改善激光增材制造合金结构钢组织和力学性能方法
CN110744058A (zh) 一种原位合成铜基复合材料的制备方法
CN104120424B (zh) 铁基激光熔覆粉末及熔覆层制备方法
CN111139474A (zh) 一种激光熔覆制备非晶复合涂层的方法
CN111230113A (zh) 一种激光同步送粉制备TC4/TiAl梯度材料的方法
CN1958817A (zh) 一种利用放电等离子烧结制备高铌钛铝合金材料的方法
CN113201664A (zh) 一种原位自生钛基复合材料及其增材制造成形方法和构件
CN113293370A (zh) 一种铝合金表面激光熔覆的高熵合金涂层和制备方法
CN113634756B (zh) 一种高温合金球形粉体材料的制备方法
CN114703394A (zh) 一种高温材料及其制备方法与应用
CN105671544B (zh) 利用熔覆粉末在激光熔覆中提高42CrMo钢耐磨性能的方法
CN107116217A (zh) 选择性激光熔化成形法制备TiC增强镍基复合材料的方法
CN109778176A (zh) 一种高频感应辅助自蔓延TiAl系金属间化合物涂层的制备方法
CN107790730B (zh) 一种在Nb-Si基合金上制备高温抗氧化涂层的方法
CN111842914A (zh) 一种高强度铝铜合金的3d打印工艺方法
CN110340344B (zh) 一种提高激光增材制造合金钢粉末利用率的方法
CN113564579B (zh) 一种利用激光熔覆制备铜基非晶复合涂层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant