CN109212519B - 基于bf-dlstm的窄带雷达目标跟踪方法 - Google Patents

基于bf-dlstm的窄带雷达目标跟踪方法 Download PDF

Info

Publication number
CN109212519B
CN109212519B CN201810977596.9A CN201810977596A CN109212519B CN 109212519 B CN109212519 B CN 109212519B CN 201810977596 A CN201810977596 A CN 201810977596A CN 109212519 B CN109212519 B CN 109212519B
Authority
CN
China
Prior art keywords
target
narrow
training
band radar
term memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810977596.9A
Other languages
English (en)
Other versions
CN109212519A (zh
Inventor
刘宏伟
高畅
周生华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Xian Cetc Xidian University Radar Technology Collaborative Innovation Research Institute Co Ltd
Original Assignee
Xidian University
Xian Cetc Xidian University Radar Technology Collaborative Innovation Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University, Xian Cetc Xidian University Radar Technology Collaborative Innovation Research Institute Co Ltd filed Critical Xidian University
Priority to CN201810977596.9A priority Critical patent/CN109212519B/zh
Publication of CN109212519A publication Critical patent/CN109212519A/zh
Application granted granted Critical
Publication of CN109212519B publication Critical patent/CN109212519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Abstract

本发明公开了一种基于贝叶斯深度长短期记忆网络BF‑DLSTM的窄带雷达目标跟踪方法,主要解决类带雷达目标跟踪中,待跟踪目标运动类型与预先假设的目标运动类型不匹配造成的难以有效跟踪的问题。本发明实现的步骤如下:(1)构建多种运动类型组成的训练数据集;(2)构建贝叶斯深度长短期记忆网络BF‑DLSTM;(3)对训练集进行归一化处理;(4)训练贝叶斯深度长短期记忆网络BF‑DLSTM;(5)窄带雷达目标跟踪。本发明通过基于贝叶斯深度长短期记忆网络BF‑DLSTM的窄带雷达目标跟踪方法,能够对多种运动类型的目标及机动目标实现精度更高地有效跟踪。

Description

基于BF-DLSTM的窄带雷达目标跟踪方法
技术领域
本发明属于通信技术领域,更进一步涉及窄带雷达通信技术领域中的一种基于贝叶斯深度长短期记忆网络BF-DLSTM(Bayesian Filter based Deep Long Short TermMemory Network)的窄带雷达目标跟踪方法。本发明可用于对窄带雷达观测下的目标数据序列中的单个运动目标进行跟踪,并且可以实现对多种运动类型目标的有效跟踪。
背景技术
窄带雷达观测下的运动目标跟踪的主要任务是,从窄带雷达对目标连续的观测中提取出目标在每一帧回波中的真实状态。随着人们对窄带雷达通信领域的不断深入了解,运动目标跟踪在该领域得到广泛的应用和发展,目前已经存在大量跟踪算法来实现运动目标跟踪。但是由于运动目标的不确定性容易造成跟踪滤波器失配,使得准确地进行目标跟踪目标仍面临极大挑战。
电子科技大学在其申请的专利文献“一种用于目标跟踪的强跟踪容积卡尔曼滤波方法”(专利申请号201410654687.0,申请公布号CN 104408744A)中公开了一种用于目标跟踪的强跟踪容积卡尔曼滤波方法。该方法实现的具体步骤是,(1)建立离散非线性动态系统模型;(2)进行系统初始化;(3)进行时间更新,引入时变渐消因子λk;(4)进行量测更新;(5)进行滤波更新。该方法的不足之处是,建立完成的离散非线性动态系统模型只有一种,在实际应用中若目标运动与其不符合,则容易产生滤波器失配、丢失目标的问题。
东南大学在其申请的专利文献“一种基于交互多模型的目标跟踪方法”(专利申请号201410778057.4,申请公开号104573190A)中公开了一种基于交互式多模型的目标跟踪方法。该方法实现的具体步骤是,(1)根据目标动态条件,设定五组辛格尔Singer模型参数,构建五个Singer模型;(2)根据观测到的目标位置信息,将五个Singer模型进行交互式多模型非线性滤波,估计目标的运动速度、加速度和位置信息;(3)利用目标的运动速度和加速度,计算目标转弯角速率;(4)将目标转弯角速率与设定的阈值进行比较,判断是否发生转弯运动,如果未发生转弯运动,则将步骤(2)中得到的位置信息作为目标跟踪结果;(5)如果发生转弯运动,选取三个相邻时刻的转弯角速率构建三个转弯模型来近似目标的实际运动,进行交互式多模型非线性滤波得到目标位置作为目标跟踪结果。该方法存在的不足之处在于,观测误差会影响目标转弯角速率计算的准确性,进而影响关于目标是否发生转弯运动的判断,并且在目标运动特性发生变化时,用于近似目标实际运动的多个模型近似误差会增大,使得跟踪滤波误差增大。
发明内容
本发明的目的是针对上述现有技术的不足,提出一种基于贝叶斯深度长短期记忆网络BF-DLSTM的窄带雷达目标跟踪方法,以实现更加准确地对多种不同运动类型的目标的跟踪。
为实现本发明目的思路是,首先,根据待跟踪目标的运动类型构建训练数据集,利用窄带雷达系统的观测范围归一化训练数据集。其次,构建出贝叶斯深度长短期记忆网络BF-DLSTM,并用归一化后的训练数据集来训练贝叶斯深度长短期记忆网络BF-DLSTM。最后,利用窄带雷达系统的观测范围归一化窄带雷达对待跟踪的目标的观测,输入到训练好的贝叶斯深度长短期记忆网络BF-DLSTM,再分别利用窄带雷达的观测范围将贝叶斯深度长短期记忆网络BF-DLSTM关于滤波值和预测值的输出逆归一化,得到待跟踪目标滤波和预测的状态,完成目标跟踪。
本发明的具体步骤如下:
(1)构建多种运动类型组成的训练数据集:
(1a)利用距离单元公式,计算窄带雷达观测场景中距离单元的总数Nr
(1b)利用目标运动轨迹的构建方法,构建10Nr条训练目标的运动轨迹,将每一个训练目标每次被窄带雷达扫描时的坐标值,组成二维向量,作为当前时刻该训练目标的真实运动状态;
(1c)利用窄带雷达观测方程,生成对应于每一个训练目标的真实运动状态的窄带雷达观测值;
(1d)将所有训练目标的真实运动状态与相应的窄带雷达观测值组成训练数据集;
(2)构建贝叶斯深度长短期记忆网络BF-DLSTM:
(2a)搭建一个10层的贝叶斯深度长短期记忆网络BF-DLSTM,其结构依次为:观测输入编码层→含有3个隐藏层的滤波长短期记忆网络→滤波输出解码层→滤波输入编码层→含有3个隐藏层的预测长短期记忆网络→预测输出解码层;
(2b)设置每一个网络各层参数如下:
将观测输入编码层设置为2×16的全连接层;
将滤波长短期记忆网络的隐藏层数设置为3,输入单元的个数设置为16,隐单元的个数设置为256;
将滤波输出解码层设置为256×2的全连接层;
将滤波输入编码层设置为2×16的全连接层;
将预测长短期记忆网络的隐藏层数设置为3,输入单元的个数设置为16,隐单元的个数设置为256;
将预测输出解码层设置为256×2的全连接层;
(3)对训练集进行归一化处理:
(3a)用训练目标的真实运动状态除以窄带雷达观测的最远距离,得到归一化后的目标真实运动状态;
(3b)用窄带雷达观测训练目标的径向距离除以窄带雷达观测的最远距离,得到归一化后的窄带雷达观测训练目标的径向距离;用窄带雷达观测训练目标的方位角除以窄带雷达观测的最大方位角,得到归一化后的窄带雷达观测训练目标的方位角;
(4)训练贝叶斯深度长短期记忆网络BF-DLSTM:
(4a)将归一化后的训练集中径向距离观测值与方位角观测值,分别输入到贝叶斯深度长短期记忆网络BF-DLSTM中得到网络的实际输出值,将归一化后的训练集中实际运动状态作为贝叶斯深度长短期记忆网络BF-DLSTM的期望输出值;
(4b)将深度长短期记忆网络的实际输出值与期望输出值,组成贝叶斯深度长短期记忆网络BF-DLSTM的代价函数;
(4c)使用最小批梯度下降法,训练贝叶斯深度长短期记忆网络BF-DLSTM,调整梯度下降法中梯度更新的步长,直到贝叶斯深度长短期记忆网络BF-DLSTM的代价函数趋于不变,得到训练好的贝叶斯深度长短期记忆网络BF-DLSTM;
(5)窄带雷达目标跟踪:
(5a)用窄带雷达对待跟踪目标径向距离的观测值,除以窄带雷达观测的最远距离,得到归一化后的窄带雷达观测待跟踪目标的径向距离;用窄带雷达对待跟踪目标方位角的观测值,除以窄带雷达观测的最大方位角,得到归一化后的窄带雷达观测待跟踪目标的方位角;
(5b)将归一化后待跟踪目标位置的径向距离和方位角,输入训练好的贝叶斯深度长短期记忆网络BF-DLSTM,得到相应的归一化后待跟踪目标位置的滤波值和预测值;
(5c)用窄带雷达观测的最远距离,分别乘以归一化后待跟踪目标位置的滤波值和预测值,得到待跟踪目标位置的滤波值和预测值,完成窄带雷达目标跟踪。
发明与现有的技术相比具有以下优点:
第一,由于本发明构建多种运动类型组成的训练数据集,克服了现有技术中只能跟踪预先假设的单个运动类型,目标实际运动类型与其不同则容易发生滤波器失配、丢失目标的问题,使得本发明能够更有效地适用于不同运动类型目标的跟踪。
第二,由于本发明构建贝叶斯深度长短期记忆网络BF-DLSTM,克服了现有技术中采用多模型方法跟踪的目标运动特性发生变化时,用于近似目标实际运动的多个模型近似误差会增大,使得跟踪滤波误差增大的问题,使得本发明能够适用于机动目标的跟踪,提高了滤波精度。
附图说明
图1为本发明的流程图;
图2为本发明贝叶斯深度长短期记忆网络BF-DLSTM的结构示意图;
图3为本发明的仿真图。
具体实施方式
下面结合附图对本发明做进一步的描述。
参照图1,对本发明的具体步骤做进一步的描述。
步骤1,构建多种运动类型组成的训练数据集。
利用距离单元公式,计算窄带雷达观测场景中距离单元的总数Nr
所述距离单元公式如下:
Figure GDA0003845266870000051
其中,Nr表示窄带雷达观测场景中距离单元的总数,c表示光速,B表示窄带雷达发射信号的带宽,Δρ表示窄带雷达观测的距离范围,Δθ表示窄带雷达观测的方位角范围,θ3dB表示窄带雷达发射信号的3dB波瓣宽度。
利用目标运动轨迹的构建方法,构建10Nr条训练目标的运动轨迹,将每一个训练目标每次被窄带雷达扫描时的坐标值,组成二维向量,作为当前时刻该训练目标的真实运动状态。
所述目标运动轨迹的构建方法的步骤如下:
第1步,在待跟踪的目标运动类型中随机选择训练目标的运动类型。
第2步,在窄带雷达扫描范围内,随机设定训练目标运动的初始位置。
第3步,根据待跟踪目标的机动特性,设定训练目标运动的过程噪声的方差。
第4步,若训练目标运动为匀速运动,在待跟踪目标运动速度范围内随机选择其运动速度,若训练目标运动为匀变速运动,在待跟踪目标运动加速度范围内随机选择其加速度,若训练目标运动为协同转弯运动,在待跟踪目标运动转弯率范围内随机选择其转弯率。
第5步,根据不同运动类型的状态转移方程,仿真训练目标的真实运动状态。
利用窄带雷达观测方程,生成对应于每一个训练目标的真实运动状态的窄带雷达观测值。
所述窄带雷达观测方程如下:
ρm=ρtρ
θm=θtθ
其中,ρm表示窄带雷达观测训练目标的径向距离,ρt表示训练目标真实的径向距离,ερ表示窄带雷达观测训练目标的径向距离的观测噪声,θm表示窄带雷达观测训练目标的方位角,θt表示训练目标真实的方位角,εθ表示窄带雷达观测训练目标方位角的观测噪声。
将所有训练目标的真实运动状态与相应的窄带雷达观测值组成训练数据集。
步骤2,构建贝叶斯深度长短期记忆网络BF-DLSTM。
搭建一个10层的贝叶斯深度长短期记忆网络BF-DLSTM,其结构依次为:观测输入编码层→含有3个隐藏层的滤波长短期记忆网络→滤波输出解码层→滤波输入编码层→含有3个隐藏层的预测长短期记忆网络→预测输出解码层。
设置每一个网络各层参数如下:
将观测输入编码层设置为2×16的全连接层。
将滤波长短期记忆网络的隐藏层数设置为3,输入单元的个数设置为16,隐单元的个数设置为256。
将滤波输出解码层设置为256×2的全连接层。
将滤波输入编码层设置为2×16的全连接层。
将预测长短期记忆网络的隐藏层数设置为3,输入单元的个数设置为16,隐单元的个数设置为256。
将预测输出解码层设置为256×2的全连接层。
参照图2,对贝叶斯深度长短期记忆网络BF-DLSTM的结构做进一步描述。
图2中的hk-1和ck-1分别表示k-1时刻滤波长短期记忆网络的隐状态和单元状态,zk表示第k次窄带雷达对目标的观测,经过滤波长短期记忆网络的隐状态和单元状态再次输入到预测长短期记忆网络中,
Figure GDA0003845266870000061
表示输入训练集中窄带雷达对目标在第k次的观测值时贝叶斯深度长短期记忆网络BF-DLSTM关于滤波值的输出,
Figure GDA0003845266870000062
表示输入训练集中窄带雷达对目标在第k次的观测值时贝叶斯深度长短期记忆网络BF-DLSTM关于预测值的输出。
步骤3,对训练集进行归一化处理。
用训练目标的真实运动状态除以窄带雷达观测的最远距离,得到归一化后的目标真实运动状态。
用窄带雷达观测训练目标的径向距离除以窄带雷达观测的最远距离,得到归一化后的窄带雷达观测训练目标的径向距离;用窄带雷达观测训练目标的方位角除以窄带雷达观测的最大方位角,得到归一化后的窄带雷达观测训练目标的方位角。
步骤4,训练贝叶斯深度长短期记忆网络BF-DLSTM。
将归一化后的训练集中径向距离观测值与方位角观测值,分别输入到贝叶斯深度长短期记忆网络BF-DLSTM中得到网络的实际输出值,将归一化后的训练集中实际运动状态作为贝叶斯深度长短期记忆网络BF-DLSTM的期望输出值。
将贝叶斯深度长短期记忆网络BF-DLSTM的实际输出值与期望输出值,组成贝叶斯深度长短期记忆网络BF-DLSTM的代价函数。
所述贝叶斯深度长短期记忆网络BF-DLSTM的代价函数如下:
Figure GDA0003845266870000071
其中,J(θ)表示贝叶斯深度长短期记忆网络BF-DLSTM的代价函数,θ表示贝叶斯深度长短期记忆网络BF-DLSTM中连接每一层网络的参数,其在训练贝叶斯深度长短期记忆网络BF-DLSTM的过程中随着代价函数趋于不变而趋于最优,n表示训练集中目标的序号,k表示每一个目标被窄带雷达观测的序号,N表示训练集中目标的总数,Σ表示求和操作,Ln表示训练集中第n个目标被窄带雷达观测的次数,
Figure GDA0003845266870000072
表示训练集中第n个目标在第k次被窄带雷达观测时的真实状态,
Figure GDA0003845266870000073
表示输入训练集中窄带雷达对第n个目标在第k次的观测值时滤波输出解码层的输出,∈表示贝叶斯深度长短期记忆网络BF-DLSTM预测精度相对于滤波精度在代价函数中所占的权重,
Figure GDA0003845266870000074
表示训练集中第n个目标在第k+1次被窄带雷达观测时的真实状态,
Figure GDA0003845266870000075
表示输入训练集中窄带雷达对第n个目标在第k次的观测值时预测输出解码层的输出。
使用最小批梯度下降法,训练贝叶斯深度长短期记忆网络BF-DLSTM,调整梯度下降法中梯度更新的步长,直到贝叶斯深度长短期记忆网络BF-DLSTM的代价函数趋于不变,得到训练好的贝叶斯深度长短期记忆网络BF-DLSTM。
步骤5,窄带雷达目标跟踪。
用窄带雷达对待跟踪目标径向距离的观测值,除以窄带雷达观测的最远距离,得到归一化后的窄带雷达观测待跟踪目标的径向距离;用窄带雷达对待跟踪目标方位角的观测值,除以窄带雷达观测的最大方位角,得到归一化后的窄带雷达观测待跟踪目标的方位角。
将归一化后待跟踪目标位置的径向距离和方位角,输入训练好的贝叶斯深度长短期记忆网络BF-DLSTM,得到相应的归一化后待跟踪目标位置的滤波值和预测值。
用窄带雷达观测的最远距离,分别乘以归一化后待跟踪目标位置的滤波值和预测值,得到待跟踪目标位置的滤波值和预测值,完成窄带雷达目标跟踪。
下面结合仿真实验对本发明的效果做进一步说明。
1.仿真实验条件:
本发明仿真实验的硬件测试平台是:处理器为CPU Xeon E5-2643,主频为3.4GHz,内存64GB;软件平台为:Ubuntu 16.04LTS,64位操作系统,Python 2.7。
2.仿真内容及仿真结果分析:
为证明贝叶斯深度长短期记忆网络BF-DLSTM方法可以同时实现对不同运动类型目标以及机动目标的跟踪,且能够获得更高的滤波精度,本发明的仿真实验采用本发明的方法贝叶斯深度长短期记忆网络BF-DLSTM和现有技术的交互多模型方法,分别针对做匀速运动和机动的目标进行了跟踪的仿真实验。
本发明的仿真实验训练目标为民航飞机,其所做的运动主要为匀速运动、匀加速运动及协同转弯运动,窄带雷达的采样时间为10s,径向距离观测误差标准差为30m,方位角观测误差标准差为0.5°,窄带雷达观测径向距离范围为15km~150km,方位角范围为0~90°。在构建多种运动类型组成的训练数据集时,按照初速度为100m/s~300m/s,最大加速度30m/s2,最大转弯率4.5°/s产生训练目标的真实运动状态与窄带雷达观测。
在窄带雷达目标跟踪阶段,窄带雷达对匀速运动的目标和机动目标分别进行持续50步地跟踪。其中,匀速运动目标的起始位置为[30km,80km],运动速度为
Figure GDA0003845266870000081
机动目标的起始位置为[30km,10km],初始速度为[0,150m/s]。在100s的匀速运动之后,目标按照[1.5m/s2,-1.5m/s2]的加速度做持续100s的匀加速运动,目标继续按照[150m/s,0]的速度匀速运动100s,然后按照1°/s的速度朝正北方向转弯,持续90s之后,最后以[0,150m/s]的速度继续做110s的匀速直线运动。
针对上述测试场景,分别使用传统的包含匀速运动类型和匀加速运动类型的交互多模型方法(Interactive Multiple Model,IMM)和本发明方法,通过5000次蒙特卡洛结果,比较滤波后的结果。
图3(a)为本发明仿真实验中使用贝叶斯深度长短期记忆网络BF-DLSTM与交互多模型方法跟踪一个匀速运动目标时,滤波位置的均方误差的仿真结果对比图。图3(a)中x轴表示跟踪的步数,y轴表示两个方法关于目标位置滤波的均方误差。其中以实线标示的为采用现有技术交互多模型方法进行跟踪的滤波位置均方误差曲线,点划线标示的为采用本发明方法贝叶斯深度长短期记忆网络BF-DLSTM进行跟踪的滤波位置均方误差曲线。图3(a)中整个跟踪阶段本发明方法贝叶斯深度长短期记忆网络BF-DLSTM均可以获得比现有技术交互多模型方法更低的滤波位置均方误差。可见针对匀速运动目标,本发明方法贝叶斯深度长短期记忆网络BF-DLSTM可以获得更高的滤波精度。
图3(b)为本发明仿真实验中使用贝叶斯深度长短期记忆网络BF-DLSTM与交互多模型方法跟踪一个机动目标时,滤波位置的均方误差的仿真结果对比图。图3(b)中x轴表示跟踪的步数,y轴表示两个方法关于目标位置滤波的均方误差。其中以实线标示的为采用现有技术交互多模型方法进行跟踪的滤波位置均方误差曲线,以点划线标示的为采用本发明方法贝叶斯深度长短期记忆网络BF-DLSTM进行跟踪的滤波位置均方误差曲线。图3(b)中整个跟踪阶段本发明方法贝叶斯深度长短期记忆网络BF-DLSTM均可以获得比现有技术交互多模型方法更低的滤波位置均方误差,且本发明方法的滤波位置均方误差曲线起伏更小。可见针对做机动的目标,本发明方法在整个跟踪阶段滤波都可以获得更高的滤波精度,且本发明方法对目标的机动不敏感,在目标运动类型发生变化时仍可以保持有效的跟踪。
综合图3(a)和图3(b),本发明方法贝叶斯深度长短期记忆网络BF-DLSTM针对匀速运动目标和机动目标均能够实现相比于现有技术交互多模型方法更有效的跟踪,可以看出:本发明方法,能够适用于不同运动类型目标的跟踪,并且利用本发明方法贝叶斯深度长短期记忆网络BF-DLSTM能够获得的滤波精度更高,可以实现更有效地跟踪。

Claims (2)

1.一种基于贝叶斯深度长短期记忆网络BF-DLSTM的窄带雷达目标跟踪方法,其特征在于,构建多种运动类型组成的训练数据集,构建贝叶斯深度长短期记忆网络BF-DLSTM,该方法的具体步骤包括如下:
(1)构建多种运动类型组成的训练数据集:
(1a)利用下述距离单元公式,计算窄带雷达观测场景中距离单元的总数:
Figure FDA0003845266860000011
其中,Nr表示窄带雷达观测场景中距离单元的总数,c表示光速,B表示窄带雷达发射信号的带宽,Δρ表示窄带雷达观测的距离范围,Δθ表示窄带雷达观测的方位角范围,θ3dB表示窄带雷达发射信号的3dB波瓣宽度;
(1b)利用目标运动轨迹的构建方法,构建10Nr条训练目标的运动轨迹,将每一个训练目标每次被窄带雷达扫描时的坐标值,组成二维向量,作为当前时刻该训练目标的真实运动状态;
所述的目标运动轨迹的构建方法的步骤如下:
第一步,在待跟踪的目标运动类型中随机选择训练目标的运动类型;
第二步,在窄带雷达扫描范围内,随机设定训练目标运动的初始位置;
第三步,根据待跟踪目标的机动特性,设定训练目标运动的过程噪声的方差;
第四步,若训练目标运动为匀速运动,在待跟踪目标运动速度范围内随机选择其运动速度,若训练目标运动为匀变速运动,在待跟踪目标运动加速度范围内随机选择其加速度,若训练目标运动为协同转弯运动,在待跟踪目标运动转弯率范围内随机选择其转弯率;
第五步,根据不同运动类型的状态转移方程,仿真训练目标的真实运动状态;
(1c)利用下述窄带雷达观测方程,生成对应于每一个训练目标的真实运动状态的窄带雷达观测值:
ρm=ρtρ
θm=θtθ
其中,ρm表示窄带雷达观测训练目标的径向距离,ρt表示训练目标真实的径向距离,ερ表示窄带雷达观测训练目标的径向距离的观测噪声,θm表示窄带雷达观测训练目标的方位角,θt表示训练目标真实的方位角,εθ表示窄带雷达观测训练目标方位角的观测噪声;
(1d)将所有训练目标的真实运动状态与相应的窄带雷达观测值组成训练数据集;
(2)构建贝叶斯深度长短期记忆网络BF-DLSTM:
(2a)搭建一个10层的贝叶斯深度长短期记忆网络BF-DLSTM,其结构依次为:观测输入编码层→含有3个隐藏层的滤波长短期记忆网络→滤波输出解码层→滤波输入编码层→含有3个隐藏层的预测长短期记忆网络→预测输出解码层;
(2b)设置每一个网络各层参数如下:
将观测输入编码层设置为2×16的全连接层;
将滤波长短期记忆网络的隐藏层数设置为3,输入单元的个数设置为16,隐单元的个数设置为256;
将滤波输出解码层设置为256×2的全连接层;
将滤波输入编码层设置为2×16的全连接层;
将预测长短期记忆网络的隐藏层数设置为3,输入单元的个数设置为16,隐单元的个数设置为256;
将预测输出解码层设置为256×2的全连接层;
(3)对训练集进行归一化处理:
(3a)用训练目标的真实运动状态除以窄带雷达观测的最远距离,得到归一化后的目标真实运动状态;
(3b)用窄带雷达观测训练目标的径向距离除以窄带雷达观测的最远距离,得到归一化后的窄带雷达观测训练目标的径向距离;用窄带雷达观测训练目标的方位角除以窄带雷达观测的最大方位角,得到归一化后的窄带雷达观测训练目标的方位角;
(4)训练贝叶斯深度长短期记忆网络BF-DLSTM:
(4a)将归一化后的训练集中径向距离观测值与方位角观测值,分别输入到贝叶斯深度长短期记忆网络BF-DLSTM中得到网络的实际输出值,将归一化后的训练集中实际运动状态作为贝叶斯深度长短期记忆网络BF-DLSTM的期望输出值;
(4b)将深度长短期记忆网络的实际输出值与期望输出值,组成贝叶斯深度长短期记忆网络BF-DLSTM的代价函数;
(4c)使用最小批梯度下降法,训练贝叶斯深度长短期记忆网络BF-DLSTM,调整梯度下降法中梯度更新的步长,直到贝叶斯深度长短期记忆网络BF-DLSTM的代价函数趋于不变,得到训练好的贝叶斯深度长短期记忆网络BF-DLSTM;
(5)窄带雷达目标跟踪:
(5a)用窄带雷达对待跟踪目标径向距离的观测值,除以窄带雷达观测的最远距离,得到归一化后的窄带雷达观测待跟踪目标的径向距离;用窄带雷达对待跟踪目标方位角的观测值,除以窄带雷达观测的最大方位角,得到归一化后的窄带雷达观测待跟踪目标的方位角;
(5b)将归一化后待跟踪目标位置的径向距离和方位角,输入训练好的贝叶斯深度长短期记忆网络BF-DLSTM,得到相应的归一化后待跟踪目标位置的滤波值和预测值;
(5c)用窄带雷达观测的最远距离,分别乘以归一化后待跟踪目标位置的滤波值和预测值,得到待跟踪目标位置的滤波值和预测值,完成窄带雷达目标跟踪。
2.根据权利要求1所述的基于贝叶斯深度长短期记忆网络BF-DLSTM的窄带雷达目标跟踪方法,其特征在于:步骤(4b)中所述的贝叶斯深度长短期记忆网络BF-DLSTM的代价函数如下:
Figure FDA0003845266860000031
其中,J(θ)表示贝叶斯深度长短期记忆网络BF-DLSTM的代价函数,θ表示贝叶斯深度长短期记忆网络BF-DLSTM中连接每一层网络的参数,其在训练贝叶斯深度长短期记忆网络BF-DLSTM的过程中随着代价函数趋于不变而趋于最优,n表示训练集中目标的序号,k表示每一个目标被窄带雷达观测的序号,N表示训练集中目标的总数,Σ表示求和操作,Ln表示训练集中第n个目标被窄带雷达观测的次数,
Figure FDA0003845266860000032
表示训练集中第n个目标在第k次被窄带雷达观测时的真实状态,
Figure FDA0003845266860000033
表示输入训练集中窄带雷达对第n个目标在第k次的观测值时滤波输出解码层的输出,∈表示贝叶斯深度长短期记忆网络BF-DLSTM预测精度相对于滤波精度在代价函数中所占的权重,
Figure FDA0003845266860000034
表示训练集中第n个目标在第k+1次被窄带雷达观测时的真实状态,
Figure FDA0003845266860000035
表示输入训练集中窄带雷达对第n个目标在第k次的观测值时预测输出解码层的输出。
CN201810977596.9A 2018-08-27 2018-08-27 基于bf-dlstm的窄带雷达目标跟踪方法 Active CN109212519B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810977596.9A CN109212519B (zh) 2018-08-27 2018-08-27 基于bf-dlstm的窄带雷达目标跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810977596.9A CN109212519B (zh) 2018-08-27 2018-08-27 基于bf-dlstm的窄带雷达目标跟踪方法

Publications (2)

Publication Number Publication Date
CN109212519A CN109212519A (zh) 2019-01-15
CN109212519B true CN109212519B (zh) 2023-04-07

Family

ID=64989222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810977596.9A Active CN109212519B (zh) 2018-08-27 2018-08-27 基于bf-dlstm的窄带雷达目标跟踪方法

Country Status (1)

Country Link
CN (1) CN109212519B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212891A (zh) * 2019-06-02 2019-09-06 西安电子科技大学 基于nrp-lstm的非线性滤波方法
CN110780290B (zh) * 2019-11-01 2022-10-21 西安电子科技大学 基于lstm网络的多机动目标跟踪方法
CN113534128B (zh) * 2020-10-21 2022-10-11 中国人民解放军空军预警学院 一种机载预警雷达海面机动舰船目标自适应跟踪方法
CN114266925B (zh) * 2021-12-30 2022-09-30 华北电力大学 一种基于dlstm-rf的用户窃电检测方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113610A (ja) * 1995-10-23 1997-05-02 Japan Radio Co Ltd 目標追尾レーダ装置
CN102254176B (zh) * 2011-04-11 2012-08-08 西安电子科技大学 基于状态空间模型的雷达高分辨距离像目标识别方法
CN102608586B (zh) * 2012-02-11 2013-04-24 中国人民解放军陆军军官学院 一种基于神经网络的合成孔径雷达射频干扰抑制方法
US9297886B1 (en) * 2013-03-12 2016-03-29 Lockheed Martin Corporation Space time adaptive technique for suppression of spaceborne clutter
CN104020466B (zh) * 2014-06-17 2016-05-25 西安电子科技大学 基于变结构多模型的机动目标跟踪方法
CN104408744A (zh) * 2014-11-17 2015-03-11 电子科技大学 一种用于目标跟踪的强跟踪容积卡尔曼滤波方法
CN105717505B (zh) * 2016-02-17 2018-06-01 国家电网公司 利用传感网进行多目标跟踪的数据关联方法
CN106257302A (zh) * 2016-07-01 2016-12-28 电子科技大学 一种杂波环境下的认知雷达目标跟踪方法
JP2018115974A (ja) * 2017-01-19 2018-07-26 沖電気工業株式会社 情報処理装置、情報処理方法、およびプログラム
CN108226889A (zh) * 2018-01-19 2018-06-29 中国人民解放军陆军装甲兵学院 一种雷达目标识别的分类器模型训练方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于JEM的雷达窄带目标识别方法研究;刘婧逸等;《信息化研究》;20180630(第03期);全文 *
雷达目标特征信号与运动模式的相关性研究;祝依龙等;《中国科学:信息科学》;20120731;第42卷(第7期);全文 *

Also Published As

Publication number Publication date
CN109212519A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN109212519B (zh) 基于bf-dlstm的窄带雷达目标跟踪方法
CN103853908B (zh) 一种自适应交互式多模型的机动目标跟踪方法
CN106372646B (zh) 基于srck-gmcphd滤波的多目标跟踪方法
CN105699952B (zh) 海杂波k分布形状参数的双分位点估计方法
CN103869311B (zh) 实波束扫描雷达超分辨成像方法
CN109633590B (zh) 基于gp-vsmm-jpda的扩展目标跟踪方法
CN107045125A (zh) 一种基于预测值量测转换的交互多模型雷达目标跟踪方法
CN109116311A (zh) 基于知识辅助稀疏迭代协方差估计的杂波抑制方法
CN102568004A (zh) 一种高机动目标跟踪算法
CN108267731B (zh) 无人机目标跟踪系统的构建方法及应用
CN105738891B (zh) 一种机载数字阵列雷达对弱机动目标角度进行跟踪的方法
CN108896986A (zh) 一种基于预测值的量测转换序贯滤波机动目标跟踪方法
CN110058222B (zh) 一种基于传感器选择的双层粒子滤波检测前跟踪方法
CN110376582B (zh) 自适应gm-phd的机动目标跟踪方法
CN110209180B (zh) 一种基于HuberM-Cubature卡尔曼滤波的无人水下航行器目标跟踪方法
CN104459661B (zh) 检测快速火炮类微弱目标的方法
CN109188420B (zh) 基于深度长短期记忆网络的窄带雷达目标跟踪方法
CN110865334A (zh) 一种基于噪声统计特性的多传感器目标跟踪方法及系统
CN108152812A (zh) 一种调整网格间距的改进agimm跟踪方法
CN105701292B (zh) 一种机动目标转弯角速度的解析辨识方法
CN114565020A (zh) 一种基于深度置信网络和扩展卡尔曼滤波的飞行器传感器信号融合方法
CN114660587A (zh) 基于Jerk模型的跳跃滑翔弹道目标跟踪方法及系统
CN113376626A (zh) 基于immpda算法的高机动目标跟踪方法
CN113281776A (zh) 针对复杂水下动态目标的激光雷达目标智能检测仪
CN115128597B (zh) 基于imm-stekf的非高斯噪声下机动目标跟踪方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant