CN109252196B - 一种制备MnCo2O4微纳米纤维的方法 - Google Patents

一种制备MnCo2O4微纳米纤维的方法 Download PDF

Info

Publication number
CN109252196B
CN109252196B CN201811163336.4A CN201811163336A CN109252196B CN 109252196 B CN109252196 B CN 109252196B CN 201811163336 A CN201811163336 A CN 201811163336A CN 109252196 B CN109252196 B CN 109252196B
Authority
CN
China
Prior art keywords
plating solution
mnco
sulfate
nickel foil
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811163336.4A
Other languages
English (en)
Other versions
CN109252196A (zh
Inventor
杨瑞嵩
蒋智炜
郑耀秋
谷惠玲
赵滟文
王倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University of Science and Engineering
Original Assignee
Sichuan University of Science and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University of Science and Engineering filed Critical Sichuan University of Science and Engineering
Priority to CN201811163336.4A priority Critical patent/CN109252196B/zh
Publication of CN109252196A publication Critical patent/CN109252196A/zh
Application granted granted Critical
Publication of CN109252196B publication Critical patent/CN109252196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明公开了一种制备MnCo2O4微纳米纤维的方法,包括以下步骤:(1)将硫酸锰、硫酸钴、硫酸铵、柠檬酸铵、十二烷基硫酸钠、乙二胺四乙酸溶于蒸馏水中配置成镀液A;硫酸钴、硫酸锰、硼酸、柠檬酸铵、乙酸钠、邻磺酰苯甲酰亚胺、乙二胺四乙酸溶于蒸馏水中配置成镀液B;(2)采用镍箔作为基材,在镀液A中采用脉冲电镀沉积形成金属镀层A;(3)在镀液B中,在金属镀层A上采用脉冲电镀沉积形成金属镀层B;(4)采用氧化法对含有镀层AB的镍箔进行氧化,得到MnCo2O4微纳米纤维。该方法工艺简单,成本低,制备出的MnCo2O4氧化彻底且尺寸分布均匀,不会形成MnCo2Ox副产物,满足工业化生产需求。

Description

一种制备MnCo2O4微纳米纤维的方法
技术领域
本发明涉及电化学技术领域,特别涉及一种制备MnCo2O4微纳米纤维的方法。
背景技术
MnCo2O4具有独特的结构特性和优异的磁性、光学、催化及电化学性能等,使其在电磁、催化、传感、电化学储能和固体燃料电池等领域有广阔的应用前景。MnCo2O4尖晶石的性能与其形貌、粒径密切相关,微纳米MnCo2O4尖晶石由于具有巨大的比表面积,性能大大提高。现有的制备技术通常是用于制备MnCo2O4微纳米颗粒、微纳米花等零维材料。对于一维的微纳米棒或微纳米纤维则鲜有报道。
Nissinen等(Preparation by Microwave-assisted Route Synthesis(MARS)andthe Effect of CarbonAdmixture。Chem.Mater.,2003,15(26):4974-4979.)采用两步法制备了MnCo2O4尖晶石纳米颗粒,氧化还原电催化活性大大提高。周国伟等(Controllablesynthesis and electrochemical properties of MnCo2O4nanorods and microcubes,Colloids and Surfaces A: Physicochem.Eng.Aspects 522(2017)525–535)采用水热法制备了纳米棒。但上述方法制备方法比较复杂,很难实现大规模工业化生产,限制了该方法的应用。
专利201610403183.0公开了一种电沉积法制备MnCo2O4尖晶石涂层的方法,该方法利用含钴源和锰源的镀液一次性电镀沉积成含有锰钴电镀层,然后氧化成MnCo2O4尖晶石涂层。由于Mn2+和Co2+电位差异较大,二者很难实现共沉积,虽然该方法采用一次性电镀实现了共沉积,但在后续的氧化过程中很难得到纤维状的MnCo2O4,只能制备层状的宏观二维结构,而宏观二维结构的MnCo2O4的催化、电化学性能远远不如一维的微纳米纤维状 MnCo2O4
发明内容
针对现有技术存在的上述不足,本发明的目的就在于提供一种制备MnCo2O4微纳米纤维的方法,以解决现有微纳米纤维状钴酸锰制备方法过于复杂和成本较高的问题。
本发明的技术方案是这样实现的:
一种制备MnCo2O4微纳米纤维的方法,包括以下步骤:
(1)将硫酸锰、硫酸钴、硫酸铵、柠檬酸铵、十二烷基硫酸钠和乙二胺四乙酸溶于蒸馏水中配置成镀液A,镀液A中各组分浓度为:硫酸锰100-300g/L、硫酸钴10-30g/L、硫酸铵50-150g/L、柠檬酸铵20-40g/L、十二烷基硫酸钠0.5-2.0g/L、乙二胺四乙酸0.5-1.5g/L;
将硫酸钴、硫酸锰、硼酸、柠檬酸铵、乙酸钠、邻磺酰苯甲酰亚胺和乙二胺四乙酸溶于蒸馏水中配置成镀液B,镀液B中各组分浓度为:硫酸钴300-500g/L、硫酸锰30-50g/L、硼酸30-80g/L、柠檬酸铵20-40g/L、乙酸钠1-5g/L、邻磺酰苯甲酰亚胺0.3-1.0g/L、乙二胺四乙酸0.5-1.5g/L;
(2)采用镍箔作为基材,在镀液A中,以铂电极作为阳极,镍箔作为阴极,在镍箔上脉冲电镀沉积形成金属镀层A;
(3)在步骤(2)的基础上,在镀液B中,以含有镀层A的镍箔作为阴极,铂电极作为阳极,在金属镀层A上脉冲电镀沉积形成金属镀层B;
(4)采用氧化法对含有金属镀层AB的镍箔进行氧化,即得到MnCo2O4微纳米纤维。
进一步,步骤(4)的氧化工艺为,将含有金属镀层AB的镍箔放入管式炉中,抽真空排除炉内空气,然后以流量30-100mL/min通入氮气;控制恒温水槽温度为20-40℃;通入氮气30min后,以100℃/h的升温速率对管式炉升温至900-1200℃,保温3-10h,然后停止加热随炉冷却至室温,取出样品,镍箔表面镀层AB即被氧化为MnCo2O4微纳米纤维。
进一步,步骤(2)和(3)的脉冲电镀工艺为,调节镀液的pH值为3.0-5.0,镀液温度为20-40℃,平均电流密度20-100mA/cm2,占空比0.3-0.7;在电镀过程中采用电磁搅拌镀液,搅拌速度50-150rev/min,通电时间3-20min。
进一步,步骤(2)和(3)的电镀工艺中,采用稀硫酸和稀氢氧化钠溶液调节镀液的pH值。
因Mn2+的电极电位为-1.179V,Co2+的电极电位为-0.277V,由此可知两者电极电位差异较大,两者很难在直流电镀的时候同时沉积在基底上。本发明采用脉冲电沉积两次电镀,第一次脉冲电镀沉积:镀液A中硫酸锰、硫酸钴作为锰源和钴源,从而得到含有少量Co的Mn镀层,这里少量Co作为后面氧化过程中便于扩散进行的活性点;第二次脉冲电镀沉积:镀液B中也是以硫酸锰、硫酸钴作为锰源和钴源,镀液B是为了得到的含有少量 Mn的Co镀层,这里少量的Mn也作为后面氧化过程中便于扩散进行的活性点。两次电镀获得了良好的具有较高的化学活性的金属锰和金属钴镀层,使得两种镀层在随后的氧化过程中方便进行扩散,从而有利于形成MnCo2O4纤维。
镀液A中的硫酸铵是为了增加导电性使用,十二烷基硫酸钠作阴离子型表面活化剂、乳化剂及发泡剂;镀液B中的硼酸、乙酸钠起缓冲作用,邻磺酰苯甲酰亚胺可以降低镀层内应力是镀层更平整,有利于氧化过程中纤维的生长。镀液A和镀液B中共有的组分柠檬酸铵和乙二胺四乙酸分别作为络合剂、螯合剂。
与现有技术相比,本发明具有如下有益效果:该方法工艺简单,成本低,制备出的MnCo2O4氧化彻底且尺寸分布均匀,不会形成MnCo2Ox副产物,满足工业化生产需求。
附图说明
图1-实施例1制备得到的MnCo2O4微纳米纤维电镜图。
图2-实施例1制备得到的MnCo2O4微纳米纤维XRD图谱。
图3-实施例2制备得到的MnCo2O4微纳米纤维电镜图。
图4-实施例2制备得到的MnCo2O4微纳米纤维XRD图谱。
图5-氧化装置示意图。
其中:1-氮气;2-调节阀;3-流量计;4-密封烧瓶;5-恒温水槽;6-管式炉;7-瓷盘;8-含有镀层AB的镍箔;9-真空泵。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
实施例1
一种制备MnCo2O4微纳米纤维的方法,包括以下步骤:
(1)将硫酸锰、硫酸钴、硫酸铵、柠檬酸铵、十二烷基硫酸钠和乙二胺四乙酸溶于蒸馏水中配置成镀液A备用,镀液A各组分浓度为:硫酸锰150g/L、硫酸钴15g/L、硫酸铵50g/L、柠檬酸铵30g/L、十二烷基硫酸钠0.5g/L、乙二胺四乙酸1g/L。
将硫酸钴、硫酸锰、硼酸、柠檬酸铵、乙酸钠、邻磺酰苯甲酰亚胺和乙二胺四乙酸溶于蒸馏水中配置成镀液B备用;镀液B中各组分浓度为:硫酸钴300g/L、硫酸锰30g/L、硼酸30g/L、柠檬酸铵20g/L、乙酸钠2g/L、邻磺酰苯甲酰亚胺0.3g/L、乙二胺四乙酸1g/L。
(2)采用镍箔作为基材,在镀液A中采用脉冲电沉积形成金属镀层A(该镀层主要是金属Mn,还含有少量Co)。具体的电沉积工艺为:采用铂电极作为阳极,镍箔作为阴极,采用稀硫酸和稀氢氧化钠溶液调节镀液A的pH为3.0,镀液温度为40℃,平均电流密度50mA/cm2,占空比0.4在电镀过程中采用电磁搅拌镀液,搅拌速度100rev/min,通电时间15min。
(3)在步骤(2)的基础上,在镀液B中,在镀层A上面电沉积金属镀层B(该镀层主要是金属Co,还含有少量Mn)。具体的电沉积工艺为:将含有镀层A的镍箔作为阴极,铂电极作为阳极,采用稀硫酸和稀氢氧化钠溶液调节镀液B的pH为4.0,平均电流密度 100mA/cm2,占空比0.6在电镀过程中采用电磁搅拌镀液,搅拌速度100rev/min,通电时间 5min。
(4)采用氧化法对含有镀层AB的镍箔进行氧化,得到MnCo2O4微纳米纤维。具体的氧化工艺为:采用如图5所示实验装置,将含有金属锰钴镀层的镍箔放入管式炉中,抽真空排除炉内空气,然后以流量100mL/min通入氮气;控制恒温水槽温度为30℃;通入氮气30min后,以100℃/h的升温速率对管式炉升温至1000℃,保温5h,然后停止加热随炉冷却至室温,取出样品,镍箔表面镀层AB被氧化为MnCo2O4微纳米纤维。
本实施例得到的MnCo2O4微纳米纤维的电镜照片见图1,由图1可知,该MnCo2O4微纳米纤维直径在1微米左右,尺寸分布比较均匀。该纤维的X射线衍射图谱见图2,由图2可知,该纤维完全由MnCo2O4组成(衍射峰和MnCo2O4的JCPDS标准卡片231237 一一对应),不存在杂质峰。
实施例2
一种制备MnCo2O4微纳米纤维的方法,包括以下步骤:
(1)将硫酸锰、硫酸钴、硫酸铵、柠檬酸铵、十二烷基硫酸钠和乙二胺四乙酸溶于蒸馏水中配置成镀液A备用;镀液A各组分浓度为:硫酸锰300g/L、硫酸钴30g/L、硫酸铵150g/L、柠檬酸铵40g/L、十二烷基硫酸钠1.5g/L、乙二胺四乙酸1.5g/L。
将硫酸钴、硫酸锰、硼酸、柠檬酸铵、乙酸钠、邻磺酰苯甲酰亚胺和乙二胺四乙酸溶于蒸馏水中配置成镀液B备用;镀液B中各组分浓度为:将硫酸钴500g/L、硫酸锰50g/L、硼酸80g/L、柠檬酸铵40g/L、乙酸钠5g/L、邻磺酰苯甲酰亚胺0.8g/L、乙二胺四乙酸1.5g/L。
(2)采用镍箔作为基材,在镀液A中采用脉冲电沉积形成金属镀层A(该镀层主要是金属Mn,还含有少量Co)。具体的电沉积工艺为:采用铂电极作为阳极,镍箔作为阴极,采用稀硫酸和稀氢氧化钠溶液调节镀液A的pH为4.0,镀液温度为30℃,平均电流密度30mA/cm2,占空比0.6在电镀过程中采用电磁搅拌镀液,搅拌速度100rev/min,通电时间10min。
(3)在步骤(2)的基础上,在镀液B中,在镀层A上面电沉积金属镀层B(该镀层主要是金属Co,还含有少量Mn)。具体的电沉积工艺为:将含有镀层A的镍箔作为阴极,铂电极作为阳极,采用稀硫酸和稀氢氧化钠溶液调节镀液B的pH为4.0,平均电流密度 80mA/cm2,占空比0.4在电镀过程中采用电磁搅拌镀液,搅拌速度100rev/min,通电时间 10min。
(4)采用氧化法对含有镀层AB的镍箔进行氧化,得到MnCo2O4微纳米纤维。具体的氧化工艺为:采用如图5所示实验装置,将含有金属锰钴镀层的镍箔放入管式炉中,抽真空排除炉内空气,然后以流量100mL/min通入氮气;控制恒温水槽温度为30℃;通入氮气30min后,以100℃/h的升温速率对管式炉升温至900℃,保温3h,然后停止加热随炉冷却至室温,取出样品,镍箔表面镀层AB被氧化为MnCo2O4微纳米纤维。
本实施例得到的MnCo2O4微纳米纤维的电镜照片见图3,由图3可知,该MnCo2O4微纳米纤维直径在1微米左右,尺寸分布比较均匀。该纤维的X射线衍射图谱见图4,由图4可知,该纤维完全由MnCo2O4组成(衍射峰和MnCo2O4的JCPDS标准卡片231237 一一对应),不存在杂质峰。
最后需要说明的是,本发明的上述实施例仅是为说明本发明所作的举例,而并非是对本发明实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (2)

1.一种制备MnCo2O4微纳米纤维的方法,其特征在于,包括以下步骤:
(1)将硫酸锰、硫酸钴、硫酸铵、柠檬酸铵、十二烷基硫酸钠和乙二胺四乙酸溶于蒸馏水中配置成镀液A,镀液A中各组分浓度为:硫酸锰100-300g/L、硫酸钴10-30g/L、硫酸铵50-150g/L、柠檬酸铵20-40g/L、十二烷基硫酸钠0.5-2.0g/L、乙二胺四乙酸0.5-1.5g/L;
将硫酸钴、硫酸锰、硼酸、柠檬酸铵、乙酸钠、邻磺酰苯甲酰亚胺和乙二胺四乙酸溶于蒸馏水中配置成镀液B,镀液B中各组分浓度为:硫酸钴300-500g/L、硫酸锰30-50g/L、硼酸30-80g/L、柠檬酸铵20-40g/L、乙酸钠1-5g/L、邻磺酰苯甲酰亚胺0.3-1.0g/L、乙二胺四乙酸0.5-1.5g/L;
(2)采用镍箔作为基材,在镀液A中,以铂电极作为阳极,镍箔作为阴极,在镍箔上脉冲电镀沉积形成金属镀层A;
(3)在步骤(2)的基础上,在镀液B中,以含有镀层A的镍箔作为阴极,铂电极作为阳极,在金属镀层A上脉冲电镀沉积形成金属镀层B;
(4)采用氧化法对含有金属镀层AB的镍箔进行氧化,即得到MnCo2O4微纳米纤维;
其中,步骤(2)和(3)的脉冲电镀工艺为,调节镀液的pH值为3.0-5.0,镀液温度为20-40℃,平均电流密度20-100mA/cm2,占空比0.3-0.7;在电镀过程中采用电磁搅拌镀液,搅拌速度50-150rev/min,通电时间3-20min;
其中,步骤(4)的氧化工艺为,将含有金属镀层AB的镍箔放入管式炉中,抽真空排除炉内空气,然后以流量30-100mL/min通入氮气;控制恒温水槽温度为20-40℃;通入氮气30min后,以100℃/h的升温速率对管式炉升温至900-1200℃,保温3-10h,然后停止加热随炉冷却至室温,取出样品,镍箔表面镀层AB即被氧化为MnCo2O4微纳米纤维。
2.根据权利要求1所述的制备MnCo2O4微纳米纤维的方法,其特征在于,步骤(2)和(3)的电镀工艺中,采用稀硫酸和稀氢氧化钠溶液调节镀液的pH值。
CN201811163336.4A 2018-09-30 2018-09-30 一种制备MnCo2O4微纳米纤维的方法 Active CN109252196B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811163336.4A CN109252196B (zh) 2018-09-30 2018-09-30 一种制备MnCo2O4微纳米纤维的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811163336.4A CN109252196B (zh) 2018-09-30 2018-09-30 一种制备MnCo2O4微纳米纤维的方法

Publications (2)

Publication Number Publication Date
CN109252196A CN109252196A (zh) 2019-01-22
CN109252196B true CN109252196B (zh) 2020-02-04

Family

ID=65045347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811163336.4A Active CN109252196B (zh) 2018-09-30 2018-09-30 一种制备MnCo2O4微纳米纤维的方法

Country Status (1)

Country Link
CN (1) CN109252196B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690961B (zh) * 2020-07-14 2021-09-07 四川轻化工大学 一种在FeCrNi合金表面制备氮掺杂MnCr2O4涂层的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756134B2 (en) * 2002-09-23 2004-06-29 United Technologies Corporation Zinc-diffused alloy coating for corrosion/heat protection
CN103746104A (zh) * 2013-12-09 2014-04-23 中国科学院福建物质结构研究所 锰钴氧化物自组装微米球及其制备与应用
CN105332029B (zh) * 2015-10-28 2017-08-25 西安科技大学 一种导电耐蚀钴锰尖晶石涂层的制备方法
CN105862134B (zh) * 2016-04-06 2018-03-02 四川理工学院 一种制备Mn3O4晶须的方法
CN105839155A (zh) * 2016-06-07 2016-08-10 沈阳飞机工业(集团)有限公司 一种电沉积法制备MnCo2O4尖晶石涂层的方法
CN106115798B (zh) * 2016-06-16 2017-10-31 齐鲁工业大学 一种MnCo2O4六角纳米棒和纳米立方体的制备方法
CN106629869B (zh) * 2016-11-22 2018-02-06 四川理工学院 一种Co2O3纳米片及其制备方法

Also Published As

Publication number Publication date
CN109252196A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
CN111790415B (zh) 一种b-p共掺杂双过渡金属催化剂及其制备方法与应用
JP2019206755A (ja) 水電解用複合電極一体型分離板及び水電解スタック
US10253423B2 (en) Method for making three-dimensional porous composite structure
CN108134093A (zh) 一种碳纳米管纸-金属或合金复合集流体及其制备方法
CN106811778A (zh) 组分和厚度可控的钯铜合金膜的制备及钯铜合金膜和应用
US20180319128A1 (en) Three-dimensional porous composite structure
CN101665951A (zh) 脉冲电沉积制备Ni-W-Fe-La纳米晶析氢电极材料工艺
CN101974770A (zh) 一种电沉积铱层的水溶液及其在该溶液中电沉积制备铱层的方法
CN110644016B (zh) 水电解离析氢用磷化镍-碳布自支撑电极的制备方法
CN100449038C (zh) 因瓦合金箔的制备方法
CN109252196B (zh) 一种制备MnCo2O4微纳米纤维的方法
CN108075142B (zh) 一种用于阴离子交换膜燃料电池纳米阵列催化层的制备方法
CN102115898A (zh) 一种电沉积制备大体积纳米镍铁合金晶体的方法
CN101586250B (zh) 一种复合涂层及其制备方法和应用
CN110975888B (zh) 一种过渡金属磷化物或硫化物的制备方法
CN110265681B (zh) 一种用于催化甲酸钠氧化的复合电极及其制备方法和用途
CN101593523B (zh) 一种l10型超高密度磁性记录金属薄膜的制备方法
CN110391428A (zh) 自支撑纳米多孔Mo/Mo2N@Ni3Mo3N复合材料及其制备方法和应用
CN102312257A (zh) 一种脉冲电沉积制备纳米晶镍-铁-钴三元合金的方法
CN210092222U (zh) 一种用于制备铂基核壳结构催化剂的微通道循环流动式脉冲电沉积装置
CN114525534A (zh) 一种活性电解水电极及其制备方法与应用
CN113130957A (zh) 采用分级多孔表面复合电极的热再生氨电池及制备方法
CN106024267A (zh) 超薄磁性带刺镍箔的制备方法
CN105586614A (zh) 一种三价铁体系碱性溶液电沉积因瓦合金的电镀溶液及电镀方法
CN111659397A (zh) 一种高性能的三维有序大孔介孔Ni-Co合金电催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant