CN109174186A - 一种金属有机骨架材料负载贵金属与等离子体共活化co2制备c1有机产物的方法 - Google Patents
一种金属有机骨架材料负载贵金属与等离子体共活化co2制备c1有机产物的方法 Download PDFInfo
- Publication number
- CN109174186A CN109174186A CN201810977319.8A CN201810977319A CN109174186A CN 109174186 A CN109174186 A CN 109174186A CN 201810977319 A CN201810977319 A CN 201810977319A CN 109174186 A CN109174186 A CN 109174186A
- Authority
- CN
- China
- Prior art keywords
- metal
- plasma
- organic
- gas
- organic framework
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/349—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/1691—Coordination polymers, e.g. metal-organic frameworks [MOF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
- B01J31/2226—Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
- B01J31/223—At least two oxygen atoms present in one at least bidentate or bridging ligand
- B01J31/2239—Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/12—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/40—Complexes comprising metals of Group IV (IVA or IVB) as the central metal
- B01J2531/48—Zirconium
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明涉及金属有机骨架材料负载贵金属与等离子体共活化CO2制备C1有机产物的方法,属于CO2转化及应用领域。所述方法为采用浸渍法将贵金属负载在有机骨架材料上,进一步加入到冷等离子体放电反应器中,通入工作气体,气体压力为大气压,调节放电电压峰峰值为15~40kV,将贵金属还原。进一步将还原后的M/MOF加入到大气压介质阻挡等离子体反应器中,通入CO2和H2的混合气体,实现CO2转化制备C1有机产物。本发明有益效果提高了CO2转化率和C1产物选择性,并能有效维持材料的骨架结构。
Description
技术领域
本发明涉及一种负载型金属有机骨架材料与大气压冷等离子体共活化CO2的方法,属于CO2转化及应用领域。
背景技术
金属有机骨架材料(MOFs)是一类新型的晶体固态材料,一般是由中心金属离子与有机多齿配体通过共价键方式连接在一起形成的三维网络结构。金属有机骨架材料因其具有结构性能可设计、比表面积高和均匀的孔径而广泛应用于气体存储、气体分离、传感器和药物载体。与传统的吸附材料相比,MOFs表现出极具潜力的应用前景。近年来以新兴多孔材料MOFs作为催化剂载体的应用也多有报道。如Zhang等[Zhang S Q,Li L,Zhao S G,Sun ZH,Luo J H.Construction of interpenetrated ruthenium metal–organic frameworksas stable photocatalysts for CO2 reductions[J].Inorganic Chemistry,2015,54(17):8375-8379]以Cd-MOF为载体负载贵金属Ru用于光还原CO2制甲酸。李岩松[李岩松.金属有机骨架(UIO-67、 UIO-66)负载纳米Au/Pd催化剂制备与催化性能研究[D].华南理工大学,2017] 通过浸渍还原法制备了Au@UIO-66、Pd@UIO-66两种催化剂并研究了其在不同条件下催化还原对硝基苯酚的性能。常规的负载型金属催化剂的还原方法有热还原法和化学还原法,采用常规的方法制备金属骨架材料负载贵金属催化材料时由于热还原温度较高或还原剂的引入易引起骨架结构的破坏。因而,寻找一种快速高效、清洁环保的金属骨架材料负载贵金属催化材料制备技术十分必要。
CO2排放已经造成了严重的环境和生态问题,同时CO2也是储量最丰富的碳源之一,因此CO2的收集、转化和再利用逐渐成为人们最关注的问题之一。CO2加氢转化为C1有机物既可以有效地利用碳源减少CO2排放,同时C1有机物又作为替代燃料和合成其他高价值平台化学品的原料,因此,CO2加氢转化越来越被人们关注。Lei等[Lei H,Hou Z Y,Xie JW.Hydrogenation ofCO2to CH3OH over CuO/ZnO/Al2O3catalysts prepared via asolvent-free routine[J].Fuel 164(2016) 191–198]以CuO/ZnO/Al2O3催化剂采用热催化技术在240℃、3.0MPa条件下实现 CO2氢化反应制备甲酸。Iguchi等[Iguchi S J,TeramuraK,Saburo Hosokawa S, Tanaka T.Photocatalytic conversion of CO2in an aqueoussolution using various kinds of layered double hydroxides[J].Catalysis Today251(2015)140–144]以 Ni–Al LDH(Ni/Al=4)为催化剂,采用光催化分解CO2为CO。然而,热催化和光催化条件下的CO2转化率较低。大气压等离子体技术具有活化能力强,能耗低,可以产生较高能量的活性粒子,对于活性较弱的CO2也具有较强的氧化分解能力,因而越来越受到国内外研究学者的关注,逐渐成为活化还原CO2的研究热点。 Mei等[Mei D,Zhua X,WuC F,Ashforda B,Paul T.Williams P W,Tu X. Plasma-photocatalytic conversion ofCO2at low temperatures:Understanding the synergistic effect of plasma-catalysis[J].Applied Catalysis B:Environmental 182 (2016)525–532]将大气压介质阻挡放电用于CO2转化,有效提高了CO2转化率。
目前,从现有报道来看,未见有以具有大孔道结构和大比表面积的及高热稳定性的MOF材料作为载体制备负载型贵金属催化剂与大气压等离子体共同作用 CO2选择性生成C1有机产物的报道。
发明内容
本发明通过金属有机骨架材料负载贵金属催化剂与大气压冷等离子体共活化CO2解决了上述问题。
本发明提供了一种金属有机骨架材料负载贵金属与等离子体共活化CO2制备C1有机产物的方法,所述方法为采用浸渍法将贵金属负载在有机骨架材料上,进一步加入到冷等离子体放电反应器中,通入工作气体,气体压力为大气压,调节放电电压峰峰值为15~40kV,将产生的冷等离子体还原贵金属。进一步将还原后的金属有机骨架材料负载贵金属加入到大气压介质阻挡等离子体反应器中,通入CO2和H2的混合气体,实现CO2转化制备C1有机产物。
本发明所述金属有机骨架材料优选为Zr-MOF。
本发明所述贵金属优选为钌、铑、金或钯中的一种。
本发明所述C1有机产物为甲烷、甲酸或甲醛,优选为甲烷或甲酸。
本发明所述所述工作气体优选为氢气或氢气与氩气的混合气体,氢气与氩气的混合比例优选1:1。
本发明所述冷等离子体优选为介质阻挡放电产生的等离子体、射频放电产生的等离子体或辉光放电产生的等离子体。
本发明所述冷等离子体所用介质优选为石英玻璃或氧化铝。
本发明所述CO2和H2的混合气体的体积比为1:10-10:1,更优选1:4-4:1。
本发明所述CO2和H2的混合气体的流速为10ml/min-200ml/min,优选为 30ml/min-100ml/min。
本发明有益效果为:
①本发明所述CO2制备C1有机产物的方法与现有方法比明显提高CO2吸附和转化;
②本发明所述MOF材料在使用过程中,能有效维持材料的骨架结构。
附图说明
本发明附图4幅。
图1为实施例1、2、3CO2加氢反应结果图。图1(a)是实施例1、实施例 2和实施例3对CO2转化率影响的结果,图1(b)是实施例1、实施例2和实施例3对CH4、CO选择性影响的结果,图1(c)是实施例1、实施例2和实施例 3对CH4、CO收率影响的结果;
图2为实施例1、2的MOF、Ru/MOF的XRD谱图;
图3为实施例1等离子体处理前后Ru/MOF的XPS谱图;
图4为实施例1等离子体处理前后Ru/MOF的SEM谱图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述Zr-MOF材料的制备方法:取1.165g氯化锆(ZrCl4)、0.831g对苯二甲酸(C8H6O4)、30mL DMF溶液和0.8ml浓HCl溶液充分搅拌散热后移至均相反应釜中,然后把反应釜放入恒温干燥箱中120℃恒温24h后自然冷却至室温。过滤、DMF清洗、甲醇洗、在干燥箱中100℃干燥6h后丙酮洗、在干燥箱中干燥 6h,得到Zr离子金属有机骨架材料。
下述为Ru/Zr-MOF材料的制备方法:将2.15mL浓度为0.0266g﹒ml-1RuCl3溶液加入1g Zr-MOF材料中,搅拌、室温下静置12h后得到2%Ru/Zr-MOF材料前驱体。将2%Ru/Zr-MOF材料前驱体移至大气压冷等离子体放电反应器中,通入氢气,调节放电电压峰峰值为19.2kV,放电30min,得到2%Ru/Zr-MOF。
实施例1
一种金属有机骨架材料负载贵金属与等离子体共活化CO2制备C1有机产物的方法,所述方法为将0.3g上述2%Ru/Zr-MOF材料加入到线筒式介质阻挡等离子体放电反应器中,通入反应气体(VH2:VCO2=4:1),调节放电电压峰峰值为 19.2kV,进行CO2加氢转化制备C1有机产物反应,反应产物采用气相色谱在线检测。
实施例2
一种金属有机骨架材料负载贵金属与等离子体共活化CO2制备C1有机产物的方法,与实施例1的区别为:采用0.2g Zr-MOF替换实施例1中2%Ru/Zr-MOF。
实施例3
一种金属有机骨架材料负载贵金属与等离子体共活化CO2制备C1有机产物的方法,与实施例1的区别为:去掉实施例1中2%Ru/Zr-MOF,仅考察单纯等离子体作用下CO2加氢转化反应。
对实施例1-3得到的产物进行分析和测试,结论如下:
①实施例1、2、3CO2加氢制备C1产物分析图见附图1,通过图1得实施例1、2、3CO2加氢转化反应的反应结果可见实施例1中Ru/MOF与等离子体共同作用下CO2转化率和甲烷选择性、收率远高于实施例2、3的CO2转化率和甲烷选择性、收率;
②实施例1、2的MOF,Ru/MOF的XRD谱图见附图2,通过图2得实施例1、2可见等离子体处理前后的Zr离子金属有机骨架材料晶体结构与模拟结构相同;
③实施例1等离子体处理前后Ru/MOF的XPS谱图见附图3,通过图3得实施例1等离子体处理后有金属态的Ru生成;
④实施例1等离子体处理前后Ru/MOF的SEM谱图见附图4,通过图4得实施例1等离子体处理后MOF结构稳定存在。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。
Claims (10)
1.一种金属有机骨架材料负载贵金属与等离子体共活化CO2制备C1有机产物的方法,其特征在于,采用浸渍法将贵金属负载在有机骨架材料上,加入到冷等离子体放电反应器中,通入工作气体,气体压力为大气压,调节放电电压峰峰值为15~40kV,将产生的冷等离子体还原贵金属;进一步将还原后的金属有机骨架材料负载贵金属加入到大气压介质阻挡等离子体反应器中,通入CO2和H2的混合气体,实现CO2转化制备C1有机产物。
2.根据权利要求1所述的方法,其特征在于,所述金属有机骨架材料为Zr-MOF。
3.根据权利要求1所述的方法,其特征在于,所述贵金属优选为钌、铑、金或钯中的一种。
4.根据权利要求1所述的方法,其特征在于,所述C1有机产物为甲烷、甲酸或甲醛。
5.根据权利要求1所述的方法,其特征在于,所述C1有机产物为甲烷或甲酸。
6.根据权利要求1所述的方法,其特征在于,所述工作气体为氢气或氢气与氩气的混合气体,氢气与氩气的混合比例为1:1。
7.根据权利要求1所述的方法,其特征在于,所述冷等离子体为介质阻挡放电产生的等离子体、射频放电产生的等离子体或辉光放电产生的等离子体。
8.根据权利要求1所述的方法,其特征在于,所述冷等离子体所用介质为石英玻璃或氧化铝。
9.根据权利要求1所述的方法,其特征在于,所述CO2和H2的混合气体的体积比为1:10-10:1。
10.根据权利要求1所述的方法,其特征在于,所述CO2和H2的混合气体的流速为10ml/min-200ml/min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810977319.8A CN109174186B (zh) | 2018-08-27 | 2018-08-27 | 一种金属有机骨架材料负载贵金属与等离子体共活化co2制备c1有机产物的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810977319.8A CN109174186B (zh) | 2018-08-27 | 2018-08-27 | 一种金属有机骨架材料负载贵金属与等离子体共活化co2制备c1有机产物的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109174186A true CN109174186A (zh) | 2019-01-11 |
CN109174186B CN109174186B (zh) | 2021-11-09 |
Family
ID=64919916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810977319.8A Active CN109174186B (zh) | 2018-08-27 | 2018-08-27 | 一种金属有机骨架材料负载贵金属与等离子体共活化co2制备c1有机产物的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109174186B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111974393A (zh) * | 2020-09-15 | 2020-11-24 | 西北大学 | 一种低温等离子体-光耦合甲烷制甲醇的催化剂的制备方法及制备甲醇的方法 |
CN112521263A (zh) * | 2020-11-23 | 2021-03-19 | 大连理工大学 | 一种MOF担载的Ir配合物催化CO2加氢还原制备甲酸盐/甲酸的方法 |
CN113398997A (zh) * | 2021-07-01 | 2021-09-17 | 辽宁大学 | 一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂及其制备方法和应用 |
CN114988409A (zh) * | 2022-04-25 | 2022-09-02 | 鲁东大学 | 一种二氧化碳转化的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101880214A (zh) * | 2010-06-08 | 2010-11-10 | 大连理工大学 | 一种非热等离子体与过渡金属协同催化co2加氢的方法 |
CN103638927A (zh) * | 2013-11-06 | 2014-03-19 | 大连大学 | 一种利用大气压冷等离子体制备负载型Au催化剂的方法 |
CN105131304A (zh) * | 2015-08-11 | 2015-12-09 | 大连大学 | 一种金属有机骨架材料的大气压冷等离子体活化方法 |
CN105289735A (zh) * | 2015-11-03 | 2016-02-03 | 浙江工业大学 | 一种具有高稳定性的Pd/UiO-66-NH2材料及其制备方法和应用 |
WO2017164822A1 (en) * | 2016-03-24 | 2017-09-28 | Nanyang Technological University | Core-shell plasmonic nanogapped nanostructured material |
-
2018
- 2018-08-27 CN CN201810977319.8A patent/CN109174186B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101880214A (zh) * | 2010-06-08 | 2010-11-10 | 大连理工大学 | 一种非热等离子体与过渡金属协同催化co2加氢的方法 |
CN103638927A (zh) * | 2013-11-06 | 2014-03-19 | 大连大学 | 一种利用大气压冷等离子体制备负载型Au催化剂的方法 |
CN105131304A (zh) * | 2015-08-11 | 2015-12-09 | 大连大学 | 一种金属有机骨架材料的大气压冷等离子体活化方法 |
CN105289735A (zh) * | 2015-11-03 | 2016-02-03 | 浙江工业大学 | 一种具有高稳定性的Pd/UiO-66-NH2材料及其制备方法和应用 |
WO2017164822A1 (en) * | 2016-03-24 | 2017-09-28 | Nanyang Technological University | Core-shell plasmonic nanogapped nanostructured material |
Non-Patent Citations (1)
Title |
---|
R. LIPPI ET AL.: "Highly active catalyst for CO2 methanation derived from a metal organic framework template", 《JOURNAL OF MATERIALS CHEMISTRY A》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111974393A (zh) * | 2020-09-15 | 2020-11-24 | 西北大学 | 一种低温等离子体-光耦合甲烷制甲醇的催化剂的制备方法及制备甲醇的方法 |
CN111974393B (zh) * | 2020-09-15 | 2021-07-27 | 西北大学 | 一种低温等离子体-光耦合甲烷制甲醇的催化剂的制备方法及制备甲醇的方法 |
CN112521263A (zh) * | 2020-11-23 | 2021-03-19 | 大连理工大学 | 一种MOF担载的Ir配合物催化CO2加氢还原制备甲酸盐/甲酸的方法 |
CN112521263B (zh) * | 2020-11-23 | 2022-02-15 | 大连理工大学 | 一种MOF担载的Ir配合物催化CO2加氢还原制备甲酸盐/甲酸的方法 |
CN113398997A (zh) * | 2021-07-01 | 2021-09-17 | 辽宁大学 | 一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂及其制备方法和应用 |
CN113398997B (zh) * | 2021-07-01 | 2023-11-10 | 辽宁大学 | 一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂及其制备方法和应用 |
CN114988409A (zh) * | 2022-04-25 | 2022-09-02 | 鲁东大学 | 一种二氧化碳转化的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109174186B (zh) | 2021-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109174186A (zh) | 一种金属有机骨架材料负载贵金属与等离子体共活化co2制备c1有机产物的方法 | |
Wang et al. | Engineering catalytic interfaces in Cuδ+/CeO2-TiO2 photocatalysts for synergistically boosting CO2 reduction to ethylene | |
Fei et al. | A convenient synthesis of core-shell Co3O4@ ZSM-5 catalysts for the total oxidation of dichloromethane (CH2Cl2) | |
Dias et al. | Carbon dioxide methanation over Ni-Cu/SiO2 catalysts | |
Xu et al. | CO poisoning of Ru catalysts in CO2 hydrogenation under thermal and plasma conditions: a combined kinetic and diffuse reflectance infrared fourier transform spectroscopy–mass spectrometry study | |
Liu et al. | Synergetic promotional effect of oxygen vacancy-rich ultrathin TiO2 and photochemical induced highly dispersed Pt for photoreduction of CO2 with H2O | |
Wang et al. | A nonoxide catalyst system study: alkali metal-promoted Pt/AC catalyst for formaldehyde oxidation at ambient temperature | |
Dai et al. | Phosphate-functionalized CeO2 nanosheets for efficient catalytic oxidation of dichloromethane | |
Sápi et al. | In situ DRIFTS and NAP-XPS exploration of the complexity of CO2 hydrogenation over size-controlled Pt nanoparticles supported on mesoporous NiO | |
Feng et al. | Photothermal synergistic effect of Pt1/CuO-CeO2 single-atom catalysts significantly improving toluene removal | |
Zeng et al. | Highly dispersed Ni catalyst on metal–organic framework-derived porous hydrous zirconia for CO2 methanation | |
Kibis et al. | Highly oxidized palladium nanoparticles comprising Pd4+ species: spectroscopic and structural aspects, thermal stability, and reactivity | |
Wang et al. | CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: Surface species and their reactivity | |
CA2883503C (en) | Catalyst for producing hydrogen and method for producing hydrogen | |
Li et al. | Selective CO production by photoelectrochemical methane oxidation on TiO2 | |
Pan et al. | Bi selectively doped SrTiO3-x nanosheets enhance photocatalytic CO2 reduction under visible light | |
Lou et al. | Promoting effects of In2O3 on Co3O4 for CO oxidation: tuning O2 activation and CO adsorption strength simultaneously | |
CN103736487B (zh) | 一种无溶剂机械混合制备负载型金属催化剂的方法 | |
Zhang et al. | Comparative studies of phosphate-modified CeO2 and Al2O3 for mechanistic understanding of dichloromethane oxidation and chloromethane formation | |
Wu et al. | Facile construction of Bi2MoO6/Bi/g-C3N4 toward efficient photocatalytic oxidation of indoor gaseous formaldehyde with a wide concentration range under visible light irradiation | |
CN103071489A (zh) | 室温消除甲醛的负载型活性炭催化材料及制备方法 | |
Payra et al. | Photo-and Electrocatalytic Reduction of CO2 over Metal–Organic Frameworks and Their Derived Oxides: A Correlation of the Reaction Mechanism with the Electronic Structure | |
Pei et al. | Ultra-small Pd clusters supported by chitin nanowires as highly efficient catalysts | |
Tian et al. | Synergistic photocatalytic degradation of pyridine using precious metal supported TiO2 with KBrO3 | |
Xu et al. | Hydroxyapatite-supported low-content Pt catalysts for efficient removal of formaldehyde at room temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |