CN1092083A - 一种与淀粉化学结合的可生物降解聚乙烯组合物及其制备方法 - Google Patents

一种与淀粉化学结合的可生物降解聚乙烯组合物及其制备方法 Download PDF

Info

Publication number
CN1092083A
CN1092083A CN93121455A CN93121455A CN1092083A CN 1092083 A CN1092083 A CN 1092083A CN 93121455 A CN93121455 A CN 93121455A CN 93121455 A CN93121455 A CN 93121455A CN 1092083 A CN1092083 A CN 1092083A
Authority
CN
China
Prior art keywords
starch
weight part
composition
biodegradable
polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN93121455A
Other languages
English (en)
Other versions
CN1037352C (zh
Inventor
刘永得
金永昱
赵元泳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yukong Ltd
Original Assignee
Yukong Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yukong Ltd filed Critical Yukong Ltd
Publication of CN1092083A publication Critical patent/CN1092083A/zh
Application granted granted Critical
Publication of CN1037352C publication Critical patent/CN1037352C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/02Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种由淀粉和聚烯链化学结合而成 的可生物降解薄膜,它是使用聚乙烯,与淀粉和聚乙 烯键合的偶联剂和酸性催化共聚单体。本发明还涉 及制备此薄膜的方法。以聚乙烯为基准的各组分含 量(重量):偶联剂为0.01—10%,酸性催化共聚单体 为0.01—10%,自由基引发剂为0.01—10%,应用反 应挤出使工艺简化而降低了生产成本。通过测量所 制备的含有高达20%(重量)淀粉的可生物降解薄膜 与基本树脂制备的薄膜的拉伸强度和拉伸伸长进行 比较没有差别。

Description

本发明涉及一种使用偶联剂例如马来酐,甲基丙烯酸酐或马来酰亚胺偶联剂与淀粉和聚乙烯偶联,而聚乙烯是具有最广泛应用的聚烯烃,和一种酸性催化剂例如丙烯酸和/或甲基丙烯酸(它是一种相容剂和催化剂)通过淀粉与聚乙烯链化学结合的可生物降解组合物,本发明还涉及该组合物的制备方法。
合成塑料因其极好的物理性能,光亮度和低价格从而克服使用天然材料所带来问题及限制。通过开发各种聚合物,尤其是塑料已建立塑料文明,它是现代科技的特点之一。但是当大批塑料产品的污染问题在世界上日趋严重时世界各国还正在制订各种各样的对策,解决塑料废料的污染问题已成为一件感兴趣的事情。
回收,焚化和掩埋已被主要用来解决这些由各种固体废料,包括塑料废物所引起的环境污染问题。然而废料通过掩埋的处理以及回收都不能完全解决环境污染问题。
因此,近来对可自身降解的可降解塑料的开发产生极大的兴趣并进行各种研究正日趋增长。可降解塑料技术分为可光降解领域。可生物降解领域,和可光与生物降解技术相结合的生物光降解领域。
尽管有许多种类的生物降解塑料,例如,微生物形成聚合物像PHB(聚-β-羟基丁酸酯),用微生物产生生物化学的聚合物, 或带有天然聚合物如几丁质或淀粉的聚合物,在本说明书中将叙述有关带有淀粉的聚合物的现有技术所提及和改进的问题。
由G.J.L.,Griffin的美国专利4021388揭示了制备改进的可生物降解薄膜的方法,该方法用硅烷偶联剂处理淀粉的表面使之疏水性,但它仅在基体树脂和淀粉之间提高一点儿物理相互作用强度以致很难解决薄膜在掺入淀粉时物理性能的降低。
尽管由USDA的(美国农业部)F.H.Otey等人申请的美国专利4133784和4337181揭示了在乙烯-丙烯酸共聚物中加入α-淀粉而制备可生物降解薄膜的方法,但由于乙烯-丙烯酸共聚物价格高而很难推广且所生产的薄膜物理性能下降。
由南朝鲜的Seonil  Glucose公司申请的南朝鲜专利公开号90-6336和91-8553揭示了一种方法,通过提高淀粉的疏水性或提高基质树脂的亲水性而提高基质树脂和淀粉之间的物理相互作用强度以达到提高基质树脂和淀粉的相容性。
在本发明中,通过简化工艺而减少生产成本并且克服物理性能的降低,通过研究得出结论按通过仅仅提高基质树脂和淀粉之间的物理相互作用强度而掺入淀粉来克服薄膜物理性能的降低。
本发明的一个目的是提供一种与淀粉化学结合的可生物降解聚乙烯组合物,本发明的另一目的是提供制备此可生物降解聚乙烯组合物的方法。
本发明的组合物含有100重量份基质树脂,5-400重量份可生物降解掺入材料,0.01-10重量份偶联剂,0.01-10重量份酸性催化共聚单体,0.01-1.0重量份自由基引发剂,0.01-10重量份自氧化剂和0.01-10重量份增塑剂和可 有可无的0.01-10重量份的共聚单体。
图1是根据本发明例1的可生物降解薄膜的红外线吸收光谱;和
图2是根据本发明例1的一部分可生物降解薄膜由扫描电子显微镜(×1200)所示的电子显微镜摄影。
基质树脂是低密度聚乙烯(LDPE),线性低密度聚乙烯(LLDPE)或高密度聚乙烯(HDPE),可生物降解掺入材料是选自由淀粉,酸处理的淀粉,酯化淀粉,醚化淀粉,阳离子淀粉和它们的混合物,例如玉米淀粉,乙酸淀粉,磷酸淀粉组成的一组物质中一个。化学结合基质树脂和淀粉的偶联剂是马来酐,甲基丙烯酸酐或马来酰亚胺,而同时作催化剂和相容剂的酸催化共聚单体是丙烯酸和/或甲基丙烯酸。自由基引发剂是过氧化苯甲酰。二叔丁基过氧化物,偶氮二异丁腈,叔丁基氢过氧化物,过氧化二枯基,Lupersol  101(Pennwalt公司)或Perkadox-14(AKEO公司)。自氧化剂是选自油酸锰,硬脂酸锰,油酸亚铁(Ⅱ),硬脂酸亚铁(Ⅱ)及其混合物的一组物质的一外或多个,增塑剂是,例如油酰胺(oleamide),Viton或Erucamide。共聚单体是选自丙烯腈,苯乙烯和丙烯酸乙酯的一组物质中一种或多种。
为了达到本发明的另一目的制备与淀粉化学结合的可生物降解聚乙烯组合物的方法,包括以一定量混合基质树脂,可生物降解掺入物质,偶联剂,酸性催化共聚单体,自氧化剂,增塑剂,和自由基引发剂并反应挤出该混合物。
采用双螺杆挤出机实施反应挤出方法通过简化工艺而降低了生产成本并在混合淀粉后将物理性能的降低减至最小程度。也就是说,将聚乙烯,自由基引发剂,偶联剂,例如马来酐、甲基丙烯酸或马来酰 亚胺,玉米淀粉或淀粉衍生物和酸性催化共聚单体同时放在一起并在150-220℃的温度和50-300rpm螺杆转速下反应挤出而酯化淀粉,同时偶联剂接枝到聚乙烯链上。
优选使用像马来酐,甲基丙烯酸或马来酰亚胺这样的偶联剂,其量为0.01-10%(重量),酸性催化共聚单体例如丙烯酸或甲基丙烯酸的用量为0.01-10%(重量),自由基引发剂用量为0.01-1.0%(重量),而可生物降解掺入物质用量为5-80%(重量)。
可生物降解掺入物质是,例如玉米淀粉或酸性淀粉并事先干燥,其水分含量在小于3%范围。可生物降解薄膜可通过是以一定量混合基质树脂(聚乙烯),可生物降解掺入物质(淀粉或淀粉衍生物)自由基引发剂,酸性催化共聚单体(丙烯酸或甲基丙烯酸),自氧化剂(油酸,金属油酸盐,等)增塑剂油酰胺(oleamide)),在一塑度纪录仪的混合器中熔融该混合物或用配料器放置每种组分,熔融,挤出该混合物并用造粒机对其进行造粒,用一台热压机和薄膜挤出机将丸粒制成压塑薄膜或吹塑薄膜而制备。压塑薄膜或吹塑薄膜也可通过把低密度聚乙烯,线性低密度聚乙烯或高密度聚乙烯加入粒料中,干混然后挤出该粒料而制备。可生物降解树脂粒料也可模压成聚乙烯瓶。
UTM(万能测试机)测定根据下列例1-13所制备的可生物降解薄膜的机械性能例如拉伸强度和拉伸伸长而物理性能可用ASTM标准仪器进行测定。其表面和断面也可用扫描电子显微镜来研究。在红外吸收光谱上的1700-1800cm-1处(参考图1)显示为酯羧基的吸收峰,基质树脂和淀粉颗粒之间的界面是不清楚的这一事实以及淀粉颗粒是被分段剖开的这一现象显示在用扫描电子显微镜(参 考图2)的薄膜横断面上。这说明淀粉与聚乙烯链化学结合。
可生物降解能力可通过形状形变和薄膜埋在土壤下以后物理性能依时间的变化以及用ASTM  G  21-70方法而进行研究。
以下的例子进一步说明本发明但不限制本发明的范围。
例1.
在此例中为改进偶联剂的反应效果用马来酐作为偶联剂,丙烯酸作为酸性催化剂共聚单体,苯乙烯作为共聚单体通过淀粉和聚乙烯链之间的化学结合而制备可生物降解薄膜。
分别将37.5克马来酐,12.5克丙烯酸,37.5克苯乙烯,5克过氧化苯甲酰,50克油酰胺,和50克油酸锰溶于50ml丙酮中。将5公斤低密度聚乙烯(MI=3,密度=0.919)放入Henschel混合机中然后用上述溶液进行涂覆。
将已涂覆的聚乙烯粒料与60%重量(以上述低密度聚乙烯为基准)的玉米淀粉在维持在170℃且螺杆转速为250rpm的挤出机中反应挤出以制备可生物降解母料粒料其中淀粉与聚乙烯链为化学结合。
将1.7公斤该可生物降解母料和8.3公斤低密度聚乙烯(MI=3,密度=0.919)干混并使其通过薄膜挤出机而制备吹塑薄膜。
通过干混以上的可生物降解母料和低密度聚乙烯(MI=3,密度=0.919)而制备可生物降解薄膜的物理性能和可生物降解能力记录在下面表1中。
可生物降解能力根据(ASTM  G  21-70方法进行测定。在一规定的时间(至少21天)之后,根据聚合物表面被真菌菌落覆盖的百分率 对增长速率进行分类:
0%:0
少于10%:1
10-30%:2
30-60%:3
60-100%:4
例2-6
重复如例1的相同程序,不同是使用以下重量%的淀粉(以聚乙烯为基准),用如例1相同的方法所测定的结果记录在下面表1中。
表1
例号 淀粉含量(重量%) 拉伸强度(kg/cm2) 拉伸伸长(%) 可生物降解能力
对比例1*123456 0102030405060 33031529521515312487 60056053045027014080 0344444
*对比例1:和如例1相同的程序测定,不同是未掺入淀粉。
例7
在此例中用甲基丙基烯酸酐作为偶联剂,用甲基丙烯酸作为酸性催化共聚单体以使聚乙烯链与淀粉化学偶联制备可生物降解薄膜。
分别将50克甲基丙烯酸酐,25克甲基丙烯酸,5克过氧化苯甲酰,50克油酰胺和50克油酸锰溶于50ml丙酮中。将5kg线性低密度聚乙烯(MI=1,密度=0.919)放入Henchel混合机中,然后用以上的溶液涂覆。
将已涂覆的聚乙烯粒料60%(重量)(以上述线性低密度聚乙烯为基准)的阳离子淀粉在维持175℃且螺杆转速为200rpm的挤出机内反应挤出制备可生物降解母料粒料其中淀粉与聚乙烯是化学结合的。
将1.7公斤该可生物降解母料和8.3公斤线性低密度聚乙烯(MI=0.28,密度0.945)干混并使它们通过薄膜挤出机而制备可生物降解吹塑薄膜。
通过干混以上的可生物降解母料和线性低密度聚乙烯(MI0.28,密度0.945)而制备的可生物降解薄膜的物理性能和可生物降解能力均记录在下面表2中。
例8-12
重复如例7的相同程序,不同是使用以下重量%(以聚乙烯为基准)的淀粉,用如例7相同的方法测定的结果记录在下面的表2中。
表2
例号 淀粉含量(重量%) 拉伸强度(kg/cm2) 拉伸伸长(%) 可生物降解能力
对比例1*789101112 0102030405060 640635614516321189106 600580555454335215123 0344444
*  对比例2:用如例1相同的程序测定,不同是未掺入淀粉。
制备含有高达20%(重量)淀粉可生物降解薄膜与基本树脂相比较用Instron测量其拉伸强度和拉伸伸长没有差别。在红外吸收光谱上发现在淀粉和基质树脂之间显示化学结合的酯链这一事实及基质树脂和淀粉颗粒之间的界限不清楚这一现象,以及淀粉颗粒被断面剖开均显示在用扫描电子显微镜的薄膜断面图上,这证实了淀粉和基质之间的化学结合。高于10%(重量)的淀粉时可生物降解能力最佳。

Claims (17)

1、一种与淀粉化学结合的可生物降解聚乙烯组合物,它含有100重量份基质树脂,5-400重量份可生物降解掺入物质,0.01-10重量份偶联剂,0.01-10重量份酸性催化共聚单体,0.01-1.0重量份自由基引发剂,0.01-10重量份自氧化剂和0.01-10重量份增塑剂。
2、根据权利要求1的组合物,其中还包括0.01-10重量份共聚单体。
3、根据权利要求2的组合物,其中共聚单体是选自丙烯腈、苯乙烯和丙烯酸乙酯的一组物质中的一个或多个
4、根据权利要求1的组合物,其中基质树脂是低密度聚乙烯,线性低密度聚乙烯或高密度聚乙烯。
5、根据权利要求1的组合物,其中可生物降解掺入物质是选自淀粉,酸处理的淀粉,酯化淀粉,醚化淀粉,阳离子淀粉和其混合物的一组物质中的一个。
6、根据权利要求1的组合物,其中偶联剂是选自马来酐,甲基丙烯酸酐和马来酰亚胺的一组物质中一个。
7、根据权利要求1的组合物,其中自由基引发剂是过氧化苯甲酰,过氧化二叔丁基,偶氮二异丁腈,叔丁基氢过氧化物,过氧化二枯基,Lupersol  101或Perkadox-14。
8、根据权利要求1的组合物,其中自氧化剂是选自油酸锰,硬脂酸锰,油酸亚铁(Ⅱ),硬脂酸亚铁(Ⅱ)及其混合物的一组物质中的一个或多个。
9、根据权利要求1的组合物,其中增塑剂是选自油酰胺,Viton和Erucamide的一组物质中一个。
10、根据权利要求1的组合物,其中同时作为催化剂和相容剂的酸性催化共聚单体是丙烯酸和/或甲基丙烯酸。
11、一种制备与淀粉化学结合的可生物降解聚乙烯组合物的方法,包括混合100重量份基质树脂,5-400重量份可生物降解掺入物质,0.01-10重量份偶联制,0.01-10重量份酸性催化共聚单体,0.01-1.0重量份自由基引发剂,0.01-10重量份自氧化剂和0.01-10重量份增塑剂,然后反应挤出该混合物。
12、根据权利要求11的方法,其中还混合以0.01-10重量份的量选自丙烯腈,苯乙烯和丙烯酸乙酯的一组物质中的一个或多个。
13、根据权利要求11的方法,其中还包括在反应挤出该混合物之前干燥该可生物降解掺入物质于水份含量低于3%的范围内。
14、根据权利要求11的方法,其中所说的混合物在150-220℃的温度和50-300rpm的螺杆转速下反应挤出。
15、一种与淀粉化学结合的可生物降解聚乙烯制品包括混合根据权利要求1-10之一的聚乙烯组合物,反应挤出该混合物并造粒成为母粒粒料。
16、根据权利要求15的可生物降解聚乙烯制品,其中还包括将低密度聚乙烯,线性低密度聚乙烯或高密度聚乙烯加入到母料粒料中,干混并挤出以上的混合料。
17、根据权利要求16的可生物降解聚乙烯制品,其中可生物降解聚乙烯制品是薄膜或瓶子。
CN93121455A 1992-11-24 1993-11-24 与淀粉结合的可生物降解聚乙烯组合物及其制法和用途 Expired - Fee Related CN1037352C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR22256/92 1992-11-24
KR920022256 1992-11-24
KR1019930014073A KR960012445B1 (ko) 1992-11-24 1993-07-23 전분이 화학결합된 생분해성 폴리에틸렌 조성물 및 그 제조방법
KR14073/93 1993-07-23

Publications (2)

Publication Number Publication Date
CN1092083A true CN1092083A (zh) 1994-09-14
CN1037352C CN1037352C (zh) 1998-02-11

Family

ID=26629374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93121455A Expired - Fee Related CN1037352C (zh) 1992-11-24 1993-11-24 与淀粉结合的可生物降解聚乙烯组合物及其制法和用途

Country Status (8)

Country Link
US (1) US5461094A (zh)
JP (1) JPH06316655A (zh)
KR (1) KR960012445B1 (zh)
CN (1) CN1037352C (zh)
CA (1) CA2109657A1 (zh)
GB (1) GB2272699B (zh)
IT (1) IT1265219B1 (zh)
TW (1) TW316274B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417648A (zh) * 2011-11-23 2012-04-18 吴江明峰聚氨酯制品有限公司 一种可生物降解的聚乙烯塑料膜
CN107835837A (zh) * 2015-06-30 2018-03-23 白鸥逻辑股份有限公司 由生物可降解材料形成的物件
CN110234699A (zh) * 2016-11-22 2019-09-13 聚合材料有限公司 可降解聚合物组合物及其生产方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997995B2 (ja) * 1995-09-13 2000-01-11 日本コーンスターチ株式会社 生分解性樹脂組成物の水系分散液
US5667574A (en) * 1996-11-06 1997-09-16 Chi May Co., Ltd. Starch-based composition for preparing an environment degradable α-olefinic polymer molding material
KR100368738B1 (ko) * 1996-12-12 2003-04-21 에스케이 주식회사 생/광분해성 농업용 멀칭필름 조성물과 이의 제조방법 및 이로 부터 제조된 성형물
JP2001098081A (ja) * 1999-09-30 2001-04-10 Sakae Riken Kogyo Kk オレフィン系樹脂組成物及びその製造方法
WO2001068744A2 (en) * 2000-03-16 2001-09-20 Sanjiv Satyendra Nevgi Modified plastic granules for manufacturing flammable type polythene film
KR20020066258A (ko) * 2001-02-09 2002-08-14 김희성 환경 친화성 수지 조성물 및 그의 제조방법
KR100458042B1 (ko) * 2001-09-11 2004-11-26 호남석유화학 주식회사 전분함유 폴리에틸렌 생붕괴성 수지 조성물 및 그 제조방법
KR20030037530A (ko) * 2001-11-06 2003-05-14 박재석 일회용 전분제 용기 및 그 제조방법
AU2002357177A1 (en) * 2001-12-12 2003-06-23 North Carolina State University Methods of co2-assisted reactive extrusion
WO2003074604A1 (en) * 2002-02-28 2003-09-12 Board Of Trustees Of The University Of Arkansas Biodegradable materials from starch-grafted polymers
KR100481420B1 (ko) * 2002-10-22 2005-04-08 주식회사 이래화학 생분해성 소재를 이용한 혈관주사용 주사바늘
KR100602386B1 (ko) * 2003-07-11 2006-07-20 김찬형 복합분해성 열가소성 중합체 조성물 및 이로부터 제조되는복합분해성 열가소성 중합체 제품 및 그의 제조 방법
US20080036115A1 (en) * 2004-03-10 2008-02-14 Minoru Ueda Starch Resin Composition, Molded Product Using the Same and Method for Producing the Same
US20080249212A1 (en) * 2007-04-06 2008-10-09 Sigworth William D Starch-polyolefin composites with improved performance
US8361947B2 (en) * 2007-04-30 2013-01-29 Peel Away Limited Paint remover
US8613834B2 (en) * 2008-04-03 2013-12-24 Basf Se Paper coating or binding formulations and methods of making and using same
US20090275699A1 (en) * 2008-05-05 2009-11-05 Mingfu Zhang Starch containing formaldehyde-free thermoset binders for fiber products
FR2955329B1 (fr) * 2010-01-15 2013-02-01 Roquette Freres Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions
US9718258B2 (en) 2011-12-20 2017-08-01 Kimberly-Clark Worldwide, Inc. Multi-layered film containing a biopolymer
US9327438B2 (en) 2011-12-20 2016-05-03 Kimberly-Clark Worldwide, Inc. Method for forming a thermoplastic composition that contains a plasticized starch polymer
US9815949B2 (en) * 2013-07-31 2017-11-14 Abdul Rasoul Oromiehie Biodegradable nanocomposites containing nanoclay and titanium dioxide nanoparticles
US9464188B2 (en) 2013-08-30 2016-10-11 Kimberly-Clark Worldwide, Inc. Simultaneous plasticization and compatibilization process and compositions
WO2016088124A1 (en) * 2014-12-02 2016-06-09 B. G. Negev Technologies And Applications Ltd., At Ben-Gurion University Modified polysaccharides for use as anti-microbial agents
US10995201B2 (en) 2015-06-30 2021-05-04 BiologiQ, Inc. Articles formed with biodegradable materials and strength characteristics of the same
US10920044B2 (en) 2015-06-30 2021-02-16 BiologiQ, Inc. Carbohydrate-based plastic materials with reduced odor
US11674014B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Blending of small particle starch powder with synthetic polymers for increased strength and other properties
US10752759B2 (en) 2015-06-30 2020-08-25 BiologiQ, Inc. Methods for forming blended films including renewable carbohydrate-based polymeric materials with high blow up ratios and/or narrow die gaps for increased strength
US11879058B2 (en) 2015-06-30 2024-01-23 Biologiq, Inc Yarn materials and fibers including starch-based polymeric materials
US11111363B2 (en) 2015-06-30 2021-09-07 BiologiQ, Inc. Articles formed with renewable and/or sustainable green plastic material and carbohydrate-based polymeric materials lending increased strength and/or biodegradability
US11149144B2 (en) 2015-06-30 2021-10-19 BiologiQ, Inc. Marine biodegradable plastics comprising a blend of polyester and a carbohydrate-based polymeric material
US11926929B2 (en) 2015-06-30 2024-03-12 Biologiq, Inc Melt blown nonwoven materials and fibers including starch-based polymeric materials
US11926940B2 (en) 2015-06-30 2024-03-12 BiologiQ, Inc. Spunbond nonwoven materials and fibers including starch-based polymeric materials
US10919203B2 (en) * 2015-06-30 2021-02-16 BiologiQ, Inc. Articles formed with biodegradable materials and biodegradability characteristics thereof
US11359088B2 (en) 2015-06-30 2022-06-14 BiologiQ, Inc. Polymeric articles comprising blends of PBAT, PLA and a carbohydrate-based polymeric material
US11674018B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Polymer and carbohydrate-based polymeric material blends with particular particle size characteristics
US11111355B2 (en) 2015-06-30 2021-09-07 BiologiQ, Inc. Addition of biodegradability lending additives to plastic materials
US11046840B2 (en) 2015-06-30 2021-06-29 BiologiQ, Inc. Methods for lending biodegradability to non-biodegradable plastic materials
TR201808556T4 (tr) 2015-10-27 2018-07-23 Pep Licensing Ltd Bir biyobozunur, biyogübrelenebilir, biyoçürütülebilir plastik.
US9925707B2 (en) 2015-12-22 2018-03-27 Pep Licensing Limited Process for preparation of biodegradable biocompostable biodigestible polyolefins
US11505687B2 (en) 2020-08-05 2022-11-22 Nano And Advanced Materials Institute Limited Environmentally degradable foamed master batch composition and using thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1485833A (en) * 1973-11-28 1977-09-14 Coloroll Ltd Synthetic-resin-based compositions
US3867324A (en) * 1972-07-28 1975-02-18 Union Carbide Corp Environmentally degradable-biodegradable blend of an oxyalkanoyl polymer and an environmentally degradable ethylene polymer
DE2436555C3 (de) * 1974-07-30 1979-12-13 Maizena Gmbh, 2000 Hamburg Verfahren zur Herstellung von Pfropfpolymeren durch Umsetzen von Stärke mit wasserlöslichen oder in Wasser dispergierbaren Vinyl- und/ oder Acrylpolymeren
GB1600496A (en) * 1977-09-16 1981-10-14 Coloroll Ltd Plasticsbased composition
US4337181A (en) * 1980-01-17 1982-06-29 The United States Of America As Represented By The Secretary Of Agriculture Biodegradable starch-based blown films
US4375535A (en) * 1980-04-28 1983-03-01 Standard Brands Incorporated Stable liquid, amylopectin starch graft copolymer compositions
WO1984003053A1 (en) * 1983-02-14 1984-08-16 Amf Inc Modified polysaccharide supports
CH671961A5 (zh) * 1987-02-27 1989-10-13 Amrotex Ag
US5162392A (en) * 1989-05-19 1992-11-10 Agri-Tech Industries, Inc. Injection moldable biodegradable starch polymer composite
US5026745A (en) * 1989-06-12 1991-06-25 Aristech Chemical Corporation Biodeteriable plastics and blends
IT1240503B (it) * 1990-07-25 1993-12-17 Butterfly Srl Miscela polimerica amidacea particolarmente per la produzione di film e simili e procedimento per la sua produzione.
BE1005694A3 (fr) * 1992-02-07 1993-12-21 Solvay Composition a base d'amidon.
US5321064A (en) * 1992-05-12 1994-06-14 Regents Of The University Of Minnesota Compositions of biodegradable natural and synthetic polymers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417648A (zh) * 2011-11-23 2012-04-18 吴江明峰聚氨酯制品有限公司 一种可生物降解的聚乙烯塑料膜
CN107835837A (zh) * 2015-06-30 2018-03-23 白鸥逻辑股份有限公司 由生物可降解材料形成的物件
CN110234699A (zh) * 2016-11-22 2019-09-13 聚合材料有限公司 可降解聚合物组合物及其生产方法
US11155702B2 (en) 2016-11-22 2021-10-26 Polymateria Limited Degradable polymer and method of production

Also Published As

Publication number Publication date
ITMI932486A0 (it) 1993-11-24
US5461094A (en) 1995-10-24
KR960012445B1 (ko) 1996-09-20
TW316274B (zh) 1997-09-21
KR940011556A (ko) 1994-06-21
ITMI932486A1 (it) 1995-05-24
JPH06316655A (ja) 1994-11-15
GB2272699B (en) 1997-04-02
GB9324058D0 (en) 1994-01-12
CA2109657A1 (en) 1994-05-25
IT1265219B1 (it) 1996-10-31
CN1037352C (zh) 1998-02-11
GB2272699A (en) 1994-05-25

Similar Documents

Publication Publication Date Title
CN1092083A (zh) 一种与淀粉化学结合的可生物降解聚乙烯组合物及其制备方法
CN1092084A (zh) 一种与淀粉化学结合的可生物降解聚乙烯组合物及其制备方法
CA2123082C (en) Thermoplastic polymer alloy composition
CN1124286C (zh) 基于醋酸乙烯酯树脂的乳液的制备方法,以及含水粘合剂
CN108948690B (zh) 一种聚乳酸-木质素-淀粉复合材料及其制备方法
CN1230466C (zh) 一种可完全生物降解塑料母料及其制备方法
CN1208363C (zh) 功能化聚烯烃树脂的制备方法
US20220049077A1 (en) Method of producing bioplastic pellets using livestock manure method of producing bioplastic pellets using livestock manure
CN111423689B (zh) 一种改性聚丙烯材料及其制备方法与应用
CN1296423C (zh) 纳米材料改性聚乙烯地面覆盖薄膜
CN111621114B (zh) 一种改性聚丙烯家具复合材料及其制备方法和用途
CN1109062C (zh) 无机基料复合降解塑料母料的制造方法
CN1646617A (zh) 填充剂组合物
CN1156154A (zh) 生物可降解的塑料组合物制备该组合物的方法和用该组合物制备的产品
CN1478808A (zh) 淀粉基三元体系完全生物降解膜及吹塑成膜方法
CN1126781C (zh) 可控环境降解塑料母料
CN115322447B (zh) 一种淀粉基增韧复合材料的加工方法
CN1651497A (zh) 制备改性聚烯烃树脂的方法
CN1227229A (zh) 热稳定性改进的α-取代的丙烯酸酯接枝共聚物
JPH0819294B2 (ja) 複合樹脂組成物、シート成形用複合樹脂組成物およびその成形品
KR960005075B1 (ko) 중합관능기를 갖는 전분을 이용한 생분해성 폴리에틸렌 조성물 및 그 제조방법
CN1594412A (zh) 高熔体强度聚丙烯及其制备方法
CN114058116A (zh) 一种聚丙烯复合材料及其制备方法
CN117247642A (zh) 一种改性可降解塑料
KR970003306B1 (ko) 에틸렌-비닐 아세테이트 공중합체와 폴리에스터-에틸렌 공중합체로 된 생분해성 플라스틱 조성물 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee