CN109233275A - 一种高电导率聚吡咯凝胶及其制备方法 - Google Patents

一种高电导率聚吡咯凝胶及其制备方法 Download PDF

Info

Publication number
CN109233275A
CN109233275A CN201811158484.7A CN201811158484A CN109233275A CN 109233275 A CN109233275 A CN 109233275A CN 201811158484 A CN201811158484 A CN 201811158484A CN 109233275 A CN109233275 A CN 109233275A
Authority
CN
China
Prior art keywords
gel
polypyrrole
aqueous solution
solution
ferric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811158484.7A
Other languages
English (en)
Other versions
CN109233275B (zh
Inventor
夏友谊
吴玉真
王蒋超
刘宁
胡建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN201811158484.7A priority Critical patent/CN109233275B/zh
Publication of CN109233275A publication Critical patent/CN109233275A/zh
Application granted granted Critical
Publication of CN109233275B publication Critical patent/CN109233275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明提供了一种高电导率聚吡咯凝胶及其制备方法,属于导电高分子材料技术领域。本发明制备的高电导率聚吡咯凝胶,是由聚吡咯纳米粒子经线性组装、连接而成的多孔结构材料。其具体制备过程是:室温下,将紫红色铝试剂水溶液和吡咯单体按一定体积比混合、超声,得到A溶液。而后,将含三价铁离子水溶液一次性加至A溶液,室温下反应,经大量蒸馏水浸泡,得到聚吡咯凝胶。将此凝胶于‑20℃冷冻干燥2h后即可得高电导率聚吡咯凝胶。本发明所获得的聚吡咯凝胶导电性能优良,电导率高达8.7~11S/cm,有望作为新材料在超级电容器、电磁屏蔽、电催化等领域实际应用。此外,本发明制备过程方便、工艺简单、适合于规模化生产。

Description

一种高电导率聚吡咯凝胶及其制备方法
技术领域
本发明属于导电高分子材料技术领域,具体涉及一种高电导率聚吡咯凝胶及其制备方法。
背景技术
聚吡咯作为导电聚合物家族成员之一,具合成方便、稳定性佳的优势,并具有高电化学活性。由于上述优势,因此聚吡咯在化学、化工、新材料等领域有着良好的应用前景。典型的如,可作为超级电容器电极材料、防静电材料、电磁屏蔽材料、电催化材料等(李梅等,一种二硫化钼/聚吡咯超级电容器电极材料的制备方法和应用,申请号:CN201610417561.0)。因此,自聚吡咯被成功合成以来,有关聚吡咯的研究一直方兴未艾。
利用合适的化学氧化聚合方法,将聚吡咯形成凝胶状态的多孔结构,丰富了其比表面积,有助于提升其性能,如可获得高容量的超级电容特性(Yaqun Wang et al,Dopant-Enabled Supramolecular Approach for Controlled Synthesis of NanostructuredConductive Polymer Hydrogels,Nano Lett.2015,15,7736-7741)。近年来,聚吡咯凝胶的研究、开发非常活跃。然而,由于凝胶的天然多孔结构和属性,致使其密度较小,故目前聚吡咯凝胶材料普遍存在电导率较低的缺陷,因而较大程度限制了聚吡咯凝胶材料在多个方面,尤其是超级电容器用电活性电极材料领域的应用(樊新等,聚吡咯/氢氧化镍超级电容器复合电极材料的制备方法,申请号CN201711413852.3)。为此,开发高电导率聚吡咯凝胶材料成为亟待的一个重要问题。
发明内容
针对现有技术存在的以上问题,本发明提供了一种高电导率聚吡咯凝胶及其制备方法。
本发明提供的一种高电导率聚吡咯凝胶,是由聚吡咯纳米粒子(100~200nm)经线性组装、连接而成的多孔结构材料,电导率为8.7~11S/cm。
本发明同时提供了上述聚吡咯凝胶的制备方法,其具体步骤为:
a)室温下,将紫红色铝试剂水溶液(摩尔浓度为10mM)和吡咯单体按体积比1~10:1混合,超声5min,得到粉红色A溶液。所述铝试剂的分子式是C22H23N3O9,化学结构式如下:
b)按一定体积比,将含三价铁离子水溶液一次性加至A溶液,室温下反应30min后,经大量蒸馏水浸泡12h,得到聚吡咯水凝胶。将此水凝胶于-20℃冷冻干燥2h后即可得高电导率聚吡咯凝胶。所述三价铁离子水溶液为三氯化铁、硫酸铁或硝酸铁中的一种或它们的混合物,所述三价铁离子水溶液中三价铁离子的摩尔浓度为0.1~1M,所述三价铁离子水溶液和A溶液的体积比为1~10:1。
与现有技术相比,本发明具有以下技术效果:
1、本发明的聚吡咯凝胶合成过程中,引入了铝试剂这类多羧基共轭小分子,通过该特殊小分子的掺杂,桥连了聚吡咯大分子链,有助于电子在不同聚吡咯链上的迁移,因此所获得的聚吡咯凝胶导电性能优良,电导率高达8.7~11S/cm。故该凝胶材料作为超级电容器电极材料使用时电容性能良好,质量比电容可达420~506F/g(三电极测试体系,电流密度0.25A/g);
2、本发明的聚吡咯凝胶制备过程方便、工艺简单、适合于规模化生产,可作为新材料在超级电容器、电磁屏蔽、电催化等领域实际应用。
附图说明
图1为按照实施例1的操作步骤,分别选择圆盘状、长条状反应器皿所制备的圆盘状和长条状的聚吡咯凝胶数码照片;
如图1表明,聚吡咯凝胶可呈不同的形状,因此可根据具体的要求,选择不同形状的反应器皿,调控聚吡咯凝胶的形状。
图2为按照实施例1制备的聚吡咯凝胶的扫描电子显微电镜图片;
如图2表明,本发明的聚吡咯凝胶由聚吡咯纳米粒子(100~200nm)经线性组装、连接而成的多孔结构。
具体实施方式
以下结合具体实施例详述本发明,但本发明不局限于下述实施例。
实施例1
室温下,将紫红色铝试剂水溶液(摩尔浓度为10mM)和吡咯单体按体积比1:1混合,超声5min,得到粉红色A溶液。按一定体积比,将三氯化铁水溶液一次性加至A溶液,室温下反应30min后,经大量蒸馏水浸泡12h,得到聚吡咯水凝胶。将此水凝胶于-20℃冷冻干燥2h后即可得高电导率聚吡咯凝胶。所述三氯化铁水溶液中三价铁离子的摩尔浓度为0.1M,所述三氯化铁水溶液和A溶液的体积比为1:1。
所得聚吡咯凝胶导电性能优良,电导率高达8.7S/cm,作为超级电容器性能优良,质量比电容可达420F/g(三电极测试体系,电流密度0.25A/g)。
实施例2
室温下,将紫红色铝试剂水溶液(摩尔浓度为10mM)和吡咯单体按体积比10:1混合,超声5min,得到粉红色A溶液。按一定体积比,将硫酸铁水溶液一次性加至A溶液,室温下反应30min后,经大量蒸馏水浸泡12h,得到聚吡咯水凝胶。将此水凝胶于-20℃冷冻干燥2h后即可得高电导率聚吡咯凝胶。所述硫酸铁水溶液中三价铁离子的摩尔浓度为1M,所述硫酸铁水溶液和A溶液的体积比为10:1。
所得聚吡咯凝胶导电性能优良,电导率高达11S/cm,作为超级电容器性能优良,质量比电容可达506F/g(三电极测试体系,电流密度0.25A/g)。
实施例3
室温下,将紫红色铝试剂水溶液(摩尔浓度为10mM)和吡咯单体按体积比3:1混合,超声5min,得到粉红色A溶液。按一定体积比,将硝酸铁水溶液一次性加至A溶液,室温下反应30min后,经大量蒸馏水浸泡12h,得到聚吡咯水凝胶。将此水凝胶于-20℃冷冻干燥2h后即可得高电导率聚吡咯凝胶。所述硝酸铁水溶液中三价铁离子的摩尔浓度为0.3M,所述硝酸铁水溶液和A溶液的体积比为3:1。
所得聚吡咯凝胶导电性能优良,电导率高达9.2S/cm,作为超级电容器性能优良,质量比电容可达440F/g(三电极测试体系,电流密度0.25A/g)。
实施例4
室温下,将紫红色铝试剂水溶液(摩尔浓度为10mM)和吡咯单体按体积比5:1混合,超声5min,得到粉红色A溶液。按一定体积比,将含三价铁离子水溶液一次性加至A溶液,室温下反应30min后,经大量蒸馏水浸泡12h,得到聚吡咯水凝胶。将此水凝胶于-20℃冷冻干燥2h后即可得高电导率聚吡咯凝胶。所述三价铁离子水溶液中三价铁离子的摩尔浓度为0.5M,所述三价铁离子水溶液和A溶液的体积比为6:1。
所述三价铁离子水溶液为三氯化铁、硫酸铁和硝酸铁的混合水溶液,且该混合水溶液中三氯化铁、硫酸铁和硝酸铁三者物质的量比为1:1:1。
所得聚吡咯凝胶导电性能优良,电导率高达10.1S/cm,作为超级电容器性能优良,质量比电容可达460F/g(三电极测试体系,电流密度0.25A/g)。
实施例5
室温下,将紫红色铝试剂水溶液(摩尔浓度为10mM)和吡咯单体按体积比9:1混合,超声5min,得到粉红色A溶液。按一定体积比,将含三价铁离子水溶液一次性加至A溶液,室温下反应30min后,经大量蒸馏水浸泡12h,得到聚吡咯水凝胶。将此水凝胶于-20℃冷冻干燥2h后即可得高电导率聚吡咯凝胶。所述三价铁离子水溶液中三价铁离子的摩尔浓度为8M,所述三价铁离子水溶液和A溶液的体积比为9:1。
所述三价铁离子水溶液为三氯化铁和硝酸铁的混合水溶液,且该混合水溶液中三氯化铁和硝酸铁二者物质的量比为1:2。
所得聚吡咯凝胶导电性能优良,电导率高达10.8S/cm,作为超级电容器性能优良,质量比电容可达490F/g(三电极测试体系,电流密度0.25A/g)。

Claims (2)

1.一种高电导率聚吡咯凝胶,其特征在于,该聚吡咯凝胶是由100~200nm聚吡咯纳米粒子经线性组装、连接而成的多孔结构材料,该聚吡咯凝胶的电导率为8.7~11S/cm。
2.如权利要求1所述高电导率聚吡咯凝胶的制备方法,其特征在于包括如下步骤:
(1)室温下,将摩尔浓度为10mM的铝试剂水溶液和吡咯单体按体积比1~10:1混合,超声5min,得到A溶液;所述铝试剂的分子式是C22H23N3O9,化学结构式如下:
(2)将含三价铁离子水溶液一次性加至A溶液,室温下反应30min后,经大量蒸馏水浸泡12h,得到聚吡咯凝胶;将此凝胶于-20℃冷冻干燥2h后即可得高电导率聚吡咯凝胶;
所述三价铁离子水溶液为三氯化铁、硫酸铁或硝酸铁中的一种或多种,所述三价铁离子水溶液中三价铁离子的摩尔浓度为0.1~1M,所述三价铁离子水溶液和A溶液的体积比为1~10:1。
CN201811158484.7A 2018-09-30 2018-09-30 一种高电导率聚吡咯凝胶及其制备方法 Active CN109233275B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811158484.7A CN109233275B (zh) 2018-09-30 2018-09-30 一种高电导率聚吡咯凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811158484.7A CN109233275B (zh) 2018-09-30 2018-09-30 一种高电导率聚吡咯凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN109233275A true CN109233275A (zh) 2019-01-18
CN109233275B CN109233275B (zh) 2020-10-23

Family

ID=65054818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811158484.7A Active CN109233275B (zh) 2018-09-30 2018-09-30 一种高电导率聚吡咯凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN109233275B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0380726A1 (en) * 1989-01-31 1990-08-08 Rockwell International Corporation Production of polypyrrole gel suitable for casting conductive polypyrrole films
JP2007016133A (ja) * 2005-07-07 2007-01-25 Nippon Soda Co Ltd ポリピロール及びその製造方法
CN103601913A (zh) * 2013-11-15 2014-02-26 复旦大学 一种石墨烯/聚吡咯杂化气凝胶及制备方法
CN104130540A (zh) * 2014-07-29 2014-11-05 华南理工大学 一种纤维素基导电水凝胶及其制备方法与应用
CN105273187A (zh) * 2014-06-17 2016-01-27 中国科学院苏州纳米技术与纳米仿生研究所 弹性导电高分子水凝胶、海绵及其制备方法和应用
CN105368045A (zh) * 2014-08-27 2016-03-02 中国科学院苏州纳米技术与纳米仿生研究所 石墨烯-聚吡咯复合气凝胶及其制备方法与应用
CN106496639A (zh) * 2016-09-18 2017-03-15 南京林业大学 一种纳米纤维素‑聚吡咯‑聚乙烯醇复合导电水凝胶及其制备方法和应用
CN107137765A (zh) * 2017-04-24 2017-09-08 武汉理工大学 聚吡咯生物导电水凝胶及其制备方法和应用
US20170292008A1 (en) * 2016-04-11 2017-10-12 Board Of Regents, The University Of Texas System Conductive self-healing network
CN108109850A (zh) * 2017-11-10 2018-06-01 南京大学 一种碳基超级电容电极材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0380726A1 (en) * 1989-01-31 1990-08-08 Rockwell International Corporation Production of polypyrrole gel suitable for casting conductive polypyrrole films
JP2007016133A (ja) * 2005-07-07 2007-01-25 Nippon Soda Co Ltd ポリピロール及びその製造方法
CN103601913A (zh) * 2013-11-15 2014-02-26 复旦大学 一种石墨烯/聚吡咯杂化气凝胶及制备方法
CN105273187A (zh) * 2014-06-17 2016-01-27 中国科学院苏州纳米技术与纳米仿生研究所 弹性导电高分子水凝胶、海绵及其制备方法和应用
CN104130540A (zh) * 2014-07-29 2014-11-05 华南理工大学 一种纤维素基导电水凝胶及其制备方法与应用
CN105368045A (zh) * 2014-08-27 2016-03-02 中国科学院苏州纳米技术与纳米仿生研究所 石墨烯-聚吡咯复合气凝胶及其制备方法与应用
US20170292008A1 (en) * 2016-04-11 2017-10-12 Board Of Regents, The University Of Texas System Conductive self-healing network
CN106496639A (zh) * 2016-09-18 2017-03-15 南京林业大学 一种纳米纤维素‑聚吡咯‑聚乙烯醇复合导电水凝胶及其制备方法和应用
CN107137765A (zh) * 2017-04-24 2017-09-08 武汉理工大学 聚吡咯生物导电水凝胶及其制备方法和应用
CN108109850A (zh) * 2017-11-10 2018-06-01 南京大学 一种碳基超级电容电极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YAQUN WANG等: "Dopant-Enabled Supramolecular Approach for Controlled Synthesis of Nanostructured Conductive Polymer Hydrogels", 《NANO LETT》 *
张玉龙主编: "《高技术复合材料制备手册》", 31 May 2003, 国防工业出版社 *

Also Published As

Publication number Publication date
CN109233275B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
ur Rehman et al. Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance
Chen et al. Three-dimensional nitrogen-doped graphene/MnO nanoparticle hybrids as a high-performance catalyst for oxygen reduction reaction
Beydaghi et al. Aligned nanocomposite membranes containing sulfonated graphene oxide with superior ionic conductivity for direct methanol fuel cell application
CN108054021B (zh) 碳酸氢镍-聚多巴胺-石墨烯复合材料及制备方法和应用
CN104437278B (zh) 一种杂原子掺杂的树叶状结构的碳纳米气凝胶材料及其制备方法和应用
Ru et al. Preparation and characterization of water-soluble carbon nanotube reinforced Nafion membranes and so-based ionic polymer metal composite actuators
Kalaiselvimary et al. Preparation and characterization of chitosan-based nanocomposite hybrid polymer electrolyte membranes for fuel cell application
Xu et al. Facile synthesis of polyaniline/NiCo 2 O 4 nanocomposites with enhanced electrochemical properties for supercapacitors
CN107342437A (zh) 一种掺有改性纳米填料的固态聚合物电解质及其制备方法
CN110415992A (zh) 一种多孔结构的氮、硫掺杂碳材料制备方法及其应用
CN110305347A (zh) 改性壳聚糖基质子交换膜及其制备方法
CN106082162B (zh) 一种超级电容器含氮多孔碳材料的制备方法
Kamoun et al. Ion conducting nanocomposite membranes based on PVA-HA-HAP for fuel cell application: II. Effect of modifier agent of PVA on membrane properties
CN106205780B (zh) 一种木材刨片基柔性电极材料的制备方法
CN108597896A (zh) 一种树叶形状的磷酸钴纳米片的制备方法及应用
Compañ et al. Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes
Rehman et al. Chemically tethered functionalized graphene oxide based novel sulfonated polyimide composite for polymer electrolyte membrane
CN110335757A (zh) 一种铜锡硫Cu2SnS3/碳量子点复合材料及其制备方法和在超级电容器中的应用
CN109741964A (zh) 氧化铁-聚多巴胺-石墨烯复合材料、其制备方法及应用
Poongan et al. Effect of ZrO2 nanoparticles on phosphoric acid-doped poly (Ethylene imine)/Polyvinyl alcohol) membrane for medium-temperature polymer electrolyte membrane fuel cell applications
Vanitha et al. Investigation of N–S-based graphene quantum dot on sodium alginate with ammonium thiocyanate (NH4SCN) biopolymer electrolyte for the application of electrochemical devices
CN109904007A (zh) 一种海绵状氮硫共掺杂多孔碳电极材料的制备方法
Yu et al. Growing spherical polypyrrole nanoparticles onto the magnetic carbon aerogel for improving electrochemical performance for supercapacitors
CN109233275A (zh) 一种高电导率聚吡咯凝胶及其制备方法
CN105860066A (zh) 一种具有负介电常数的碳纳米管/聚吡咯纳米粒子的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant