CN109267134A - 一种铸造铝合金高硬度硬质阳极氧化工艺方法 - Google Patents

一种铸造铝合金高硬度硬质阳极氧化工艺方法 Download PDF

Info

Publication number
CN109267134A
CN109267134A CN201811438756.9A CN201811438756A CN109267134A CN 109267134 A CN109267134 A CN 109267134A CN 201811438756 A CN201811438756 A CN 201811438756A CN 109267134 A CN109267134 A CN 109267134A
Authority
CN
China
Prior art keywords
anodization
time
aluminium alloy
high rigidity
anodic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811438756.9A
Other languages
English (en)
Other versions
CN109267134B (zh
Inventor
程琳
肖飞
李丽
张欢
于洪波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese Hangfa Changchun Control Technology Co Ltd
Original Assignee
Chinese Hangfa Changchun Control Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese Hangfa Changchun Control Technology Co Ltd filed Critical Chinese Hangfa Changchun Control Technology Co Ltd
Priority to CN201811438756.9A priority Critical patent/CN109267134B/zh
Publication of CN109267134A publication Critical patent/CN109267134A/zh
Application granted granted Critical
Publication of CN109267134B publication Critical patent/CN109267134B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明属于材料表面处理领域,具体涉及一种铸造铝合金高硬度硬质阳极氧化工艺方法,包括阳极氧化步骤;采用阶梯直流电源方式进行硬质阳极氧化,阳极化基础电流密度为0.5A/dm2~0.8A/dm2,阳极氧化电流密度为1A/dm2~3A/dm2;阳极化槽液温度为‑5℃~5℃;阳极化时间包括缓启时间60min,阳极氧化总时间90~120min及缓降时间1min;阳极化终端电压为40V~54V;所述缓启时间是零件电流密度从0A/dm2升至阳极氧化电流密度所用时间;所述缓降时间是从氧化电流密度降至0A/dm2所需的时间。本发明提供的铸造铝合金高硬度硬质阳极氧化工艺方法,硬质阳极氧化后膜层金相显微硬度达HV≥350,能明显提高ZL101、ZL105铝合金使用的耐磨性及减小产品运动过程中产生的零件磨损,填补该材料在硬质阳极氧化膜层高硬度工艺的空白。

Description

一种铸造铝合金高硬度硬质阳极氧化工艺方法
技术领域
本发明属于材料表面处理领域,具体涉及一种铸造铝合金高硬度硬质阳极氧化工艺方法,适用于ZL101、ZL105等铝-硅系铸造铝合金。
背景技术
ZL101和ZL105属于铝-硅系列铸造铝合金,由于其优良的铸造工艺性被广泛运用于结构复杂、壁厚较薄或有气密性要求的铸造壳体零件上。该类零件通常承受相对滑动摩擦运动,为提高其表面耐磨性,一般采用硬质阳极化工艺方法。由于铸造铝合金中合金化元素含量比较高,气孔、针孔、疏松等缺陷较多,特别是含硅量较高铝-硅系列铝合金容易造成硅的偏析。另外,硅本身不能被氧化,以单质状态嵌在阳极氧化膜内,硅偏析位置的电流比较大,导致成膜困难及膜厚均匀性差,膜层易被击穿,严重影响膜层使用性能。因此在铸造铝合金获得高硬度(HV≥350)硬质阳极化膜层等良好性能的技术难度较大。根据我国标准GB/T19822-2005《铝及铝合金硬质阳极氧化膜》规定铜含量<2%(或)硅含量小于8%的铸造合金显微硬度HV0.05≥250,而在零件实际使用过程中提出了更高的耐磨性需求。但目前国内外的期刊杂志,还没有专门针对ZL101和ZL105铝合金硬质阳极化膜层硬度达HV350的阳极氧化工艺的报道。
发明内容
本发明的目的是提供一种铸造铝合金高硬度硬质阳极氧化工艺方法,硬质阳极氧化后的膜层金相显微硬度达HV≥350,明显提高ZL101、ZL105铝合金耐磨性及减小产品运动过程中产生的零件磨损。
为了实现上述目的,本发明的技术方案具体如下:
一种铸造铝合金高硬度硬质阳极氧化工艺方法,包括阳极氧化步骤;
所述阳极氧化步骤采用阶梯直流电源方式进行硬质阳极氧化,阳极化基础电流密度为0.5A/dm2~0.8A/dm2,阳极氧化电流密度为1A/dm2~3A/dm2;阳极化槽液温度为-5℃~5℃;阳极化时间包括缓启时间60min,阳极氧化总时间90~120min及缓降时间1min;阳极化终端电压为40V~54V;
所述缓启时间是零件电流密度从0A/dm2升至阳极氧化电流密度所用时间;
所述缓降时间是从氧化电流密度降至0A/dm2所需的时间。
在上述技术方案中,所述铸造铝合金高硬度硬质阳极氧化工艺方法适用于ZL101或ZL105铝合金。
在上述技术方案中,所述阳极氧化步骤的阳极氧化槽液成分及成分浓度分别是:硫酸:300~330g/L,Al3+<15g/L,其余为去离子水;所述硫酸密度为1.84g/mL。
在上述技术方案中,所述阳极氧化步骤还包括洁净压缩空气搅拌的步骤。
在上述技术方案中,所述阳极氧化电流密度为1A/dm2~1.2A/dm2,所述阳极化槽液温度为-5℃~-4.2℃,所述阳极化总时间90~100min,所述阳极化终端电压为50V~54V。
在上述技术方案中,所述阳极氧化电流密度为1A/dm2~1.1A/dm2,所述阳极化槽液温度为-5℃~-4.9℃,所述阳极化总时间100~110min,所述阳极化终端电压为45V~46V。
本发明的有益效果是:
本发明提供了一种铸造铝合金高硬度硬质阳极氧化工艺方法,主要从改变工艺方法进行摸索及改进、试验验证,包括电源方式、槽液温度、缓启时间、阳极氧化时间、终端电压及槽液浓度这几个方面的相互协同作用,硬质阳极氧化后膜层金相显微硬度达HV≥350,能明显提高ZL101、ZL105铝合金使用的耐磨性及减小产品运动过程中产生的零件磨损,填补该材料在硬质阳极氧化膜层高硬度工艺的空白。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1是本发明的铸造铝合金高硬度硬质阳极氧化工艺方法所采用的氧化时间与电流密度曲线关系图;
图2是本发明所提供的适用于ZL101、ZL105铝合金的铸造铝合金高硬度硬质阳极氧化工艺方法的流程图。
具体实施方式
下面结合附图对本发明做以详细说明。
本发明的发明思想为:本发明提供了一种铸造铝合金高硬度硬质阳极氧化工艺方法,与现有的硬质阳极化工艺在原理上都是相同的(见图2),不同的是,本发明在硬质阳极氧化过程中采用的工艺参数完全不同,而本发明所采用的工艺参数并不能通过有限次的试验摸索并得到,具体而言,本发明所提供的铸造铝合金高硬度硬质阳极氧化工艺方法如下:硬质阳极氧化过程采用阶梯直流电源方式进行阳极化(见图1),阶梯直流电源方式采用的基础电流密度为0.5A/dm2~0.8A/dm2,硬质阳极氧化电流密度为1A/dm2~3A/dm2,在初始0min~5min之内根据零件面积及基础电流密度,给出零件初始电流,在此电流值下氧化5min,随后根据图1阶梯电源方式进行阳极化,缓启60min后保持阳极化过程稳定氧化;阳极氧化槽液温度为-5℃~5℃,阳极化前根据槽液温度显示值,到规定温度后,用温度计在镀槽不同位置进行测量,保证槽液温度均匀性;阳极氧化总时间(90~120)min,阳极化过程结束后,零件终端电压为40V~54V;随后将槽端电流在1min内降至0。缓启时间是从零件电流密度从0升至基础电流密度所用时间;缓降时间是从氧化电流密度降至0所需的时间;硬质阳极氧化全程有洁净压缩空气搅拌。
与此同时,本发明还对硬质阳极氧化槽液进行重新设计,针对铸造铝合金ZL101和ZL105材料,该阳极氧化槽液具体配方:硫酸:300~330g/L,Al3+<15g/L,其余为去离子水;所述硫酸密度是1.84g/mL。
本发明主要针对材料航空发动机的零件ZL101、ZL105铝合金在硫酸体系中进行硬质阳极化,各工艺参数相互协同作用,将此材料硬质阳极化后膜层硬度HV≥350,提高零件表面耐磨性,填补该材料在硬质阳极化膜层高硬度工艺的空白。
在硫酸体系中不断调整槽液配方和工艺参数,分三个阶段进行试验:工艺参数摸索阶段,优化工艺参数后试验验证阶段,正式加工产品零件阶段,得出适合ZL101、ZL105铝合金高硬度硬质阳极化工艺。
本发明主要从改变工艺方法进行试验,包括电源方式、槽液温度、缓启时间、阳极化时间、终端电压及槽液浓度。下表1为几次主要试验情况统计,槽液成分:硫酸:300~330g/L,Al3+<15g/L以及剩余水为去离子水;所述硫酸密度是1.84g/mL。
表1ZL101、ZL105铝合金样件硬质阳极化试验情况明细表
通过多次验证试验,硬质阳极化膜层硬度均达到HV≥350。
结合试验情况需注意:
1)零件放入槽液中5min之内必须通电;
2)硬质阳极氧化前,槽液温度到规定温度后,用温度计在槽液不同位置进行测量,槽液温差在±1℃;
3)硬质阳极氧化时间视膜层厚度而定,一般当厚度要求不小于40μm时,阳极化时间不少于90min,且不宜超过120min;
4)在搅拌空气停止及停电情况下,由操作者立即在将零件从阳极化槽取出,然后立即进行静止冷水清洗及流动冷水清洗工序;
5)硬质阳极化槽不加工零件时应该加盖防护,防止槽液交叉污染。
实施实例:
1)采用本发明的工艺方法对XX-23壳体进行硬质阳极氧化;
2)槽液配方:
硫酸(H2SO4,ρ=1.84g/mL)按312g/L配制
Al3+<15g/L
其余为去离子水;
3)工艺参数:
采用阶梯电源方式进行硬质阳极化,基础电流密度为0.5A/dm2,阳极氧化电流密度为1.5A/dm2,终端电压为45V;
阳极化过程中槽液温度为-4.5℃;
压缩空气搅拌;
氧化时间:95min;
缓启时间:60min,缓降时间:1min;
4)实验结果:金相显微检测膜层横截面硬度为HV0.1=399。
由此可知,本发明提供了一种有效提高ZL101及ZL105铝合金硬质阳阳极氧化膜层硬度的工艺方法,金相显微硬度HV≥350,大幅度提高零件表面耐磨性,延长产品使用寿命。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (6)

1.一种铸造铝合金高硬度硬质阳极氧化工艺方法,包括阳极氧化步骤;
其特征在于,
所述阳极氧化步骤采用阶梯直流电源方式进行硬质阳极氧化,阳极化基础电流密度为0.5A/dm2~0.8A/dm2,阳极氧化电流密度为1A/dm2~3A/dm2;阳极化槽液温度为-5℃~5℃;阳极化时间包括缓启时间60min,阳极氧化总时间90~120min及缓降时间1min;阳极化终端电压为40V~54V;
所述缓启时间是零件电流密度从0A/dm2升至阳极氧化电流密度所用时间;
所述缓降时间是从氧化电流密度降至0A/dm2所需的时间。
2.根据权利要求1所述的铸造铝合金高硬度硬质阳极氧化工艺方法,其特征在于,所述工艺方法适用于ZL101或ZL105铝合金。
3.根据权利要求1或2所述的铸造铝合金高硬度硬质阳极氧化工艺方法,其特征在于,所述阳极氧化步骤的阳极氧化槽液成分及成分浓度分别是:硫酸:300~330g/L,Al3+<15g/L,其余为去离子水;所述硫酸密度为1.84g/mL。
4.根据权利要求3所述的铸造铝合金高硬度硬质阳极氧化工艺方法,其特征在于,所述阳极氧化步骤还包括洁净压缩空气搅拌的步骤。
5.根据权利要求3所述的铸造铝合金高硬度硬质阳极氧化工艺方法,其特征在于,所述阳极氧化电流密度为1A/dm2~1.2A/dm2,所述阳极化槽液温度为-5℃~-4.2℃,所述阳极化总时间90~100min,所述阳极化终端电压为50V~54V。
6.根据权利要求3所述的铸造铝合金高硬度硬质阳极氧化工艺方法,其特征在于,所述阳极氧化电流密度为1A/dm2~1.1A/dm2,所述阳极化槽液温度为-5℃~-4.9℃,所述阳极化总时间100~110min,所述阳极化终端电压为45V~46V。
CN201811438756.9A 2018-11-28 2018-11-28 一种铸造铝合金高硬度硬质阳极氧化工艺方法 Active CN109267134B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811438756.9A CN109267134B (zh) 2018-11-28 2018-11-28 一种铸造铝合金高硬度硬质阳极氧化工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811438756.9A CN109267134B (zh) 2018-11-28 2018-11-28 一种铸造铝合金高硬度硬质阳极氧化工艺方法

Publications (2)

Publication Number Publication Date
CN109267134A true CN109267134A (zh) 2019-01-25
CN109267134B CN109267134B (zh) 2020-12-01

Family

ID=65185844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811438756.9A Active CN109267134B (zh) 2018-11-28 2018-11-28 一种铸造铝合金高硬度硬质阳极氧化工艺方法

Country Status (1)

Country Link
CN (1) CN109267134B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408972A (zh) * 2019-08-14 2019-11-05 深圳市晋铭航空技术有限公司 一种基于分段电压的航空铝合金阳极氧化方法
CN111850654A (zh) * 2020-06-29 2020-10-30 沈阳富创精密设备有限公司 一种高温环境下使用的硬质阳极特殊工艺
CN112680763A (zh) * 2020-12-01 2021-04-20 河北汉光重工有限责任公司 一种高硬度氧化膜的铝合金阳极氧化方法
CN113584554A (zh) * 2021-08-16 2021-11-02 山西北方机械制造有限责任公司 一种铝合金硬质阳极氧化方法
CN113981501A (zh) * 2021-12-09 2022-01-28 陕西宝成航空仪表有限责任公司 高发射率阳极氧化黑色热控涂层工艺
CN114411220A (zh) * 2021-10-28 2022-04-29 中国航发西安动力控制科技有限公司 梯度升压的恒压精确控制草酸阳极化膜层厚度的工艺方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128461A (en) * 1978-03-27 1978-12-05 Sanford Process Corporation Aluminum hard anodizing process
CN103343374A (zh) * 2013-07-09 2013-10-09 浙江苏泊尔股份有限公司 一种铸铝合金工件的硬质阳极氧化处理方法
CN103484913A (zh) * 2013-09-16 2014-01-01 青岛聚蚨源机电有限公司 铝合金硬质阳极氧化处理工艺
CN103668385A (zh) * 2013-12-10 2014-03-26 常熟柏科汽车零件再制造有限公司 铸铝合金工件的硬质阳极氧化处理方法
CN104711652A (zh) * 2013-12-11 2015-06-17 贵州红林机械有限公司 用于处理硬铝合金的高硬度硬质阳极化工艺
CN105088303A (zh) * 2014-05-16 2015-11-25 哈尔滨飞机工业集团有限责任公司 一种7050超厚铝合金的硬质阳极化工艺方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128461A (en) * 1978-03-27 1978-12-05 Sanford Process Corporation Aluminum hard anodizing process
CN103343374A (zh) * 2013-07-09 2013-10-09 浙江苏泊尔股份有限公司 一种铸铝合金工件的硬质阳极氧化处理方法
CN103484913A (zh) * 2013-09-16 2014-01-01 青岛聚蚨源机电有限公司 铝合金硬质阳极氧化处理工艺
CN103668385A (zh) * 2013-12-10 2014-03-26 常熟柏科汽车零件再制造有限公司 铸铝合金工件的硬质阳极氧化处理方法
CN104711652A (zh) * 2013-12-11 2015-06-17 贵州红林机械有限公司 用于处理硬铝合金的高硬度硬质阳极化工艺
CN105088303A (zh) * 2014-05-16 2015-11-25 哈尔滨飞机工业集团有限责任公司 一种7050超厚铝合金的硬质阳极化工艺方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张允诚 等: ""电镀手册"", 《电镀手册》 *
张宇 等: ""铸造铝合金表面处理方法的研究进展"", 《电镀与精饰》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408972A (zh) * 2019-08-14 2019-11-05 深圳市晋铭航空技术有限公司 一种基于分段电压的航空铝合金阳极氧化方法
CN111850654A (zh) * 2020-06-29 2020-10-30 沈阳富创精密设备有限公司 一种高温环境下使用的硬质阳极特殊工艺
CN112680763A (zh) * 2020-12-01 2021-04-20 河北汉光重工有限责任公司 一种高硬度氧化膜的铝合金阳极氧化方法
CN113584554A (zh) * 2021-08-16 2021-11-02 山西北方机械制造有限责任公司 一种铝合金硬质阳极氧化方法
CN114411220A (zh) * 2021-10-28 2022-04-29 中国航发西安动力控制科技有限公司 梯度升压的恒压精确控制草酸阳极化膜层厚度的工艺方法
CN113981501A (zh) * 2021-12-09 2022-01-28 陕西宝成航空仪表有限责任公司 高发射率阳极氧化黑色热控涂层工艺
CN113981501B (zh) * 2021-12-09 2022-10-04 陕西宝成航空仪表有限责任公司 高发射率阳极氧化黑色热控涂层工艺

Also Published As

Publication number Publication date
CN109267134B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN109267134A (zh) 一种铸造铝合金高硬度硬质阳极氧化工艺方法
Pezzato et al. Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys
CN102953108B (zh) 一种自动控制硬质阳极氧化工艺
CN103484913B (zh) 铝合金硬质阳极氧化处理工艺
CN102264952B (zh) 金属的电解陶瓷涂布方法、金属的电解陶瓷涂布用电解液以及金属材料
Mohammadi et al. Modification of nanostructured anodized aluminum coatings by pulse current mode
CN105088303A (zh) 一种7050超厚铝合金的硬质阳极化工艺方法
US8728294B2 (en) Anodizing method and apparatus
Bononi et al. Pulsed current effect on hard anodizing process of 2024-T3 aluminium alloy
KR20150023839A (ko) 양극 산화 처리성이 우수한 알루미늄 합금 및 양극 산화 처리 알루미늄 합금 부재
CN103590088B (zh) 一种Ti2AlNb合金表面耐高温微弧氧化陶瓷涂层的制备方法
Li et al. Microstructure and abrasive wear behaviour of anodizing composite films containing SiC nanoparticles on Ti6Al4V alloy
KR100991265B1 (ko) 금속의 아노다이징 처리용 직류 및 교류 중첩 정류장치
CN110408975A (zh) 低压微弧氧化电解液、方法及其产品
KR100696000B1 (ko) 알루미늄 합금재의 아노다이징 전해액 조성물
CN105420781A (zh) 一种快速成膜铸铝硬质阳极氧化工艺
CN108103552A (zh) 用于ta2钛合金材料厚膜阳极化的工艺
JP4660760B2 (ja) アルミニウム又は/及びアルミニウム合金の陽極酸化皮膜の形成方法およびその方法により形成される陽極酸化皮膜
US6113770A (en) Method for anodizing using single polarity pulses
JP6283301B2 (ja) 絶縁性に優れた陽極酸化処理アルミニウム合金部材
JP2004502878A (ja) 銀塩含有処方を用いるアルミニウム又はアルミニウム合金に金色の表面を生じさせる方法
JP5777939B2 (ja) 陽極酸化膜生成方法
KR20220058691A (ko) 옥살산 아노다이징에서 알루미늄 합금의 후처리 방법 및 이 방법으로 제조된 알루미늄 합금
US3563867A (en) Anodising of aluminium and its alloys
RU2771409C1 (ru) Способ плазменно-электрохимического формирования наноструктурированного хромового покрытия и устройство для реализации способа

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant