CN109154046A - 具有奥氏体基体的twip钢板 - Google Patents

具有奥氏体基体的twip钢板 Download PDF

Info

Publication number
CN109154046A
CN109154046A CN201780030116.1A CN201780030116A CN109154046A CN 109154046 A CN109154046 A CN 109154046A CN 201780030116 A CN201780030116 A CN 201780030116A CN 109154046 A CN109154046 A CN 109154046A
Authority
CN
China
Prior art keywords
steel plate
amount
bath
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780030116.1A
Other languages
English (en)
Other versions
CN109154046B (zh
Inventor
科林·斯科特
布朗迪诺·雷米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Publication of CN109154046A publication Critical patent/CN109154046A/zh
Application granted granted Critical
Publication of CN109154046B publication Critical patent/CN109154046B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/02Superplasticity
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Abstract

本发明涉及具有奥氏体基体的TWIP钢板以及用于制造所述TWIP钢的方法。

Description

具有奥氏体基体的TWIP钢板
本发明涉及具有奥氏体基体的TWIP钢板以及用于制造该TWIP钢的方法。本发明特别适用于制造机动车辆。
为了节省车辆的重量,已知使用高强度钢来制造机动车辆。例如,对于制造结构部件,必须改善这样的钢的机械特性。然而,虽然钢的强度得以提高,但高碳钢的延伸率降低,并因此可成形性降低。为了克服这些问题,出现了具有良好可成形性的孪晶诱发塑性钢(TWIP钢)。即使这些产品显示出非常好的可成形性,机械特性(例如极限抗拉强度(UTS)和屈服应力(YS))也可能不够高而无法满足汽车应用。
为了提高这些钢的强度同时保持良好的可加工性,已知通过冷轧诱发高密度的孪晶,然后进行除去位错但保留孪晶的回复处理。然而,回复过程和再结晶过程是两个竞争过程。实际上,由于两个过程之间的动力学非常相近,因此难以控制回复过程。因此,需要提供控制回复过程以避免再结晶的方法。
专利申请KR20140013333公开了制造具有优异的可弯曲性和延伸率的高强度高锰钢板的方法,所述方法包括以下步骤:
-通过将钢锭或连铸板坯加热至1050℃至1300℃来进行均化处理,按重量%计,所述钢锭或连铸板坯包含:碳(C):0.4%至0.7%,锰(Mn):12%至24%,铝(Al):1.1%至3.0%,硅(Si):0.3%或更少,钛(Ti):0.005%至0.10%,硼(B):0.0005%至0.0050%,磷(P):0.03%或更少,硫(S):0.03%或更少,氮(N):0.04%或更少,剩余部分为铁和其他不可避免的杂质;
-在850℃至1000℃的精热轧温度下热轧经均化处理的钢锭或连铸板坯;
-在400℃至700℃下卷取经热轧的钢板;
-冷轧经卷绕的钢板;
-将经冷轧的钢板在400℃至900℃下连续退火;
-任选地,通过热浸镀或电镀的涂覆步骤;
-以10%至50%的压下率再轧经连续退火的钢板;以及
-对经再轧的钢板在300℃至650℃下在20秒至2小时期间进行再加热处理。
然而,由于在第二冷轧之前沉积涂层,因此存在金属涂层被机械地损坏的巨大风险。此外,由于在涂层沉积之后实现再加热步骤,因此将出现钢与涂层之间的相互扩散,导致涂层的显著改变,并因此导致涂层期望特性的显著改变。此外,再加热步骤可以在宽的温度和时间范围内进行,并且在说明书中,甚至在实施例中也没有更详细地说明这些要素。然后,通过实施该方法,由于为了获得TWIP钢而进行了许多步骤,因此存在生产率降低和成本增加的风险。最后,专利申请KR20140013333完全未提及再结晶和回复之间的竞争,因此,未公开任何控制回复步骤以避免再结晶的方法。
因此,本发明的目的是通过提供具有高强度、优异的可成形性和延伸率的TWIP钢来解决上述缺点,这样的TWIP钢是经回复的。特别地,其旨在使得可获得易于实施的方法以获得这种TWIP钢。
该目的通过提供根据权利要求1的TWIP钢板来实现。所述钢板还可以包含权利要求2至12的特征。
本发明的另一个目的是根据权利要求13的用于提供TWIP钢板的方法。所述方法还可以包括权利要求14至20的特征。
本发明的其他特征和优点将由本发明的以下详细描述变得明显。
为了说明本发明,将特别地参照以下附图描述非限制性实例的多个实施方案和试验:
图1示出根据本发明的一个实施方案。
将定义以下术语:
-UTS:极限抗拉强度(MPa);
-YS:屈服强度(MPa);
-UE:均匀延伸率;以及
-TE:总延伸率(%)。
本发明涉及具有奥氏体基体的经冷轧和回复的TWIP钢板,所述TWIP钢板按重量计包含:
0.1<C<1.2%,
13.0≤Mn<25.0%,
0.1≤Si≤3.0%,
0.1≤Cu≤5.0%,
S≤0.030%,
P≤0.080%,
N≤0.1%,
0.1≤Al≤4.0%,以及
0.1≤V≤2.50%,以如下方式使得:
-当Al的量<2.0%时,重量比Al/V为0.2至8;或者
-当Al的量≥2.0%时,V的量>0.25%,
以及在完全任选的基础上,诸如以下的一种或更多种元素,
Nb≤0.5%,
B≤0.005%,
Cr≤1.0%,
Mo≤0.40%,
Ni≤1.0%,
Ti≤0.5%,
0.06≤Sn≤0.2%,
组成的剩余部分包括铁和由加工产生的不可避免的杂质。
不希望受任何理论束缚,看起来根据本发明的TWIP钢板允许改善机械特性(例如总延伸率),这归因于这种特定显微组织,特别是与如上所述的相对于V的Al的量结合的特定显微组织。实际上,在相对于V的Al的特定量之外,存在钢未被充分强化的风险。
关于钢的化学组成,C在显微组织的形成和机械特性中起重要作用。其增加堆垛层错能并增进奥氏体相的稳定性。当与按重量计13.0至25.0的Mn含量结合时,这种稳定性因0.1%或更高的碳含量而实现。在存在钒碳化物的情况下,高Mn含量可以增大碳化钒(VC)在奥氏体中的溶解度。然而,对于高于1.2%的C含量,存在由于例如钒碳化或钒碳氮化物的过量析出而导致的延性降低的风险。优选地,碳含量为0.20重量%至1.2重量%,更优选0.5重量%至1.0重量%,有利地0.71重量%至1.0重量%,以获得足够的强度,其任选地结合最佳的碳化物或碳氮化物析出。
Mn也是用于增加强度、用于增加堆垛层错能以及用于稳定奥氏体相的必要元素。如果其含量小于13.0%,则存在马氏体相形成的风险,这非常明显地降低可变形性。此外,当锰含量大于25.0%时,孪晶的形成被抑制,因此,尽管强度增加,但室温下的延性降低。优选地,锰含量为15.0至24.0,更优选17.0%至24.0%,以优化堆垛层错能并防止在变形的作用下形成马氏体。此外,当Mn含量大于24.0%时,通过孪晶变形的模式不如通过完全位错滑移变形的模式有利。
Al是用于钢的脱氧的特别有效的元素。与C类似,Al增加堆垛层错能,这降低了形成变形马氏体的风险,从而改善延性和耐延迟断裂性。然而,如果Al在具有高Mn含量的钢中过量存在,则Al是不利因素,因为Mn增加了氮在铁水中的溶解度。如果在钢中存在过大量的Al,则与Al结合的N以氮化铝(AlN)的形式析出,氮化铝(AlN)阻碍在热转化期间晶界的迁移并非常明显地增加在连铸中出现开裂的风险。此外,如将在之后说明的,必须存在足量的N以形成细析出物(实质上是碳氮化物)。优选地,Al含量低于或等于2%。当Al含量大于4.0%时,存在孪晶的形成被抑制而降低延性的风险。
在本发明的上下文中,钒也起重要作用。根据本发明,V的量是这样的:0.1%≤V≤2.5%,优选0.1%≤V≤1.0%。优选地,V形成析出物。不希望受任何理论束缚,看起来呈氮化物、碳化物或碳氮化物析出物形式的钒使再结晶逐渐延迟,因此可以在没有任何再结晶的风险的情况下进行回复步骤。优选地,在钢中这样的元素的体积分数为0.0001%至0.05%。优选地,钒元素主要位于晶内位置。有利地,钒元素的平均尺寸小于7nm,优选为0.2nm至5nm。
除对铝量和钒量的上述限制外,这些元素还必须遵守以下条件:
-如果Al严格低于2.0%,则重量比Al/V必须为0.2至8;以及
-如果Al≥2.0%,则V的量严格高于0.25%。
在相对于V的Al的这些特定量下,认为Al存在于钢中的固溶体中,在回复步骤期间除钒析出物之外延迟再结晶,因此提高TWIP钢的机械特性(例如总延伸率)。
氮含量必须为0.1%或更小,以防止在凝固期间体积缺陷(气泡)的形成和AlN的过度析出。此外,当诸如钒、铌、钛、铬、钼和硼的元素能够以氮化物的形式析出时,氮含量不得超过0.1%。
硅也是用于使钢脱氧和用于固相硬化的有效元素。然而,高于3.0%的含量,其降低延伸率且倾向于在某些组装过程中形成不期望的氧化物,因此必须将硅含量保持在该限度以下。优选地,硅的含量低于或等于0.6%。
同样地,含量为0.1%至5.0%的铜是通过铜金属的析出使钢硬化的一种手段。此外,认为铜对再结晶的延迟起作用。然而,高于该含量,铜是热轧板中出现表面缺陷的原因。优选地,铜的量低于2.0%。
硫和磷是使晶界脆化的杂质。其各自的含量不得超过0.030%和0.080%,以保持足够的热延性。
可以添加一些硼,最高至0.005%,优选最高至0.001%。该元素在晶界处偏析并增加其内聚力。不旨在受理论束缚,认为这导致在通过压制而成形之后的残余应力减小,并导致在由此成形的部件的应力下的更好耐腐蚀性。该元素在奥氏体晶界处偏析并增加其内聚力。硼以例如硼碳化物和硼氮化物的形式析出。
镍可以任选地用于通过固溶硬化来增加钢的强度。然而,出于成本原因等,希望将镍含量限制在最大含量为1.0%或更小并优选低于0.3%。
钛和铌也是可以任选地用于通过形成析出物来实现硬化和强化的元素。然而,当Nb或Ti含量高于0.50%时,存在过度析出可能引起韧性降低的风险,这是必须避免的。优选地,Ti的量为0.040重量%至0.50重量%、或0.030重量%至0.130重量%。优选地,钛含量为0.060%至0.40%,例如0.060重量%至0.110重量%。优选地,Nb的量为0.070重量%至0.50重量%、或0.040%至0.220%。优选地,铌含量为0.090重量%至0.40重量%,有利地为0.090重量%至0.20重量%。
铬和钼可以用作用于通过固溶硬化来增加钢的强度的任选元素。然而,由于铬降低堆垛层错能,因此其含量不得超过1.0%且优选0.070%至0.6%。优选地,铬含量为0.20%至0.5%。钼可以以0.40%或更小的量,优选以0.14%至0.40%的量添加。
此外,不希望受任何理论束缚,看起来钒、钛、铌、铬和钼的析出物可以降低对延迟开裂的敏感性,并且在不降低延性和韧性特性的情况下如此。因此,优选地,呈碳化物、氮化物和碳氮化物形式的选自钛、铌、铬和钼中的至少一种元素以0.01%至0.025%的量存在。
任选地,锡(Sn)以0.06重量%至0.2重量%的量添加。不希望受任何理论束缚,认为由于锡是贵元素并且在高温下自身不形成薄氧化物膜,因此Sn在热浸镀之前的退火中在基体的表面上析出而抑制助氧化剂元素(例如Al、Si、Mn等)扩散进表面中并形成氧化物,由此改善可镀性。然而,当Sn的添加量小于0.06%时,效果不明显,并且Sn的添加量的增加抑制选择性氧化物的形成;而当Sn的添加量超过0.2%时,添加的Sn导致热脆性而使可热加工性劣化。因此,将Sn的上限限制在0.2%或更小。
钢还可以包含由开发产生的不可避免的杂质。例如,不可避免的杂质可以没有任何限制地包括:O、H、Pb、Co、As、Ge、Ga、Zn和W。例如,每种杂质按重量计的含量低于0.1重量%。
在一个优选实施方案中,TWIP钢包含Al、V、C、Mn、Si、Cu和Nb以确保满足以下式:
105.1*Al%-358.1*V%≤279.67*C%-11*Mn%+30*Si%-69.02*Cu%+78.3*Nb%+144
实际上,不希望受任何理论束缚,看起来当满足上述式时,TWIP钢的机械特性得到进一步改善。
优选地,钢的晶粒的平均尺寸为最高至5μm,优选0.5μm至3μm。
根据本发明,钢板被回复意味着其尚未再结晶。在一个优选实施方案中,钢的回复分数高于75%,优选高于90%。优选地,用透射电子显微镜(TEM)或扫描电子显微术(SEM)确定回复分数。
在一个优选实施方案中,钢板被金属涂层覆盖。金属涂层可以是基于铝的涂层或基于锌的涂层。
优选地,基于铝的涂层包含小于15%的Si、小于5.0%的Fe、任选地0.1%至8.0%的Mg和任选地0.1%至30.0%的Zn,剩余部分为Al。
有利地,基于锌的涂层包含0.01%至8.0%的Al、任选地0.2%至8.0%的Mg,剩余部分为Zn。
例如,涂覆钢板是在涂层沉积之后进行的退火步骤之后获得的镀锌扩散退火钢板。
在一个优选实施方案中,钢板的厚度为0.4mm至1mm。
根据本发明的用于制造TWIP钢板的方法包括以下步骤:
A.提供具有上述组成的板坯;
B.再加热这样的板坯并对其进行热轧;
C.卷取步骤;
D.第一冷轧;
E.再结晶退火;
F.第二冷轧;以及
G.回复热处理。
根据本发明,方法包括由具有上述组成的钢制成的半成品例如板坯、薄板坯或带材的提供步骤A),铸造这样的板坯。优选地,将铸造投入坯料加热至高于1000℃,更优选高于1050℃且有利地1100℃至1300℃的温度,或者在不进行中间冷却的情况下,在铸造之后在这样的温度下直接使用。
然后在优选高于890℃、或更优选高于1000℃的温度下进行热轧,以获得例如厚度通常为2mm至5mm、或甚至1mm至5mm的热轧带材。为了避免由于缺乏延性而产生的任何开裂问题,轧制终了温度优选高于或等于850℃。
在热轧之后,必须在这样的温度下卷取带材,使得不发生碳化物(实质上为渗碳体(Fe,Mn)3C))的显著析出,所述碳化物的显著析出将导致某些机械特性降低。卷取步骤C)在低于或等于580℃,优选低于或等于400℃的温度下实现。
进行随后的冷轧操作,接着进行再结晶退火。这些另外的步骤产生比在热轧带材上获得的粒度更小的粒度,并因此产生更高的强度特性。当然,如果期望获得较小厚度(例如厚度为0.2mm至几mm,且优选0.4mm至4mm)的产品,则必须进行该另外的步骤。在以常用方式进行可能的在先酸洗操作之后冷轧通过上述过程获得的热轧产品。
第一冷轧步骤D)以30%至70%,优选40%至60%的压下率进行。
在该轧制步骤之后,晶粒高度加工硬化,并且必须进行再结晶退火操作。该处理具有恢复延性并同时降低强度的效果。优选地,连续地进行该退火。有利地,再结晶退火E)在700℃至900℃(优选地750℃至850℃)下例如在10秒至500秒(优选60秒至180秒)期间实现。优选地,在该退火期间,呈氮化物、碳化物或碳氮化物形式的至少一种的钒元素可以析出,从而延迟再结晶。
然后,以1%至50%,优选10%至40%,更优选20%至40%的压下率实现第二冷轧步骤F)。这使钢厚度减小。此外,根据上述方法制造的钢板可以经由通过经历再轧步骤所引起的应变硬化而具有增加的强度。此外,该步骤诱导高密度的孪晶,由此改善钢板的机械特性。
在第二冷轧之后,实现回复步骤G)以另外确保再轧钢板的高延伸率和可弯曲性。回复的特征在于去除钢显微组织中的位错或使其重排同时保留变形孪晶。变形孪晶和位错都通过材料的塑性变形(例如轧制步骤)引入。
在一个优选实施方案中,回复步骤G)通过在分批退火炉或连续退火炉中在410℃至700℃的温度下加热钢板来进行。在这种情况下,可以接着如下进行热浸涂步骤G):即,在连续退火中准备(prepare)钢板的用于涂层沉积的表面,接着根据熔浴的性质,将钢板浸入温度为410℃至700℃的熔融金属浴中。
在另一个优选实施方案中,回复步骤G)通过热浸涂来进行。在这种情况下,与其中在再结晶退火之后实现热浸镀的专利申请KR201413333相反,同时实现回复步骤和热浸涂使得节约成本并提高生产率。
在该实施方案中,看起来钢显微组织中的回复过程开始于在连续退火中准备钢表面期间,并且实现于浸入熔浴期间。
钢表面的准备优选通过将钢板从环境温度加热至熔浴的温度(即410℃至700℃)来进行。在优选实施方案中,热循环可以包括其中在高于熔浴的温度的温度下加热钢的至少一个加热步骤。例如,钢板表面的准备可以在650℃下在几秒期间进行,接着在5秒期间浸入锌浴中,浴温度在450℃的温度下。
优选地,根据熔浴的性质,熔浴的温度为410℃至700℃。
有利地,将钢板浸入基于铝的浴或基于锌的浴中。优选地,浸入熔浴在1秒至60秒(更优选1秒至20秒且有利地1秒至10秒)期间进行。
在一个优选实施方案中,基于铝的浴包含小于15%的Si、小于5.0%的Fe、任选地0.1%至8.0%的Mg和任选地0.1%至30.0%的Zn,剩余部分为Al。优选地,该浴的温度为550℃至700℃,优选600℃至680℃。
在另一个优选实施方案中,基于锌的浴包含0.01%至8.0%的Al、任选地0.2%至8.0%的Mg,剩余部分为Zn。优选地,该浴的温度为410℃至550℃,优选410℃至460℃。
熔浴还可以包含不可避免的杂质以及来自提供锭或来自钢板在熔浴中的通过的残留元素。例如,任选的杂质选自Sr、Sb、Pb、Ti、Ca、Mn、Sn、La、Ce、Cr、Zr或Bi,每种另外的元素按重量计的含量低于0.3重量%。来自提供锭或来自钢板在熔浴中的通过的残留元素可为含量为最高至5.0重量%,优选最高至3.0重量%的铁。
有利地,回复步骤G)在1秒至30分钟期间进行,优选在30秒至10分钟期间进行。
例如,可以在涂层沉积之后进行退火步骤以获得镀锌扩散退火钢板。
因此可由根据本发明的方法获得具有高强度、优异的可成形性和延伸率的包含奥氏体基体的TWIP钢板。
用根据本发明的方法,通过由两个冷轧步骤诱发大量孪晶接着在回复步骤期间除去位错但保留孪晶来实现这样的TWIP钢板。
实施例
在该实施例中,使用具有以下重量组成的TWIP钢板:
样品 C% Si% Mn% P% Cr% Cu% Ti% %N S% %Al %V AI/V
1<sup>*</sup> 0.595 0.2 18.3 0.034 - 1.68 - 0.01 ≤0.03 0.785 0.18 4.36
2 0.635 - 21.79 ≤0.08 - - - <0.001 ≤0.03 - 0.16 -
3 0.894 0.513 18.64 0.02 0.109 0.156 - 0.0032 ≤0.03 0.003 0.002 1.5
4 0.88 0.508 17.96 0.03 0.109 0.15 - 0.0044 ≤0.03 2.11 0.093 -
5<sup>*</sup> 0.876 0.502 17.63 0.032 0.108 0.149 - 0.0061 ≤0.03 2.78 0.384 -
6 0.579 0.208 22.87 0.02 0.114 0.162 0.005 0.0037 ≤0.03 0.002 0.007 0.28
7<sup>*</sup> 0.856 0.21 21.94 0.027 0.114 0.155 0.04 0.008 ≤0.03 1.35 0.891 1.52
*根据本发明的实施例。
首先,将样品在1200℃的温度下加热并热轧。将热轧的精轧温度设定为890℃,并且在热轧之后在400℃下进行卷取。然后,以50%的冷轧压下率实现第一冷轧。其后,在750℃下在180秒期间进行再结晶退火。此后,以30%的冷轧压下率实现第二冷轧。
最后,对于样品1,在总计40秒期间进行回复加热步骤。首先通过以下来制备钢板:在炉中加热至675℃,在400℃至675℃花费的时间为37秒,然后将其在3秒期间浸入熔浴中,所述熔浴包含9重量%的硅、最高至3%的铁,剩余部分为铝。熔浴温度为675℃。
对于样品2,在总计40秒期间进行回复热处理。首先通过以下来制备钢板:在炉中加热至675℃,在400℃至675℃花费的时间为34秒,然后将其在6秒期间浸入熔浴中,所述熔浴包含9重量%的硅、最高至3%的铁,剩余部分为铝。熔浴温度为675℃。
对于样品3至5,在总计90秒期间进行回复热处理。首先通过以下来制备钢板:在炉中加热至650℃,在460℃至650℃花费的时间为84秒,然后将其各自在6秒期间浸入锌浴中。熔浴温度为460℃。
对于样品6至7,在总计30秒期间进行回复热处理。首先通过在炉中加热至625℃(在460℃至625℃花费的时间为24秒)来准备钢板,然后将其各自在6秒期间浸入锌浴中。熔浴温度为460℃。用SEM分析样品1至7的显微组织,以确定在回复步骤期间未发生再结晶。确定机械特性。结果在下表中:
*根据本发明的实施例;ND:未进行
结果显示,具有根据本发明的重量比Al/V的样品1是经回复的。相反,试验2是再结晶的。
样品1的机械特性优于样品2的机械特性。
根据本发明的样品5在回复热处理之后回复。相反,样品3和4是再结晶的。此外,样品5的机械特性(特别是UTS和YS)高于样品3和4的机械特性。
根据本发明的样品7在回复热处理之后回复。相反,样品6是再结晶的。此外,样品7的机械特性(特别是UTS和YS)高于样品6的机械特性。
图1示出样品1至7中Al的量和V的量。

Claims (20)

1.一种具有奥氏体基体的经冷轧和经回复的TWIP钢板,按重量计包含:
0.1&lt;C&lt;1.2%,
13.0≤Mn&lt;25.0%,
0.1≤Si≤3.0%,
0.1≤Cu≤5.0%,
S≤0.030%,
P≤0.080%,
N≤0.1%,
0.1≤Al≤4.0%,以及
0.1≤V≤2.50%,以如下方式使得:
-当Al的量&lt;2.0%时,重量比Al/V为0.2至8;或者
-当Al的量≥2.0%时,V的量&gt;0.25%,
以及在完全任选的基础上,诸如以下的一种或更多种元素,
Nb≤0.5%,
B≤0.005%,
Cr≤1.0%,
Mo≤0.40%,
Ni≤1.0%,
Ti≤0.5%,
0.06≤Sn≤0.2%,
组成的剩余部分包括铁和由加工产生的不可避免的杂质。
2.根据权利要求1所述的钢板,其中V的量为0.1%至1.0%。
3.根据权利要求1至2中任一项所述的钢板,其中Al的量低于或等于2.0%。
4.根据权利要求1至3中任一项所述的钢板,其中所述钢中存在呈氮化物、碳化物或碳氮化物形式的至少一种的钒元素。
5.根据权利要求1至4中任一项所述的钢板,其中Cu的量低于2.0%。
6.根据权利要求1至5中任一项所述的钢板,其中Nb的量为0.070重量%至0.50重量%。
7.根据权利要求1至6中任一项所述的钢板,其中Si的量低于或等于0.6重量%。
8.根据权利要求1至7中任一项所述的钢板,其中Al、V、C、Mn、Si、Cu和Nb的量满足以下式:
105.1*Al%-358.1*V%≤279.67*C%-11*Mn%+30*Si%-69.02*Cu%+78.3*Nb%+144。
9.根据权利要求1至8中任一项所述的钢板,其中所述钢板被金属涂层覆盖。
10.根据权利要求1至9中任一项所述的钢板,其中所述钢板被基于铝的涂层或基于锌的涂层覆盖。
11.根据权利要求10所述的钢板,其中所述基于铝的涂层包含小于15%的Si、小于5.0%的Fe、任选的0.1%至8.0%的Mg和任选的0.1%至30.0%的Zn,剩余部分为Al。
12.根据权利要求11所述的钢板,其中所述基于锌的涂层包含0.01%至8.0%的Al、任选地0.2%至8.0%的Mg,剩余部分为Zn。
13.一种用于制造TWIP钢板的方法,包括以下步骤:
A.提供具有根据权利要求1至8中任一项所述的组成的板坯;
B.在高于1000℃的温度下再加热这样的板坯,和以至少850℃的轧制终了温度对其进行热轧;
C.在低于或等于580℃的温度下的卷取步骤;
D.以30%至70%的压下率进行的第一冷轧;
E.在700℃至900℃的再结晶退火;
F.以1%至50%的压下率进行的第二冷轧;以及
G.回复热处理。
14.根据权利要求13所述的方法,其中所述回复步骤G)通过在分批退火炉或连续退火炉中在410℃至700℃的温度下加热所述钢板来进行。
15.根据权利要求13所述的方法,其中所述回复步骤G)通过热浸涂来进行,即,按如下进行:在连续退火中准备所述钢板的用于涂层沉积的表面,随后将所述钢板浸入温度为410℃至700℃的熔融金属浴中,浴温根据熔浴的性质确定。
16.根据权利要求15所述的方法,其中在钢表面的准备期间,将所述钢板从环境温度加热至所述熔浴的温度。
17.根据权利要求15至16中任一项所述的方法,其中所述浴是基于铝的,并且包含小于15%的Si、小于5.0%的Fe、任选地0.1%至8.0%的Mg和任选地0.1%至30.0%的Zn,剩余部分为Al。
18.根据权利要求15至16中任一项所述的方法,其中所述浴是基于锌的,并且包含0.01%至8.0%的Al、任选地0.2%至8.0%的Mg,剩余部分为Zn。
19.根据权利要求13至18中任一项所述的方法,其中所述回复步骤G)在1秒至30分钟期间进行。
20.根据权利要求19所述的方法,其中所述回复步骤H)在30秒至10分钟期间进行。
CN201780030116.1A 2016-05-24 2017-05-19 具有奥氏体基体的twip钢板 Active CN109154046B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IBPCT/IB2016/000694 2016-05-24
PCT/IB2016/000694 WO2017203309A1 (en) 2016-05-24 2016-05-24 Twip steel sheet having an austenitic matrix
PCT/IB2017/000597 WO2017203342A1 (en) 2016-05-24 2017-05-19 Twip steel sheet having an austenitic matrix

Publications (2)

Publication Number Publication Date
CN109154046A true CN109154046A (zh) 2019-01-04
CN109154046B CN109154046B (zh) 2022-02-01

Family

ID=56098285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780030116.1A Active CN109154046B (zh) 2016-05-24 2017-05-19 具有奥氏体基体的twip钢板

Country Status (13)

Country Link
US (1) US20190292616A1 (zh)
EP (1) EP3464663A1 (zh)
JP (1) JP6805271B2 (zh)
KR (1) KR102277396B1 (zh)
CN (1) CN109154046B (zh)
BR (1) BR112018071445B1 (zh)
CA (1) CA3025443C (zh)
MA (1) MA45120A (zh)
MX (1) MX2018014327A (zh)
RU (1) RU2707002C1 (zh)
UA (1) UA125624C2 (zh)
WO (2) WO2017203309A1 (zh)
ZA (1) ZA201806599B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708823A (zh) * 2020-11-24 2021-04-27 河钢股份有限公司 高热塑性的高锰高铝twip钢及其生产方法
CN113941430A (zh) * 2021-10-13 2022-01-18 铜陵有色金神耐磨材料有限责任公司 基于twip效应和纳米析出强化的耐磨高锰钢、制备方法及用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4101938A1 (en) 2020-02-03 2022-12-14 Nippon Steel Corporation Steel material for oil well, and oil well pipe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101346489A (zh) * 2005-12-24 2009-01-14 Posco公司 高耐蚀性的高Mn钢板及对该钢板镀锌的制造方法
WO2009084792A1 (en) * 2007-12-28 2009-07-09 Posco High manganese steel having high strength and excellent delayed fracture resistance and manufacturing method thereof
CN101617059A (zh) * 2007-02-23 2009-12-30 克里斯塔尔公司 热机械形成具有很高强度的最终产品的方法及由此制备的产品
CN102127716A (zh) * 2011-01-16 2011-07-20 首钢总公司 一种表面覆膜良好的低温加热取向电工钢及生产方法
CN102985578A (zh) * 2010-07-02 2013-03-20 蒂森克虏伯钢铁欧洲股份公司 可冷成型的高强度钢以及由这种钢制成的扁钢制品
CN103261464A (zh) * 2010-10-21 2013-08-21 安塞乐米塔尔调研和发展公司 热轧钢板或冷轧钢板、其制造方法及在汽车行业中的用途
CN103993149A (zh) * 2014-05-21 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 冷轧钢板及其制备方法和热镀铝锌合金钢板及其制备方法
CN104204234A (zh) * 2012-03-30 2014-12-10 塔塔钢铁艾默伊登有限责任公司 制造用于包装应用的回复退火的涂覆钢基材的方法及由此制备的包装钢产品

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10259230B4 (de) * 2002-12-17 2005-04-14 Thyssenkrupp Stahl Ag Verfahren zum Herstellen eines Stahlprodukts
FR2876711B1 (fr) * 2004-10-20 2006-12-08 Usinor Sa Procede de revetement au trempe a chaud dans un bain de zinc des bandes en acier fer-carbone-manganese
EP1807542A1 (de) * 2004-11-03 2007-07-18 ThyssenKrupp Steel AG Höherfestes, twip-eigenschaften aufweisendes stahlband oder -blech und verfahren zu dessen herstellung mittels "direct strip casting "
FR2881144B1 (fr) * 2005-01-21 2007-04-06 Usinor Sa Procede de fabrication de toles d'acier austenitique fer-carbone-manganese a haute resistance a la fissuration differee, et toles ainsi produites
EP1878811A1 (en) * 2006-07-11 2008-01-16 ARCELOR France Process for manufacturing iron-carbon-manganese austenitic steel sheet with excellent resistance to delayed cracking, and sheet thus produced
KR20090070502A (ko) * 2007-12-27 2009-07-01 주식회사 포스코 가공성이 우수한 고강도 고망간강 및 고망간 도금강판의제조방법
DE102008005605A1 (de) * 2008-01-22 2009-07-23 Thyssenkrupp Steel Ag Verfahren zum Beschichten eines 6 - 30 Gew. % Mn enthaltenden warm- oder kaltgewalzten Stahlflachprodukts mit einer metallischen Schutzschicht
BR112012031466B1 (pt) * 2010-06-10 2019-07-09 Tata Steel Ijmuiden Bv Método de produção de uma chapa de aço austenítica excelente em resistência à fratura retardada e tira ou chapa
KR101439613B1 (ko) 2012-07-23 2014-09-11 주식회사 포스코 굽힘 가공성과 연신율이 우수한 고강도 고망간 강판 및 그 제조방법
KR101510505B1 (ko) * 2012-12-21 2015-04-08 주식회사 포스코 우수한 도금성과 초고강도를 갖는 고망간 용융아연도금강판의 제조방법 및 이에 의해 제조된 고망간 용융아연도금강판
DE102013003516A1 (de) * 2013-03-04 2014-09-04 Outokumpu Nirosta Gmbh Verfahren zur Herstellung eines ultrahochfesten Werkstoffs mit hoher Dehnung
ES2734993T3 (es) * 2013-07-26 2019-12-13 Nippon Steel Corp Material de acero de alta resistencia para el uso en pozos de petróleo, y tuberías de pozos de petróleo
WO2015023012A1 (ko) * 2013-08-14 2015-02-19 주식회사 포스코 초고강도 강판 및 그 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101346489A (zh) * 2005-12-24 2009-01-14 Posco公司 高耐蚀性的高Mn钢板及对该钢板镀锌的制造方法
CN101617059A (zh) * 2007-02-23 2009-12-30 克里斯塔尔公司 热机械形成具有很高强度的最终产品的方法及由此制备的产品
WO2009084792A1 (en) * 2007-12-28 2009-07-09 Posco High manganese steel having high strength and excellent delayed fracture resistance and manufacturing method thereof
CN102985578A (zh) * 2010-07-02 2013-03-20 蒂森克虏伯钢铁欧洲股份公司 可冷成型的高强度钢以及由这种钢制成的扁钢制品
CN103261464A (zh) * 2010-10-21 2013-08-21 安塞乐米塔尔调研和发展公司 热轧钢板或冷轧钢板、其制造方法及在汽车行业中的用途
CN102127716A (zh) * 2011-01-16 2011-07-20 首钢总公司 一种表面覆膜良好的低温加热取向电工钢及生产方法
CN104204234A (zh) * 2012-03-30 2014-12-10 塔塔钢铁艾默伊登有限责任公司 制造用于包装应用的回复退火的涂覆钢基材的方法及由此制备的包装钢产品
CN103993149A (zh) * 2014-05-21 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 冷轧钢板及其制备方法和热镀铝锌合金钢板及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708823A (zh) * 2020-11-24 2021-04-27 河钢股份有限公司 高热塑性的高锰高铝twip钢及其生产方法
CN113941430A (zh) * 2021-10-13 2022-01-18 铜陵有色金神耐磨材料有限责任公司 基于twip效应和纳米析出强化的耐磨高锰钢、制备方法及用途
CN113941430B (zh) * 2021-10-13 2023-05-02 铜陵有色金神耐磨材料有限责任公司 基于twip效应和纳米析出强化的耐磨高锰钢、制备方法及用途

Also Published As

Publication number Publication date
EP3464663A1 (en) 2019-04-10
UA125624C2 (uk) 2022-05-04
MX2018014327A (es) 2019-02-25
KR20180133258A (ko) 2018-12-13
BR112018071445B1 (pt) 2023-02-23
CA3025443C (en) 2022-12-06
MA45120A (fr) 2019-04-10
JP6805271B2 (ja) 2020-12-23
JP2019519680A (ja) 2019-07-11
KR102277396B1 (ko) 2021-07-15
CA3025443A1 (en) 2017-11-30
BR112018071445A2 (pt) 2019-02-05
WO2017203309A1 (en) 2017-11-30
RU2707002C1 (ru) 2019-11-21
WO2017203342A1 (en) 2017-11-30
US20190292616A1 (en) 2019-09-26
CN109154046B (zh) 2022-02-01
ZA201806599B (en) 2019-06-26

Similar Documents

Publication Publication Date Title
JP6245386B2 (ja) 高強度鋼板用素材、高強度鋼板用熱延材、高強度鋼板用熱延焼鈍材、高強度鋼板、高強度溶融めっき鋼板および高強度電気めっき鋼板と、これらの製造方法
JP7051974B2 (ja) オーステナイト微細構造を有するtwip鋼板の製造方法
CN106133173B (zh) 材质均匀性优异的高强度冷轧钢板及其制造方法
CN109154051B (zh) 具有奥氏体基体的twip钢板
CN103687976B (zh) 温成形用高强度钢板及其制造方法
CN105473748A (zh) 超高强度钢板及其制造方法
JP7395524B2 (ja) オーステナイト型マトリックスを有する回復された鋼板の製造のための方法
EP3530771A1 (en) Ultra-high-strength steel sheet having excellent hole expandability and yield ratio and method for preparing same
CN107250406A (zh) 高强度冷轧钢板及其制造方法
EP3705592A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor
JP4818765B2 (ja) 低温焼付硬化性と常温非時効性に優れた深絞り用鋼板及びその製造方法
KR102367204B1 (ko) 오스테나이트계 매트릭스를 가지는 twip 강 시트를 제조하는 방법
CN109154046A (zh) 具有奥氏体基体的twip钢板
JP5151390B2 (ja) 高張力冷延鋼板、高張力亜鉛めっき鋼板およびそれらの製造方法
JP2013209727A (ja) 加工性に優れた冷延鋼板及びその製造方法
WO2021193829A1 (ja) 鋼板および熱処理部材ならびにそれらの製造方法
WO2020128591A1 (en) Method for the manufacture of a recovered steel sheet having an austenitic matrix

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant