CN109266685B - 快速基因编辑构建灵长类动物疾病模型的方法 - Google Patents

快速基因编辑构建灵长类动物疾病模型的方法 Download PDF

Info

Publication number
CN109266685B
CN109266685B CN201811099824.3A CN201811099824A CN109266685B CN 109266685 B CN109266685 B CN 109266685B CN 201811099824 A CN201811099824 A CN 201811099824A CN 109266685 B CN109266685 B CN 109266685B
Authority
CN
China
Prior art keywords
cells
plasmid
sgrna expression
expression plasmid
constructing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811099824.3A
Other languages
English (en)
Other versions
CN109266685A (zh
Inventor
赵永祥
钟莉娉
阳诺
周素芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201811099824.3A priority Critical patent/CN109266685B/zh
Publication of CN109266685A publication Critical patent/CN109266685A/zh
Application granted granted Critical
Publication of CN109266685B publication Critical patent/CN109266685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/106Primate
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种快速基因编辑构建灵长类动物疾病模型的方法,所述方法包括以下步骤:(a)使用gRNA寡核苷酸及pX330质粒构建sgRNA表达质粒;(b)使用活检穿刺针将所述步骤(a)中制备的sgRNA表达质粒注射到灵长类动物肝脏门静脉内,直至肝脏细胞出现癌变,获取模型。本发明通过由gRNA寡核苷酸及pX330质粒构建的sgRNA表达质粒,可直接注射到灵长类动物的肝脏组织,从而快速构建肿瘤模型。

Description

快速基因编辑构建灵长类动物疾病模型的方法
技术领域
本发明涉及人类疾病动物模型领域,更具体地说,涉及一种快速基因编辑构建灵长类动物疾病模型的方法。
背景技术
建立动物疾病模型是研究人类肿瘤的发病机制、药物筛选与疫苗开发的必要工具。由于啮齿类动物具有个体小、繁殖迅速、遗传背景清楚、转基因技术成熟等优势,小鼠、大鼠等啮齿类动物就成为生物医学最常用的模式动物。但啮齿类动物和人的亲缘关系比较远、种属差异大,这就限制了其在模拟人类疾病发生发展时的有效性。相对小鼠、大鼠而言,非人灵长类动物,如食蟹猴等,在遗传进化、神经、生理、免疫和基因序列等方面与人类高度近似,所以灵长类动物是研究人类基因功能及疾病最有价值的模式动物。
目前,小鼠肿瘤模型的构建主要是基于胚胎干细胞的基因打靶技术或是体细胞核移植技术,其通过对目标基因的敲除或敲入、对特定基因进行精确修饰的转基因动物而实现。
然而,在灵长类动物中,由于胚胎干细胞和体细胞核移植技术尚不成熟,因此,很难采用同样的技术策略获得精确基因修饰的动物疾病模型。传统的方法是通过对生殖细胞进行基因修饰来构建动物模型,但是灵长类动物食蟹猴的性成熟时间与繁殖周期长,花费代价高。
CRISPR-CAS9系统作为一种新的基因编辑工具备受关注。它主要是基于细菌的一种获得性免疫系统改造而成,当外源DNA入侵时,CRISPR-RNA指导CAS蛋白特异性剪切,在DNA靶位点产生DNA双链断裂(Double strand breaks,DSBs),DNA损伤后产生的DSBs激活细胞内固有的非同源末端连接(Non-homologous ending-joining,NHEJ)或同源重组(Homologous recombination,HR)两种不同的修复机制对损伤的DNA进行修复,从而实现对基因组的定点编辑。
然而,在与人类遗传背景最接近的灵长类大动物——食蟹猴体内的体细胞水平上,尚无法使用CRISPR技术来建立诱导疾病模型。
发明内容
本发明要解决的技术问题在于,针对上述灵长类动物建立肿瘤模型周期长、花费代价高的问题,提供一种快速基因编辑构建灵长类动物疾病模型的方法。
本发明解决上述技术问题的技术方案是,提供一种快速基因编辑构建灵长类动物疾病模型的方法,用于非诊断或治疗目的,所述方法包括以下步骤:
(a)使用gRNA寡核苷酸及pX330质粒构建sgRNA表达质粒;
(b)使用活检穿刺针将所述步骤(a)中制备的sgRNA表达质粒注射到灵长类动物肝脏门静脉内,直至肝脏细胞出现癌变,获取模型。
本发明所述的快速基因编辑构建灵长类动物疾病模型的方法中,所述步骤(a)包括:
(a1)将pX330质粒用Bbs I限制性内切酶切割后,用PCR清洁回收试剂盒回收;
(a2)使gRNA寡核苷酸单链退火形成双链,连接至Bbs I线性化的pX330质粒,获得sgRNA表达质粒。
本发明所述的快速基因编辑构建灵长类动物疾病模型的方法中,所述步骤(a)还包括:
(a3)对COS-7细胞使用DMEM培养基进行细胞培养;
(a4)取对数生长期的COS-7细胞,使用Lipofectamine 3000转染试剂转染,并在转染完成按照基因组提取试剂盒操作步骤提取基因组DNA;
(a5)使用Q5酶对提取的基因组DNA扩增靶位点,并进行T7E1酶切检测及TA克隆测序,在确认基因组DNA中p53基因靶位点序列产生基因突变后执行步骤(b)。
本发明所述的快速基因编辑构建灵长类动物疾病模型的方法中,所述步骤(a4)包括:取对数生长期的COS-7细胞铺六孔板,每孔细胞1.5×106,当细胞密度达到70%时,使用Lipofectamine 3000转染试剂转染,每个孔转染sgRNA表达质粒的量控制在2.5-3.0μg,转染后48小时收细胞,按照基因组提取试剂盒操作步骤提取基因组DNA。
本发明所述的快速基因编辑构建灵长类动物疾病模型的方法中,所述gRNA寡核苷酸包括碱基序列5’-CAATTCTGCCCTCACAGCTC-3’。
本发明所述的快速基因编辑构建灵长类动物疾病模型的方法中,所述步骤(b)包括:
(b1)在B超引导下,定位门静脉左支矢状部,选择安全进针路径,经腹部皮肤进针后,实时观察针尖位置,将酒精注射疗法针引导到达门静脉左支矢状部前壁前方,当有突破感且回抽见血后即可确定针尖成功进入门静脉管腔;
(b2)向管腔内快速推注120ug pX330-p53-sgRNA或对照质粒pX330-EGFP-sgRNA,注射体积控制在400μL内;
(b3)快速推注0.9%氯化钠注射液1ml,超声可见强回声弥散声像,证实经门静脉注射CRISPR-Cas质粒系统成功;
(b4)推注完成后,在超声实时观察下,将酒精注射疗法针退出体外;
(b5)所有操作完成后,超声扫查肝脏及肝周,排除出血及脏器损伤。
本发明所述的快速基因编辑构建灵长类动物疾病模型的方法中,所述步骤(b5)之后还包括:45天后,扩增靶位点并纯化扩增片段,对靶位点进行深度测序分析基因编辑情况。
本发明的快速基因编辑构建灵长类动物疾病模型的方法及用于特异性靶向灵长类动物肝脏细胞P53抑癌基因的sgRNA具有以下有益效果:通过由gRNA寡核苷酸及pX330质粒构建的sgRNA表达质粒,可直接注射到灵长类动物的肝脏组织,从而快速构建肿瘤模型。
附图说明
图1是pX330质粒结构及gRNA插入位置示意图;
图2是食蟹猴肝脏穿刺45天后对靶位点进行深度测序分析基因编辑情况示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明快速基因编辑构建灵长类动物疾病模型的方法,用于非诊断或治疗目的,包括以下步骤:
1.使用gRNA寡核苷酸及pX330质粒构建sgRNA表达质粒
上述gRNA寡核苷酸选择在第一个外显子靠近ATG的位置,按照N20NGG的设计原则设计,该gRNA寡核苷酸为单链并包括碱基序列5’–CAATTCTGCCCTCACAGCTC-3’(其反向序列5’–GAGCTGTGAGGGCAG AATTG-3’)。上述gRNA寡核苷酸由苏州金唯智公司(GENEWIZ Inc.)合成。表达Cas9蛋白和sgRNA的pX330质粒购买于Addgene公司(Addgene,Cambridge,MA,USA)。
在该步骤中,首先将pX330质粒用Bbs I限制性内切酶切割后,用PCR清洁回收试剂盒(购自Axygen公司(Axygen Inc.,USA))回收;然后使gRNA寡核苷酸单链退火形成双链,连接至Bbs I线性化的pX330质粒,获得sgRNA表达质粒pX330-p53-sgRNA。如图1所示,U6启动gRNA转录,CBh启动子启动Cas9蛋白表达,NLS是核定位信号。
该步骤中还可采用同样的方法,针对GFP基因,构建对照质粒pX330-GFP-sgRNA。
为验证上述sgRNA表达质粒pX330-p53-sgRNA是否构件成功,可先进行体外细胞检测,具体包括以下步骤:
(1)对COS-7细胞使用DMEM培养基进行细胞培养。上述cos-7细胞购自上海中科院细胞库,细胞培养使用DMEM培养基(含有10%胎牛血清和100U/mL青霉素、100μg/mL链霉素),37℃、5%CO2的细胞培养箱内常规培养。DMEM培养基、胎牛血清和青链霉素购自美国Gibco公司(GIBCO,Thermo Fisher Scientific Inc.,Waltham,MA,USA)。
(2)取对数生长期的COS-7细胞使用Lipofectamine 3000转染试剂转染,并在转染完成按照基因组提取试剂盒操作步骤提取基因组DNA。Lipofectamine 3000转染试剂购自美国Invitrogen公司(Invitrogen,Thermo Fisher Scientific Inc.,Waltham,MA,USA)。
在进行转染时,取对数生长期的COS-7细胞铺六孔板,六孔板的每孔细胞1.5×106。当细胞密度达到70%时,使用Lipofectamine 3000转染试剂转染,每个孔转染sgRNA表达质粒pX330-p53-sgRNA的量控制在2.5-3.0μg,以等量pX330-gRNA-GFP载体为阴性对照。转染后48小时收细胞,按照基因组提取试剂盒操作步骤提取基因组DNA。
(3)使用Q5酶对提取的基因组DNA扩增靶位点,并进行T7E1酶切检测及TA克隆测序,在确认基因组DNA中p53基因靶位点序列产生基因突变后执行后续步骤。
扩增靶位点以COS-7基因组DNA为模板,p53-F和p53-R为引物,反应条件如下:98℃,30s;35个循环(98℃,10s;60℃,15s;72℃,20s),72℃,2min;95℃,5min;–2℃/s降温至85℃;–0.1℃/s从85℃降温至25℃。在扩增靶位点后,立刻使用PCR清洁回收试剂盒回收,并将回收产物10μL,加入0.5μL T7E1酶(购自NEB公司(New England Biolabs,USA)),37℃酶切30min。用2%琼脂糖凝胶电泳分析。用Q5酶扩增靶位点序列,连接至T载体,连接产物转化感受态细胞,随机挑取30个单克隆测序。若COS细胞中的p53基因靶位点出现了碱基插入或缺失突变,则表明产生了基因突变。
2.使用活检穿刺针将步骤1中制备的sgRNA表达质粒注射到灵长类动物肝脏门静脉内,直至肝脏细胞出现癌变,获取模型。
在该步骤中,可选用健康的雄性食蟹猴,5至8岁,体重范围3.2-6.0kg,饲养在中国广西防城港常春生物技术开发有限公司食蟹猴医学应用研究基地,该研究基地通过AAALAC(Assessment And Accreditation Of Laboratory Animal Care)认证。在便携式彩超仪(Terason Co,MA,USA)的引导下,使用活检穿刺针将sgRNA表达质粒pX330-p53-sgRNA注射到食蟹猴肝脏门静脉内。
具体步骤如下:食蟹猴肌肉注射舒眠宁Ⅱ注射液(0.1ml/kg)及注射酚磺乙胺注射液(0.1g/只),麻醉成功后食蟹猴取平卧位固定于手术台上,术区剃毛、碘伏消毒、铺巾。在B超引导下,定位门静脉左支矢状部,选择安全进针路径,经腹部皮肤进针后,实时观察针尖位置,将酒精注射疗法针引导到达门静脉左支矢状部前壁前方,当有突破感且回抽见血后即可确定针尖成功进入门静脉管腔。然后,向管腔内快速推注120ug pX330-p53-sgRNA或对照质粒pX330-EGFP-sgRNA,注射体积控制在400μL内。紧接着,再快速推注0.9%氯化钠注射液1ml,超声可见强回声弥散声像,证实经门静脉注射CRISPR-Cas质粒系统成功。推注完成后,在超声实时观察下,将酒精注射疗法针退出体外。所有操作完成后,超声扫查肝脏及肝周,排除出血及脏器损伤。
sgRNA表达质粒pX330-p53-sgRNA肝脏穿刺45天后,扩增靶位点并纯化扩增片段,对靶位点进行深度测序分析基因编辑情况。通过深度测序显示,实验组6只食蟹猴,有3只食蟹猴在gRNA靶位点PAM区域附近检测到了突变,突变率为50%,突变情况有核酸序列的插入,也有核酸的缺失。经过软件分析显示,插入或缺失核苷酸的长度分布情况在1bp-20bp不等,有1个碱基的缺失和插入,也有20个碱基的缺失和插入。对深度测序的结果进行分析,实验组6只食蟹猴肝脏组织p53基因靶位点Indel的频率最高达到5.39%。
如图2所示,A为健康食蟹猴代表之一;B为注射对照质粒pX330-GFP-sgRNA的食蟹猴代表之一;C为注射sgRNA表达质粒pX330-p53-sgRNA食蟹猴代表之一。C食蟹猴出现了p53阳性细胞、CK19阳性细胞以及Ki67阳性细胞,如图中的圆圈所示。结果显示,C食蟹猴的肝癌细胞、胆管上皮细胞中p53、Ki67阳性率显著高于A食蟹猴和B食蟹猴。胆管上皮细胞中CK19强阳性,显著高于食蟹猴和B食蟹猴。
在sgRNA表达质粒pX330-p53-sgRNA肝脏穿刺2个月时,血清中的肿瘤标志物AFP、CA125、CA19-9明显升高;肝脏细胞、胆管上皮细胞出现了向恶性细胞转变的征象。这些结果提示肝癌开始形成;证明了CRISPR-Cas9系统能够通过B超微创介入技术经肝门静脉直接对食蟹猴原位肝脏细胞基因组的p53基因进行靶向编辑,从而引起体细胞P53抑癌基因缺失突变,快速诱导肝癌模型的建立。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (7)

1.一种快速基因编辑的试剂在制备构建食蟹猴疾病模型的产品的用途,其特征在于,所述试剂通过以下步骤制备:
(a)使用gRNA寡核苷酸及pX330质粒构建sgRNA表达质粒,所述gRNA寡核苷酸为碱基序列5’ - CAATTCTGCCCT CACAGCTC - 3’;
所述步骤(a)中制备的sgRNA表达质粒用于注射到食蟹猴肝脏门静脉内,直至肝脏细胞出现癌变,获取模型。
2.根据权利要求1所述的用途,其特征在于,所述步骤(a)包括:
(a1)将pX330质粒用Bbs I限制性内切酶切割后, 用PCR清洁回收试剂盒回收;
(a2)使gRNA寡核苷酸单链退火形成双链,连接至Bbs I线性化的pX330质粒,获得sgRNA表达质粒。
3.根据权利要求1或2所述的用途,其特征在于,所述步骤(a)还包括:
(a3)对COS-7细胞使用DMEM培养基进行细胞培养;
(a4)取对数生长期的COS-7细胞,使用Lipofectamine 3000转染试剂转染,并在转染完成按照基因组提取试剂盒操作步骤提取基因组DNA;
(a5)使用Q5酶对提取的基因组DNA扩增靶位点,并进行T7E1酶切检测及TA克隆测序,在确认基因组DNA中p53基因靶位点序列产生基因突变后执行后续步骤。
4.根据权利要求3所述的用途,其特征在于:所述步骤(a4)包括:取对数生长期的COS-7细胞铺六孔板,每孔细胞1.5 × 106,当细胞密度达到70%时, 使用Lipofectamine 3000转染试剂转染,每个孔转染sgRNA表达质粒的量控制在2.5-3.0μg,转染后48小时收细胞,按照基因组提取试剂盒操作步骤提取基因组DNA。
5.一种构建sgRNA表达质粒的方法,其特征在于,所述方法包括以下步骤:
(a)使用gRNA寡核苷酸及pX330质粒构建sgRNA表达质粒,所述gRNA寡核苷酸为碱基序列5’ - CAATTCTGCCCT CACAGCTC - 3’,所述sgRNA表达质粒用于注射到食蟹猴肝脏门静脉内,直至肝脏细胞出现癌变,以获取食蟹猴疾病模型;
所述步骤(a)包括:
(a1)将pX330质粒用Bbs I限制性内切酶切割后, 用PCR清洁回收试剂盒回收;
(a2)使gRNA寡核苷酸单链退火形成双链,连接至Bbs I线性化的pX330质粒,获得sgRNA表达质粒。
6.根据权利要求5所述的构建sgRNA表达质粒的方法,其特征在于,所述步骤(a)还包括:
(a3)对COS-7细胞使用DMEM培养基进行细胞培养;
(a4)取对数生长期的COS-7细胞,使用Lipofectamine 3000转染试剂转染,并在转染完成按照基因组提取试剂盒操作步骤提取基因组DNA;
(a5)使用Q5酶对提取的基因组DNA扩增靶位点,并进行T7E1酶切检测及TA克隆测序,在确认基因组DNA中p53基因靶位点序列产生基因突变后执行后续步骤。
7.根据权利要求6所述的构建sgRNA表达质粒的方法,其特征在于:所述步骤(a4)包括:取对数生长期的COS-7细胞铺六孔板,每孔细胞1.5 × 106,当细胞密度达到70%时, 使用Lipofectamine 3000转染试剂转染,每个孔转染sgRNA表达质粒的量控制在2.5-3.0μg,转染后48小时收细胞,按照基因组提取试剂盒操作步骤提取基因组DNA。
CN201811099824.3A 2018-09-20 2018-09-20 快速基因编辑构建灵长类动物疾病模型的方法 Active CN109266685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811099824.3A CN109266685B (zh) 2018-09-20 2018-09-20 快速基因编辑构建灵长类动物疾病模型的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811099824.3A CN109266685B (zh) 2018-09-20 2018-09-20 快速基因编辑构建灵长类动物疾病模型的方法

Publications (2)

Publication Number Publication Date
CN109266685A CN109266685A (zh) 2019-01-25
CN109266685B true CN109266685B (zh) 2022-08-19

Family

ID=65197765

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811099824.3A Active CN109266685B (zh) 2018-09-20 2018-09-20 快速基因编辑构建灵长类动物疾病模型的方法

Country Status (1)

Country Link
CN (1) CN109266685B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540353B (zh) * 2022-02-22 2023-04-07 广西医科大学 一种构建原位肝癌动物模型的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048338A2 (en) * 2001-12-05 2003-06-12 Mirus Corporation Nucleic acid injected into hepatic vein lumen and delivered to primate liver
CN103374587A (zh) * 2012-04-13 2013-10-30 中国人民解放军军事医学科学院野战输血研究所 一种小动物肝脏特异性基因转染方法以及以其为基础的转基因小动物模型的构建方法
CN105624195A (zh) * 2014-10-30 2016-06-01 北京大学 构建灵长类动物miRNA-122敲除模型的方法、灵长类动物肝癌模型及用途
CN105861552A (zh) * 2016-04-25 2016-08-17 西北农林科技大学 一种T7 RNA 聚合酶介导的CRISPR/Cas9基因编辑系统的构建方法
CN107868798A (zh) * 2017-03-31 2018-04-03 上海市公共卫生临床中心 一种基于基因敲除细胞的阳性筛选体系的建立方法
CN108143516A (zh) * 2016-12-05 2018-06-12 广东乾晖生物科技有限公司 食蟹猴急性肝功能衰竭模型的构建方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6156399A (en) * 1998-09-18 2000-04-10 Albert Einstein College Of Medicine Of Yeshiva University Upa/rag-2 mouse with mammalian repopulating hepatocytes for infection by hepadnaviruses
CN107354173A (zh) * 2016-12-26 2017-11-17 浙江省医学科学院 基于crispr技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048338A2 (en) * 2001-12-05 2003-06-12 Mirus Corporation Nucleic acid injected into hepatic vein lumen and delivered to primate liver
CN103374587A (zh) * 2012-04-13 2013-10-30 中国人民解放军军事医学科学院野战输血研究所 一种小动物肝脏特异性基因转染方法以及以其为基础的转基因小动物模型的构建方法
CN105624195A (zh) * 2014-10-30 2016-06-01 北京大学 构建灵长类动物miRNA-122敲除模型的方法、灵长类动物肝癌模型及用途
CN105861552A (zh) * 2016-04-25 2016-08-17 西北农林科技大学 一种T7 RNA 聚合酶介导的CRISPR/Cas9基因编辑系统的构建方法
CN108143516A (zh) * 2016-12-05 2018-06-12 广东乾晖生物科技有限公司 食蟹猴急性肝功能衰竭模型的构建方法
CN107868798A (zh) * 2017-03-31 2018-04-03 上海市公共卫生临床中心 一种基于基因敲除细胞的阳性筛选体系的建立方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The Mechanism of Naked DNA Uptake and Expression;Jon A.Wolff et al.;《Advances in Genetics》;20051231;第54卷;摘要,第8页第2段 *

Also Published As

Publication number Publication date
CN109266685A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
CN108610399B (zh) 特异性增强crispr-cas系统在表皮干细胞中进行基因编辑效率的方法
JP5774657B2 (ja) エレクトロポレーションを利用した哺乳類の遺伝子改変方法
CN109385451B (zh) 一种牡蛎CRISPR/Cas9基因编辑方法
CN106191071A (zh) 一种CRISPR‑Cas9系统及其用于治疗乳腺癌疾病的应用
CN111019971A (zh) 在rosa26位点条件性过表达hpv e6基因小鼠模型的构建方法
CN105177044B (zh) 通过敲除p53基因获得淋巴瘤小型猪疾病模型的方法
US20190032086A1 (en) Method for preparing a gene knock-out canine with somatic cell cloning technology
WO1993023552A1 (en) Targeting gene expression to living tissue using jet injection
Ohtsuka et al. i‐GONAD: A method for generating genome‐edited animals without ex vivo handling of embryos
CN109266685B (zh) 快速基因编辑构建灵长类动物疾病模型的方法
CN104611368A (zh) 重组后不产生移码突变的载体、在爪蛙基因组中进行基因定点敲入的方法及应用
Zhong et al. Generation of in situ CRISPR-mediated primary and metastatic cancer from monkey liver
CN110283851B (zh) 与恶性胸腔积液相关的靶点myo9b及其应用
Chen et al. Knock-in of a large reporter gene via the high-throughput microinjection of the CRISPR/Cas9 system
US20210348189A1 (en) Method for fast gene editing and constructing primate disease model
CN115992176A (zh) 一种构建可通过药物诱导Cas9蛋白表达的模型猪的方法
CN111705063B (zh) Asgr1突变基因及其在制备哺乳动物肝损伤敏感模型中的应用
CN113337507B (zh) Otof 1273 (C>T)基因定点突变的耳聋小鼠模型的构建方法及其应用
CN113717991A (zh) 一种编辑基因融合的方法
Bannier-Hélaouët et al. Establishment, maintenance, differentiation, genetic manipulation, and transplantation of mouse and human lacrimal gland organoids
KR102270151B1 (ko) Pkd2 넉아웃 질환모델용 돼지 및 이의 용도
CN110511962A (zh) 一种通过双位点切割实现猪Gjb2基因编码序列精准编辑的方法
CN109504707A (zh) 基于mitoTALENs的iPSCs线粒体DNA突变位点的修复方法
CN113913435B (zh) 基于p53基因获得小型猪肿瘤疾病模型的方法
CN111793606B (zh) 一种提高CRISPR/Cas9介导的同源修复效率的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhao Yongxiang

Inventor after: Zhong Lipin

Inventor after: Yang Nuo

Inventor after: Zhou Sufang

Inventor before: Zhao Yongxiang

Inventor before: Yang Nuo

Inventor before: Zhou Sufang

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant