CN109231996B - 氮化硼-氮化硅夹层宽频透波材料及其制备方法 - Google Patents

氮化硼-氮化硅夹层宽频透波材料及其制备方法 Download PDF

Info

Publication number
CN109231996B
CN109231996B CN201811205941.3A CN201811205941A CN109231996B CN 109231996 B CN109231996 B CN 109231996B CN 201811205941 A CN201811205941 A CN 201811205941A CN 109231996 B CN109231996 B CN 109231996B
Authority
CN
China
Prior art keywords
silicon nitride
interlayer
boron nitride
sintering
transmitting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811205941.3A
Other languages
English (en)
Other versions
CN109231996A (zh
Inventor
李端
李斌
于秋萍
高世涛
杨雪金
侯寓博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201811205941.3A priority Critical patent/CN109231996B/zh
Publication of CN109231996A publication Critical patent/CN109231996A/zh
Application granted granted Critical
Publication of CN109231996B publication Critical patent/CN109231996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种氮化硼‑氮化硅夹层宽频透波材料的制备方法,包括以下步骤:以氮化硅陶瓷粉体为原料,采用凝胶注模法制得多孔氮化硅坯体;将多孔氮化硅坯体的上下表面铺排氮化硼混合粉后采用放电等离子烧结工艺进行烧结,得到夹层陶瓷;将夹层陶瓷进行除碳处理,得氮化硼‑氮化硅夹层宽频透波材料。本发明制备的氮化硼‑氮化硅夹层宽频透波材料不开裂、层间结合好且微观结构可调,可应用于高温宽频天线罩等透波部件。

Description

氮化硼-氮化硅夹层宽频透波材料及其制备方法
技术领域
本发明涉及高温透波复合材料领域,尤其涉及一种氮化硼-氮化硅夹层宽频透波材料及其制备方法。
背景技术
反辐射导弹逐渐成为现代高科技战争中压制防空系统、夺取战场电磁优势、充分发挥空袭武器装备效能的重要手段。其导引头需要工作在很宽的频段范围内以覆盖雷达工作频率(0.1~40 GHz),这就要求其具有良好的宽频透波性能;而导弹在高速飞行中又承受着气动载荷和环境粒子、雨流的冲刷等苛刻环境;同时,雷达导引系统还要满足对功率传输系数、瞄准误差和瞄准误差斜率等电气性能的要求,以顺利完成精确制导及引爆等任务。这就对位于导弹头部的天线罩及其材料提出了严苛要求,如耐高温、宽频带、抗烧蚀、高承载、低瞄准误差等。
天线罩获得宽频透波性能主要有两种技术途径:一是材料设计,即选择介电常数和介电损耗极低的介质材料;二是结构设计,使其具有特殊的结构以满足电性能要求。在材料方面,以氮化物陶瓷(氮化硅、氮化硼)为基本组成的陶瓷基复合材料天线罩综合性能优异,可满足应用需求。在结构设计方面,采用夹层结构是有效拓宽频带的方式,其原理是通过合理设计每层的介电常数、层数和厚度,使其产生的反射在一定频带范围内能相互抵消,以致在所要求的整个频带内反射极小。
美国Boeing Aerospace公司利用反应烧结氮化硅制备的多倍频宽带天线罩罩壁结构分为两层,即较薄的高密度氮化硅表层和较厚的低密度(0.6~1.8 g/cm3)氮化硅内层(F.H. Simpson, et al. Controlled density silicon nitride material.Proceedings of the 16th symposium on electromagnetic windows, Atlanta, GA,1982)。
美国空军开发出具有三段结构的氮化硅宽频天线罩,其前段密度为0.75~1.0 g/cm3,后部密度为1.6~2.0 g/cm3,中间段的密度居中。该天线罩材料通过加入一种填料,使其在高温下升华形成多孔结构,通过控制加入填料的量来调节产物不同部位的密度(J.Verzemnieks, et al. Silicon nitride articles with controlled multi-densityregions. US Patent, 5103239, 1992)。
以色列也开发出具有双层结构的氮化硅天线罩,通过液相无压烧结和反应烧结工艺制得,其介电常数为2.5~8.0,损耗角正切低于3×10-3,具有较好的力学性能及耐高温、耐雨蚀、耐烧蚀性能(J. Barta, et al. Preparation and properties of siliconnitride for radome applications. Proceedings of the 16th symposium onelectromagnetic windows, Atlanta, GA, 1982)。
CN201611161843.5公开了一种氮化硅宽频带透波材料及其制备方法,包含7层材料,每层通过多层氮化硅薄膜叠加而成,而氮化硅薄膜则不同比例Si3N4、Al2O3、Y2O3、造孔剂和分散剂组成的浆料通过流延成型制备而成。
以上均采用传统反应或无压烧结方法制备夹层透波陶瓷材料,对致密层通常需经过多次成型和烧结。而氮化物陶瓷的B-N、Si-N等共价键键能高,原子扩散系数低,在不添加烧结助剂的情况下,采用传统烧结方法在低温下很难实现烧结,高温下则需要较长的保温时间,使得晶粒过度生长;而其微观结构(气孔、晶界、晶粒尺寸等)对陶瓷力学、介电和透波性能均有深远影响。此外,夹层材料在传统烧结过程中极易因收缩不均匀而引起开裂。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种快速烧结且夹层界面结合好的氮化硼-氮化硅夹层宽频透波材料及其制备方法。
为解决上述技术问题,本发明采用以下技术方案:
一种氮化硼-氮化硅夹层宽频透波材料的制备方法,包括以下步骤:
S1、将聚合物单体、交联剂、分散剂、造孔剂和去离子水混合,得到混合溶液;以氮化硅陶瓷粉体和烧结助剂I为混合固相,加入至混合溶液中进行球磨预处理,得到预混合浆液;
S2、向步骤S1所得的预混合浆料加入pH调节剂至pH值为8.5~11.5,球磨,得到混合浆料,将所述混合浆料在搅拌条件下进行真空除气,加入引发剂混合,得到注模浆料;
S3、将步骤S2所得的注模浆料进行注模成型,待浆料完全固化后进行脱模、干燥、排胶处理,得到多孔氮化硅坯体;
S4、将步骤S3所得的多孔氮化硅坯体的上下表面铺排氮化硼混合粉,采用放电等离子烧结工艺进行烧结,得到夹层陶瓷;所述氮化硼混合粉为氮化硼和烧结助剂II;
S5、步骤S4所得的夹层陶瓷进行除碳处理,即得氮化硼-氮化硅夹层宽频透波材料。
优选地,所述步骤S4中,所述放电等离子烧结工艺的具体步骤为:以10℃/min~200℃/min的升温速率升温至1400℃~2000℃进行放电等离子烧结,保温1min~60min后,随炉冷至室温,其中,烧结时的压力为10MPa~50MPa,烧结气氛为氮气、氦气、氩气或真空的一种。
更优选地,所述步骤S4中,所述放电等离子烧结工艺中,所述升温速率为60℃/min~120℃/min,烧结温度为1550℃~1850℃,保温时间为5min~30min,烧结压力为20MPa~30MPa,烧结气氛为氮气。
优选地,所述步骤S4中,所述烧结助剂II为A12O3、Y2O3和B2O3,所述氮化硼与烧结助剂II中A12O3、Y2O3、B2O3的质量比为100∶0.1~10∶0.1~8∶0.1~3。
更优选地,所述氮化硼与烧结助剂II中A12O3、Y2O3、B2O3的质量比为100∶2~8∶1~5∶0.5~2。
优选地,所述步骤S1中,所述烧结助剂I为SiO2和Al2O3,所述氮化硅陶瓷粉体与烧结助剂I中SiO2、Al2O3的质量比为100∶0.1~3∶0.1~5。
更优选地,所述氮化硅陶瓷粉体与烧结助剂I中SiO2、Al2O3的质量比为100∶0.5~2∶0.5~3。
优选地,所述步骤S1中,所述聚合物单体为丙烯酰胺,交联剂为N’N-亚甲基双丙烯酰胺,所述分散剂为JA-281,所述丙烯酰胺、N’N-亚甲基双丙烯酰胺和JA-281的质量体积比为1g~20g∶0.1g~2g∶20μL~1000μL;所述造孔剂为正己烷,所述正己烷在混合溶液中的质量分数为1 wt%~20wt%。
更优选地,所述正己烷在混合溶液中的质量分数为3wt%~10wt%,所述丙烯酰胺、N’N-亚甲基双丙烯酰胺和JA-281的质量体积比为1 g~20g∶0.1 g~2g∶20μL~1000μL。
优选地,所述步骤S2中,所述引发剂为质量分数为15%的2,2’-偶氮(2-甲基丙基醚)二盐酸盐的水溶液,所述引发剂与混合固相的体积质量比为5μL~50μL∶1g。
优选地,所述步骤S2中,所述pH调节剂为四甲基氢氧化铵,所述球磨的时间为2h~6h,所述搅拌的速率为800 r/min~1200r/min。
优选地,所述步骤S3中,所述注模成型的温度为50℃~120℃,注模成型保温固化的时间为10min~300min,所述排胶处理的具体步骤为:在600℃~800℃的温度下保温1h~6h。
优选地,所述步骤S5中,所述除碳处理的具体步骤为:升温至400℃~1000℃保温0.5h~12h。
更优选地,所述步骤S5中,所述除碳处理温度为600℃~800℃,保温时间为1h~6h。
作为一个总的发明构思,本发明还提供一种氮化硼-氮化硅夹层宽频透波材料,由前述的制备方法制得,包括两蒙皮层和位于两蒙皮层之间的芯层,所述芯层为氮化硅层,所述蒙皮层为氮化硼层。
与现有技术相比,本发明的优点在于:
1、本发明利用放电等离子烧结工艺一步成型并烧结氮化硼-氮化硅夹层宽频透波材料,放电等离子烧结技术(Spark Plasma Sintering,SPS)具有升温速率快、烧结温度较低、烧结时间短、可控制晶粒生长、材料微观结构可调等优点。在烧结过程中由于具有焦耳效应和电场效应,材料在短时间内可实现致密化,且在晶粒接触表面可发生电弧放电,使其局部熔融粘结,故蒙皮层与芯层界面结合强度高,材料不开裂。
2、本发明的放电等离子烧结工艺中,控制所加的烧结压力为10MPa~50MPa,中间芯层保留了其多孔结构,高温下氮化硅的分解得到有效抑制,且蒙皮层能得到有效致密化,这些是普通烧结方式无法达到的效果。
3、本发明采用凝胶注模法(步骤S1~S3)制备多孔氮化硅芯层,其工艺简便,材料微观结构可调,通过控制预混合浆料中氮化硅陶瓷粉体的固相含量、造孔剂用量、烧结助剂的含量以及交联剂的比例等,可控制最终多孔氮化硅坯体中的气孔率、孔径大小与分布,且所制备的多孔氮化硅坯体具有较高的机械强度和良好的微观均匀性。
附图说明
图1为本发明实施例1制备的氮化硼-氮化硅夹层宽频透波材料的结构示意图。
图2为本发明实施例1制得的氮化硼-氮化硅夹层宽频透波材料料的光学照片。
图3为本发明实施例1制得的氮化硼-氮化硅夹层宽频透波材料断面的SEM照片。
图中各标号表示:
1、蒙皮层;2、芯层。
具体实施方式
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。
以下材料和仪器均为市售。
本发明的一种氮化硼-氮化硅夹层宽频透波材料的制备方法,包括以下步骤:
S1、将聚合物单体、交联剂、分散剂、造孔剂和去离子水混合,得到混合溶液;以氮化硅陶瓷粉体和烧结助剂I为混合固相,加入至混合溶液中进行球磨预处理,得到预混合浆液;
S2、向步骤S1所得的预混合浆料加入pH调节剂至pH值为8.5~11.5,球磨,得到混合浆料,将所述混合浆料在搅拌条件下进行真空除气,加入引发剂混合,得到注模浆料;
S3、将步骤S2所得的注模浆料进行注模成型,待浆料完全固化后进行脱模、干燥、排胶处理,得到多孔氮化硅坯体;
S4、将步骤S3所得的多孔氮化硅坯体的上下表面铺排氮化硼混合粉,采用放电等离子烧结工艺进行烧结,得到夹层陶瓷;
S5、步骤S4所得的夹层陶瓷进行除碳处理,即得氮化硼-氮化硅夹层宽频透波材料。
本发明利用放电等离子烧结工艺一步成型并烧结氮化硼-氮化硅夹层宽频透波材料,在烧结过程中由于具有焦耳效应和电场效应,材料在短时间内可实现致密化,且在晶粒接触表面可发生电弧放电,使其局部熔融粘结,故蒙皮层与芯层界面结合强度高,材料不开裂。
实施例1:
本实施例的一种氮化硼-氮化硅夹层宽频透波材料的制备方法,包括以下步骤:
S1、将7g丙烯酰胺、0.3gN’N-亚甲基双丙烯酰胺、400μL分散剂JA-281(密度1.06g/mL)以及10g造孔剂正己烷加入到60mL去离子水中,配置成混合溶液,之后将100g氮化硅陶瓷粉体、3g烧结助剂(Al2O3与SiO2质量比1:1)与配置好的混合溶液混合,球磨60min,得到预混合浆料;
S2、在步骤S1所得预混合浆料中加入四甲基氢氧化铵至预混合浆料的pH值为9.8,继续球磨4h,得到混合浆料;然后在800r/min的速率下进行搅拌并抽真空除去混合浆料中的气体,继而加入2.44mL引发剂(本实施例采用质量分数为15%的2,2’-偶氮(2-甲基丙基醚)二盐酸盐的水溶液)并继续抽真空数分钟,得到注模浆料;
S3、将步骤S2所得的注模浆料进行注模,并在70℃条件下保温固化50min,脱模后干燥,并在600℃下保温2h进行排胶处理,得到氮化硅陶瓷坯体;
S4、将步骤S3所得的多孔氮化硅坯体置于石墨模具中,上下表面铺排氮化硼混合粉(质量比为BN∶A12O3∶Y2O3∶B2O3=100∶6∶4∶1),采用放电等离子设备进行烧结,升温速率为100℃/min,烧结温度为1750℃,保温时间为15min,烧结压力为30MPa,烧结气氛为氮气;
S5、将步骤S4所得的夹层陶瓷打磨后,在空气气氛中700℃下保温2h进行除碳处理,即得到氮化硼-氮化硅夹层宽频透波材料,其结构示意图和光学照片分别如图1和图2所示。
如图1所示,本实施例的氮化硼-氮化硅夹层宽频透波材料,包括两蒙皮层1和位于两蒙皮层1之间的芯层2,芯层2为多孔氮化硅层,蒙皮层1为致密氮化硼层。
由图2可知,本实施例所制备氮化硼-氮化硅夹层宽频透波材料的样品直径为60mm,厚度为4.2 mm。其中芯层2厚度约为2.0 mm,蒙皮层1厚度约为1.1 mm。
由图3可知,上层芯层2为氮化硅,下层蒙皮层1为氮化硼,二者结合紧密,且表面无分层或碎裂。
经检测,本实施例制备的氮化硼-氮化硅夹层宽频透波材料,芯层2主要为棒状的β-Si3N4,而蒙皮层1主要为片层状的h-BN;在室温和1200℃的弯曲强度分别为88.2 MPa和33.7 MPa,弹性模量分别为38.8 GPa和17.2 GPa;通过仿真计算,在2GHz~18 GHz内的平均功率透过系数为97.4%(θ=0°),97.0%(θ=20°),95.4%(θ=40°)和88.8%(θ=60°)。
对比例1:
本对比例的制备方法与实施例1大致相同,不同之处在于:
步骤S4中,烧结压力为5MPa,烧结气氛为真空。
由于采用真空气氛以及过低的烧结压力,从化学热力学上不利于氮化硅的稳定,所得样品的氮化硅芯层2发生严重分解,芯层2和蒙皮层1剥离。
实施例2:
本实施例的制备方法与实施例1大致相同,不同之处在于:
步骤S4中,烧结温度为1850℃,烧结压力为20MPa。
最终可得到不剥离的氮化硼-氮化硅夹层宽频透波材料。
实施例3:
本实施例的制备方法与实施例1大致相同,不同之处在于:
步骤S4中,升温速率为120℃/min,保温时间为15min。
最终可得到不剥离的氮化硼-氮化硅夹层宽频透波材料。
虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (6)

1.一种氮化硼-氮化硅夹层宽频透波材料的制备方法,其特征在于,包括以下步骤:
S1、将聚合物单体、交联剂、分散剂、造孔剂和去离子水混合,得到混合溶液;以氮化硅陶瓷粉体和烧结助剂I为混合固相,加入至混合溶液中进行球磨预处理,得到预混合浆液;所述烧结助剂I为SiO2和Al2O3,所述氮化硅陶瓷粉体与烧结助剂I中SiO2、Al2O3的质量比为100∶0.1~3∶0.1~5;所述造孔剂为正己烷,所述正己烷在混合溶液中的质量分数为1 wt%~20wt%;
S2、向步骤S1所得的预混合浆料加入pH调节剂至pH值为8.5~11.5,球磨,得到混合浆料,将所述混合浆料在搅拌条件下进行真空除气,加入引发剂混合,得到注模浆料;所述引发剂为质量分数为15%的2,2’-偶氮(2-甲基丙基醚)二盐酸盐的水溶液,所述引发剂与混合固相的体积质量比为5μL~50μL∶1g;
S3、将步骤S2所得的注模浆料进行注模成型,待浆料完全固化后进行脱模、干燥、排胶处理,得到多孔氮化硅坯体;
S4、将步骤S3所得的多孔氮化硅坯体的上下表面铺排氮化硼混合粉,采用放电等离子烧结工艺进行烧结,得到夹层陶瓷;所述氮化硼混合粉为氮化硼和烧结助剂II;所述烧结助剂II为A12O3、Y2O3和B2O3,所述氮化硼与烧结助剂II中A12O3、Y2O3、B2O3的质量比为100∶0.1~10∶0.1~8∶0.1~3;
S5、将步骤S4所得的夹层陶瓷进行除碳处理,即得氮化硼-氮化硅夹层宽频透波材料;
所述步骤S4中,所述放电等离子烧结工艺的具体步骤为:以10℃/min~200℃/min的升温速率升温至1400℃~2000℃进行放电等离子烧结,保温1min~60min后,随炉冷至室温,其中,烧结时的压力为10MPa~50MPa,烧结气氛为氮气、氦气、氩气或真空的一种。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤S1中,所述聚合物单体为丙烯酰胺,交联剂为N’N-亚甲基双丙烯酰胺,所述分散剂为JA-281,所述丙烯酰胺、N’N-亚甲基双丙烯酰胺和JA-281的质量体积比为1 g~20g∶0.1 g~2g∶20μL~1000μL。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤S2中,所述pH调节剂为四甲基氢氧化铵,所述球磨的时间为2h~6h,所述搅拌的速率为800 r/min~1200r/min。
4.根据权利要求1或2所述的制备方法,其特征在于,所述步骤S3中,所述注模成型的温度为50℃~120℃,注模成型保温固化的时间为10min~300min,所述排胶处理的具体步骤为:在600℃~800℃的温度下保温1h~6h。
5.根据权利要求1或2所述的制备方法,其特征在于,所述步骤S5中,所述除碳处理的具体步骤为:升温至400℃~1000℃保温0.5h~12h。
6.一种氮化硼-氮化硅夹层宽频透波材料,其特征在于,所述氮化硼-氮化硅夹层宽频透波材料由权利要求1至5中任一项所述的制备方法制得,包括两蒙皮层(1)和位于两蒙皮层(1)之间的芯层(2),所述芯层(2)为多孔氮化硅层,所述蒙皮层(1)为致密氮化硼层。
CN201811205941.3A 2018-10-17 2018-10-17 氮化硼-氮化硅夹层宽频透波材料及其制备方法 Active CN109231996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811205941.3A CN109231996B (zh) 2018-10-17 2018-10-17 氮化硼-氮化硅夹层宽频透波材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811205941.3A CN109231996B (zh) 2018-10-17 2018-10-17 氮化硼-氮化硅夹层宽频透波材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109231996A CN109231996A (zh) 2019-01-18
CN109231996B true CN109231996B (zh) 2022-01-28

Family

ID=65053287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811205941.3A Active CN109231996B (zh) 2018-10-17 2018-10-17 氮化硼-氮化硅夹层宽频透波材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109231996B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201921933A1 (tr) * 2019-12-27 2021-07-26 Eskisehir Teknik Ueniversitesi Idari Ve Mali Isler Daire Baskanligi Transparan poli̇kri̇stal si̇li̇syum ni̇trür serami̇kleri̇ni̇n spark plazma si̇nterleme tekni̇ği̇ i̇le üreti̇m yöntemi̇

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103239A (en) * 1986-08-20 1992-04-07 The United States Of America As Represented By The Secretary Of The Air Force Silicon nitride articles with controlled multi-density regions
CN102916251A (zh) * 2012-11-09 2013-02-06 北京大学 一种高温宽频梯度多孔氮化硅天线罩结构
CN102931483A (zh) * 2012-11-09 2013-02-13 北京大学 一种高温宽频对称梯度多孔氮化硅天线罩结构
CN104844250A (zh) * 2015-04-24 2015-08-19 中国科学院上海硅酸盐研究所 一种耐高温多孔夹层透波材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103755352B (zh) * 2014-01-23 2015-04-08 哈尔滨工业大学 一种多孔BN/Si3N4复合陶瓷封孔层的制备方法
CN107698271B (zh) * 2017-09-11 2020-11-06 西北工业大学 耐高温高强韧性氮化硅基透波复合材料及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103239A (en) * 1986-08-20 1992-04-07 The United States Of America As Represented By The Secretary Of The Air Force Silicon nitride articles with controlled multi-density regions
CN102916251A (zh) * 2012-11-09 2013-02-06 北京大学 一种高温宽频梯度多孔氮化硅天线罩结构
CN102931483A (zh) * 2012-11-09 2013-02-13 北京大学 一种高温宽频对称梯度多孔氮化硅天线罩结构
CN104844250A (zh) * 2015-04-24 2015-08-19 中国科学院上海硅酸盐研究所 一种耐高温多孔夹层透波材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Preparation of silicon nitride multilayer ceramic radome material and optimal design of the wall structure";Chenfei;《Multiscale and Functionally Graded Materials》;20081231;第973卷;第889-894页 *

Also Published As

Publication number Publication date
CN109231996A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
CN107698271B (zh) 耐高温高强韧性氮化硅基透波复合材料及制备方法
CN108329037B (zh) 一种SiC/Si3N4复合吸波陶瓷的制备方法
CN110627517B (zh) 一种梯度超高温陶瓷基复合材料及其制备方法
CN113773098B (zh) 一种高电磁波屏蔽碳化硅陶瓷基复合材料及其制备方法
CN108585917B (zh) 氮化硅-碳化硅复相多孔陶瓷的制备方法
CN105254306A (zh) 一种高导热氮化硅陶瓷的制备方法
CN113943162B (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
CN114773082B (zh) 一种对称连续梯度结构氮化硅陶瓷天线罩及制备方法
CN115028460B (zh) 一种高导热氮化硅陶瓷基片的制备方法
CN111320476A (zh) 金刚石-碳化硅复合材料及其制备方法、电子设备
KR101981543B1 (ko) 알루미나-실리콘카바이드 복합체의 상압 소결 방법
CN114804912A (zh) 一种高韧性耐高温的定向排列氮化硅独石多孔陶瓷制备的方法
CN109231996B (zh) 氮化硼-氮化硅夹层宽频透波材料及其制备方法
CN114368981A (zh) 石墨类材料及工件抗氧化处理技术和应用
CN115466123A (zh) 一种碳化硅陶瓷晶舟的制备方法
Ye et al. Tuning the dielectric properties of porous BN/Si3N4 composites by controlling porosity
CN113248263B (zh) Si3N4w/Si预制体及利用该预制体制备Si3N4w/Si3N4复合材料的方法
CN112898040B (zh) 一种以高长径比晶须制备无晶间玻璃相β-Si3N4多孔陶瓷的方法
CN111470866A (zh) 金刚石-碳化硅复合材料及其制备方法、电子设备
CN110028320A (zh) 一种碳化硼陶瓷材料及其制备方法
CN116675538B (zh) 一种联用选区激光3D打印/前驱体浸渍热解/液相烧结制备SiC陶瓷的方法
CN104944961B (zh) 一种氮化硼块体陶瓷及其制备方法
RU2453520C1 (ru) Способ получения оболочки антенного обтекателя из реакционно-связанного нитрида кремния
Cheng et al. Moisture-proof and enhanced effect of inorganic coating on porous Si 3 N 4 ceramic
CN112441838B (zh) 一种表面晶粒定向生长的氮化硅陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant