CN113398997B - 一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂及其制备方法和应用 - Google Patents
一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂及其制备方法和应用 Download PDFInfo
- Publication number
- CN113398997B CN113398997B CN202110739904.6A CN202110739904A CN113398997B CN 113398997 B CN113398997 B CN 113398997B CN 202110739904 A CN202110739904 A CN 202110739904A CN 113398997 B CN113398997 B CN 113398997B
- Authority
- CN
- China
- Prior art keywords
- thin layer
- ultrathin
- mofs
- composite photocatalyst
- nano thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013096 zirconium-based metal-organic framework Substances 0.000 title claims abstract description 77
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims abstract description 74
- 239000002131 composite material Substances 0.000 title claims abstract description 39
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 37
- 229910052697 platinum Inorganic materials 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000001257 hydrogen Substances 0.000 claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 239000002105 nanoparticle Substances 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000003446 ligand Substances 0.000 claims abstract description 9
- 238000005406 washing Methods 0.000 claims abstract description 8
- 238000001291 vacuum drying Methods 0.000 claims abstract description 6
- 229910007926 ZrCl Inorganic materials 0.000 claims abstract description 4
- 238000002156 mixing Methods 0.000 claims abstract description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 5
- 235000019253 formic acid Nutrition 0.000 claims description 5
- 238000006303 photolysis reaction Methods 0.000 claims description 5
- 230000015843 photosynthesis, light reaction Effects 0.000 claims description 5
- 229910052724 xenon Inorganic materials 0.000 claims description 5
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 claims description 2
- 238000013032 photocatalytic reaction Methods 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 230000001681 protective effect Effects 0.000 claims 1
- 230000001699 photocatalysis Effects 0.000 abstract description 19
- 239000012621 metal-organic framework Substances 0.000 abstract description 12
- 230000003197 catalytic effect Effects 0.000 abstract description 5
- 238000000354 decomposition reaction Methods 0.000 abstract description 3
- 238000001035 drying Methods 0.000 abstract description 2
- 238000009210 therapy by ultrasound Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 5
- 239000000370 acceptor Substances 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910007746 Zr—O Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002064 nanoplatelet Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/1691—Coordination polymers, e.g. metal-organic frameworks [MOF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/40—Complexes comprising metals of Group IV (IVA or IVB) as the central metal
- B01J2531/48—Zirconium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
Abstract
本发明属于MOF光催化制氢领域,尤其涉及一种铂掺杂超薄Zr‑MOFs纳米薄层复合光催化剂及其制备方法和应用。所述的铂掺杂超薄Zr‑MOFs纳米薄层复合光催化剂是[Zr6O4(OH)4(F‑NH2‑L)4(H2O)2(HCOO)4]·9DMF·5H2O。制备方法包括如下步骤,将H2AFDCPB配体、ZrCl4分别溶解在DMF溶液中,混合均匀,转移至密闭的反应容器中,进行反应,离心收集,洗涤,真空干燥,得到超薄Zr‑MOFs纳米薄层。将超薄Zr‑MOF纳米薄层加入到Pt纳米粒子溶液,超声后静置,洗涤,干燥,得到目标产物。该复合光催化剂表现出显著提高的催化活性及稳定性,以此实现了高效的光解水制氢。
Description
技术领域
本发明属于MOF光催化制氢领域,尤其涉及一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂及其制备方法和应用。
背景技术
为了满足全球日益增长的能源需求,将太阳能转换成化学能是非常有前途的,光催化,包括光催化有机转化、水分解、CO2还原等,为了获得清洁无污染的氢能,其中光催化制氢具有非常重要的地位。传统半导体光催化剂面临的主要挑战包括太阳光利用不足、载流子复合、活性中心暴露有限,特别是难以挖掘结构与活性之间的关系。而金属有机骨架(Metal-Organic Frameworks,MOFs)作为一类高度可调的多孔材料,具有良好的、可裁剪的多孔结构、高比表面积等优点,尤其是锆基MOFs由于其优异的化学和热稳定性,在光解水制氢的各种实际应用中显示出了解决挑战的潜力。但是如何提高MOFs材料的电子-空穴分离效率和载流子利用率是光解水制氢性能在实际应用中一个亟待解决的问题。
发明内容
为解决上述现有技术的问题,本发明目的是将Pt纳米粒子负载在超薄Zr-MOFs纳米薄层表面,得到一种负载铂的超薄Zr-MOF纳米薄层复合光催化剂。Pt的引入可有效改善Zr-MOFs材料光生电荷与空穴负荷严重的问题,在光解水制氢方面展现出了优异的催化活性并具有较好的应用前景。
为实现上述目的,本发明采用的技术方案是:一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂,所述的铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂是[Zr6O4(OH)4(F-NH2-L)4(H2O)2(HCOO)4]·9DMF·5H2O。
上述的一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂的制备方法,包括如下步骤,将超薄Zr-MOF纳米薄层加入到Pt纳米粒子溶液,超声震荡2h后,静置一夜,用无水乙醇洗涤数次,离心收集,真空干燥,得到目标产物。
上述的一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂的制备方法,所述超薄Zr-MOF纳米薄层的制备方法,包括如下步骤:将H2AFDCPB配体、ZrCl4分别溶解在DMF溶液中,再加入甲酸超声混合均匀后,转移至密闭的反应容器中,进行反应,离心收集,固体物用DMF和无水乙醇洗涤,60℃真空干燥,得到超薄Zr-MOFs纳米薄层。
上述的一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂的制备方法,H2AFDCPB配体:ZrCl4:甲酸:Pt纳米粒子=6mg:6mg:100uL:1mg。
上述的一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂的制备方法,所述的反应条件为在120℃条件下加热48h。
上述的一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂在光解水制氢中的应用。
上述的应用,将上述的铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂超声分散于含有三乙醇胺和乙腈的水溶液中,将反应体系搅拌并抽真空后,用氮气做保护气,在氙灯照射下进行光催化反应。
上述的应用,按固液比,铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂:TEOA:H2O:CH3CN=3g:1L:1L:8L。
本发明的有益效果是:
由于氢气在清洁和可再生能源中的潜在应用,开发用于使可见光利用最大化并同时提高电子-空穴分离效率的高效催化剂至关重要。本发明采用多孔光催化剂中的佼佼者——锆基金属-有机框架,Zr-MOFs材料的高比表面积和多孔性使其成为高催化活性的金属纳米粒子(NPs)的优良载体和基底。其中提到金属NPs作为空间电荷分离的有效电子受体可以导致增强的光催化活性,鉴于大多数光激发产生的电子在其转移到催化剂表面进行光催化反应时会发生电子湮灭,我们认识了解到电子被受体或助催化剂捕获的速度越快,所具有的光催化效率就越高。用于增强光催化活性而经常使用的电子受体一般是贵金属NPs,特别是PtNPs,因此,本发明对电子受体在Pt/Zr-MOFs复合体系中高效催化的基本研究是必要的。本发明中,我们利用油浴合成了尺寸约为3nm的Pt NPs作为电子受体被均匀分散在MOFs材料的表面,制备得到了一种具有良好光催化活性的复合光催化剂Pt/Zr-MOFs。与原始的Zr-MOFs材料相比,该复合光催化剂表现出显著提高的催化活性及稳定性,以此实现了高效的光解水制氢。
附图说明
图1是H2MDCPB-F-NH2配体的结构示意图。
图2是H2MDCPB-F-NH2配体制备复合光催化剂Pt/Zr-MOF的结构示意图。
图3是Zr-MOFs纳米薄层的扫描电子显微镜图(a)和透射电子显微镜图(b)。
图4是复合光催化剂Pt/Zr-MOFs的透射电子显微镜图(a,b)。
图5是Zr-MOFs和复合光催化剂Pt/Zr-MOFs的光电流响应(i-t)曲线。
图6是复合光催化剂Pt/Zr-MOF光催化分解水制氢机理示意图。
图7是Zr-MOFs和复合光催化剂Pt/Zr-MOFs光催化分解水产氢对比图。
具体实施方式
实施例1铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂(一)制备方法如下:
1.Zr-MOFs纳米薄层的制备
6mgH2AFDCPB配体、6mg ZrCl4分别溶解在DMF溶液中,超声均匀后,转移至密闭的反应小瓶中,120℃加热48h,离心收集,固体物用DMF和无水乙醇洗涤数次,60℃真空干燥,得到超薄Zr-MOFs纳米薄层。其结构式如图2所示。从[001]和[100]方向上看,Zr6金属簇与V型二齿羧酸配体相互连接(a),形成二维层状结构(b),二维层状结构在甲酸的支撑下形成了具有三维结构的复合光催化剂Pt/Zr-MOFs(d)。
2.Pt纳米粒子溶液的制备
称取200mg的聚乙烯吡咯烷酮(PVP)溶解在20mL含有50mgH2PtCl6·6H2O的乙二醇溶液中,超声溶解均匀后,放入预先加热至180℃的油浴中快速搅拌10min,得到PVP保护的铂纳米粒子溶液。
3.复合物Pt/Zr-MOF的制备
取步骤1所得超薄Zr-MOFs纳米薄层(30mg),超声分散于1mL步骤2所述的铂纳米粒子溶液中,超声震荡2h,静置一夜,离心收集,用无水乙醇洗至上清液无色,真空干燥得到灰色固体粉末约30mg,即为复合光催化剂Pt/Zr-MOFs。
(二)检测结果:
图3是Zr-MOF纳米薄层的扫描电子显微镜图(a)和透射电子显微镜图(b),从图中可以看出我们制得的Zr-MOFs纳米材料具有较薄的厚度,经过对大量样品的分析,我们得到纳米片的平均厚度在20nm左右。
图4是复合光催化剂Pt/Zr-MOF的透射电子显微镜图(a,b),从图中可以看出按照例一所述方法合成的Pt NPs不会发生聚集,尺寸保持在约3nm左右,且在Zr-MOF纳米片的整个外表面分散且均匀覆盖。其中,从图(a)中可以得出所得的Zr-MOF是具有明确晶格间距的晶体,从图(b)中可以得到Pt NPs的晶格间距为对应Pt的晶面为(3 3 1)。
图5是Zr-MOF和复合光催化剂Pt/Zr-MOF的光电流响应(i-t)曲线。为了揭示MOF基复合材料间的电荷分离效率,我们对其进行了光电流测试,其中曲线a表示的是Pt/Zr-MOF,曲线b代表的是Zr-MOF的i-t。结果表明,与原始的Zr-MOFs材料相比,经过Pt修饰的MOF材料的光电流有明显的增强,显示Pt-MOF肖特基结的形成有助于光生电子-空穴对的分离。其中,Pt/Zr-MOF显示出比原Zr-MOF更强的光电流响应,这表明Pt/Zr-MOF中从MOF到Pt NPs的电荷转移效率要比原Zr-MOF高得多。
实施例2复合光催化剂(Pt/Zr-MOF)催化水分解制氢
方法如下:光解水制氢实验是在160mL石英光反应器中室温条件下并使用300W氙灯(>380nm)照射完成。详细来说,将30mg复合光催化剂Pt/Zr-MOF超声分散在80mL CH3CN、10mLTEOA和10mL超纯水中,在该反应体系中,CH3CN和H2O作为反应溶剂分散催化剂,TEOA作为牺牲剂用于抑制载流子复合。将反应混合物抽真空30分钟,搅拌并通N2用以排出空气。将反应器固定并用氙灯照射6h。反应结束后,放出的气体每1小时用气相色谱仪分析一次产品。反应原理如图6所示,基于Zr-MOF的光催化过程可能是:作为天线的带有氟氨基官能团的有机配体可以被太阳光激发,并通过系间穿越将能量有效的传递到MOF薄层的Zr-O簇。对于Pt修饰的Zr-MOF催化剂,由于具有超低电势的Pt NPs是理想的电子陷阱,并且可以提供用于析氢的氧化还原反应位点,MOF上的光生电子通过Pt/Zr-MOF肖特基结转移到Pt上,与质子反应产生氢气。结果如表1和图7,其中曲线a表示的是Pt/Zr-MOF,曲线b代表的是Zr-MOF的光催化制氢曲线。
表1 Pt/Zr-MOF光催化水分解制氢反应数据
通过对比表1和图6中数据可以发现,相同反应条件下当反应时间达到六小时,与Zr-MOF的较差活性(249.0μmol/g)相比,Pt/Zr-MOF的光催化效率比之要高5倍之多(1236.9μmol/g),表明电荷在MOF和Pt之间的快速转移对抑制光生电子-空穴对的复合起到了至关重要的作用。因此复合光催化剂Pt/Zr-MOF在氙灯光照条件下呈现出非常高的光催化水分解制氢的活性,且在催化实验监测的6个小时内,未见明显的活性衰减,亦说明催化剂具有良好的稳定性,该复合型催化剂在光催化制氢方面具有潜在的应用前景。
Claims (4)
1.一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂在光解水制氢中的应用,其特征在于,
铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂的制备方法包括如下步骤,将超薄Zr-MOFs纳米薄层加入到Pt纳米粒子溶液,超声震荡2h后,静置一夜,用无水乙醇洗涤数次,离心收集,真空干燥,得到目标产物;所述的超薄Zr-MOFs纳米薄层是[Zr6O4(OH)4(F-NH2-L)4(H2O)2(HCOO)4]·9DMF·5H2O;
所述超薄Zr-MOFs纳米薄层的制备方法,包括如下步骤:将H2AFDCPB配体、ZrCl4分别溶解在DMF溶液中,再加入甲酸超声混合均匀后,转移至密闭的反应容器中,进行反应,离心收集,固体物用DMF和无水乙醇洗涤,60oC真空干燥,得到超薄Zr-MOFs纳米薄层;
H2AFDCPB配体:ZrCl4:甲酸:Pt纳米粒子=6mg:6mg:100 μL:1mg。
2.根据权利要求1所述的应用,其特征在于:所述的反应条件为在120 oC条件下加热48h。
3.根据权利要求1所述的应用,其特征在于,将所述的铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂超声分散于含有三乙醇胺和乙腈的水溶液中,将反应体系搅拌并抽真空后,用氮气做保护气,在氙灯照射下进行光催化反应。
4.按照权利要求3所述的应用,其特征在于,按固液比,铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂:TEOA:H2O:CH3CN=3g:1L:1L:8L。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110739904.6A CN113398997B (zh) | 2021-07-01 | 2021-07-01 | 一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110739904.6A CN113398997B (zh) | 2021-07-01 | 2021-07-01 | 一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113398997A CN113398997A (zh) | 2021-09-17 |
CN113398997B true CN113398997B (zh) | 2023-11-10 |
Family
ID=77680596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110739904.6A Active CN113398997B (zh) | 2021-07-01 | 2021-07-01 | 一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113398997B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114588947A (zh) * | 2022-03-10 | 2022-06-07 | 招商局重庆交通科研设计院有限公司 | 一种Zr-MOF-s(Pt)(Zr/Ti)-R光催化剂的制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109174186A (zh) * | 2018-08-27 | 2019-01-11 | 大连大学 | 一种金属有机骨架材料负载贵金属与等离子体共活化co2制备c1有机产物的方法 |
CN110354901A (zh) * | 2019-08-01 | 2019-10-22 | 重庆工商大学 | 一种金属单原子卟啉基mof材料的制备方法及应用 |
CN110560172A (zh) * | 2019-09-17 | 2019-12-13 | 南开大学 | 一种具有光催化性能的锆金属有机框架异质结材料及其制备方法 |
-
2021
- 2021-07-01 CN CN202110739904.6A patent/CN113398997B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109174186A (zh) * | 2018-08-27 | 2019-01-11 | 大连大学 | 一种金属有机骨架材料负载贵金属与等离子体共活化co2制备c1有机产物的方法 |
CN110354901A (zh) * | 2019-08-01 | 2019-10-22 | 重庆工商大学 | 一种金属单原子卟啉基mof材料的制备方法及应用 |
CN110560172A (zh) * | 2019-09-17 | 2019-12-13 | 南开大学 | 一种具有光催化性能的锆金属有机框架异质结材料及其制备方法 |
Non-Patent Citations (2)
Title |
---|
Efficient Schottky Junction Construction in Metal-Organic Frameworks for Boosting H2 Production Activity;Yang Wang et al.;《Advanced Science》;第8卷;第2页右栏第2段至第3页左栏第1段和Table 1,第9页第8段 * |
基于V型二齿羧酸配体MOFs材料的构筑及其性能研究;孙晓东;《中国博士学位论文全文数据库 工程科技Ⅰ辑》(第12期);正文第103页第2段至第104页第2段,第118页第2段 * |
Also Published As
Publication number | Publication date |
---|---|
CN113398997A (zh) | 2021-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Noble-metal-free MOF derived hollow CdS/TiO2 decorated with NiS cocatalyst for efficient photocatalytic hydrogen evolution | |
Wang et al. | Monoclinic β-AgVO3 coupled with CdS formed a 1D/1D p–n heterojunction for efficient photocatalytic hydrogen evolution | |
CN110813280B (zh) | 一种高分散铂负载表面修饰的黑色二氧化钛光催化剂、制备方法及其应用 | |
CN109876843B (zh) | 铜合金修饰二氧化钛/氮化碳异质结光催化剂及制备方法 | |
Huang et al. | Ti3C2 MXene supporting platinum nanoparticles as rapid electrons transfer channel and active sites for boosted photocatalytic water splitting over g-C3N4 | |
Mu et al. | A review on metal-organic frameworks for photoelectrocatalytic applications | |
CN107159176B (zh) | 一种基于镍纳米颗粒助催化剂的光催化体系的构建方法 | |
Dong et al. | Construction of a p–n Type S-Scheme Heterojunction by Incorporating CsPbBr3 Nanocrystals into Mesoporous Cu2O Microspheres for Efficient CO2 Photoreduction | |
Gai et al. | 2D-2D heterostructured CdS–CoP photocatalysts for efficient H2 evolution under visible light irradiation | |
CN108607593B (zh) | 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂与应用 | |
CN108671907B (zh) | 一种铂/二氧化钛纳米花复合材料及其制备方法与应用 | |
CN110743596A (zh) | 钌纳米颗粒/三维多孔氮化碳复合材料及制备方法与用途 | |
CN108786792B (zh) | 一种金属/半导体复合光催化剂及其制备与应用 | |
Zhao et al. | Fabrication of hierarchical Co9S8@ ZnAgInS heterostructured cages for highly efficient photocatalytic hydrogen generation and pollutants degradation | |
Bao et al. | Significantly enhanced photothermal catalytic CO2 reduction over TiO2/g-C3N4 composite with full spectrum solar light | |
CN103521252A (zh) | 氮掺杂石墨烯复合半导体纳米粒子的光催化剂及制备方法 | |
CN111905766B (zh) | 一种0D/1D W18O49/CdS Z-型可见光催化剂的制备方法及应用 | |
CN111203231A (zh) | 硫化铟锌/钒酸铋复合材料及其制备方法和应用 | |
CN110280276A (zh) | 负载型光催化剂NiSe2/CdS的制备方法及其应用 | |
CN105664969B (zh) | 一种二氧化钛-铂-四氧化三钴三元复合光催化材料及其制备方法 | |
CN114471721A (zh) | 以金属位点锚定单原子的TiO2光催化剂及其制备方法 | |
Xing et al. | Catalytic conversion of seawater to fuels: Eliminating N vacancies in g-C3N4 to promote photocatalytic hydrogen production | |
CN113694925A (zh) | 一种多孔二氧化钛-氧化亚铜复合材料及其制备方法和应用 | |
CN113398997B (zh) | 一种铂掺杂超薄Zr-MOFs纳米薄层复合光催化剂及其制备方法和应用 | |
Qin et al. | Designed CoSe2@ ZnIn2S4 large area 2D/2D Schottky junction for efficient photo-utilization hydrogen evolution and biomass oxidation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |