CN109153979A - 三酰基甘油的部分酶水解 - Google Patents

三酰基甘油的部分酶水解 Download PDF

Info

Publication number
CN109153979A
CN109153979A CN201680082799.0A CN201680082799A CN109153979A CN 109153979 A CN109153979 A CN 109153979A CN 201680082799 A CN201680082799 A CN 201680082799A CN 109153979 A CN109153979 A CN 109153979A
Authority
CN
China
Prior art keywords
host cell
lipase
oil
polynucleotide sequence
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680082799.0A
Other languages
English (en)
Inventor
P·穆福特
M·米勒
M·舒曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM IP Assets BV
Original Assignee
DSM IP Assets BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM IP Assets BV filed Critical DSM IP Assets BV
Publication of CN109153979A publication Critical patent/CN109153979A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/02Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils
    • C11C1/04Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils by hydrolysis
    • C11C1/045Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils by hydrolysis using enzymes or microorganisms, living or dead
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/003Refining fats or fatty oils by enzymes or microorganisms, living or dead
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6432Eicosapentaenoic acids [EPA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6434Docosahexenoic acids [DHA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本文公开了用包含多核苷酸序列的核酸分子转化的宿主细胞,其中该多核苷酸序列编码水解油中的包含至少一个长链多不饱和脂肪酸的三酰基甘油的酯键的多肽,用于使用这类宿主细胞的方法和用于使用这类宿主细胞产生脂酶的方法。

Description

三酰基甘油的部分酶水解
相关申请的交叉引用
本申请要求2015年12月30日提交的美国临时专利申请号62/272,833的申请日的权益,其公开内容在此通过引用并入本文。
发明领域
本发明涉及用编码脂酶基因的核酸序列转化的宿主细胞和用编码脂酶基因的核酸序列转化的宿主细胞的使用方法。脂酶基因在宿主细胞中表达以赋予水解油中的包含至少一个长链多不饱和脂肪酸的三酰基甘油的酯键的能力。该宿主细胞用于制造足够数量的脂酶以用于商业制造富含长链多不饱和脂肪酸的油组合物。本发明进一步涉及编码脂酶基因的核酸序列。
背景
长链多不饱和脂肪酸(LC-PUFA)如ω-3脂肪酸,对于日常生活和功能是至关重要的。例如,现在很好地确立了ω-3脂肪酸(例如顺式-5,8,11,14,17-二十碳五烯酸(EPA)和顺式-4,7,10,13,16,19-二十二碳六烯酸(DHA))对降低血清甘油三酯的有益效果。还已知这些化合物的其他心脏保护的益处。事实上,美国心脏协会也已经报道了ω-3脂肪酸可以降低心血管疾病和心脏病风险。LC-PUFA的其他益处是涉及炎症、神经退行性疾病的预防和/或治疗和认知发育的那些益处。富含LC-PUFA例如ω-3脂肪酸的饮食也已经显示出对心脏病、癌症、关节炎、过敏和其他慢性疾病具有有益作用。
LC-PUFA,诸如例如ω-3脂肪酸,通常源自海产油(marine oil)、微生物和/或海藻油。这些来源通常含有三酰基甘油形式的LC-PUFA,其中其他不需要的脂肪酸(如饱和脂肪酸)与所需的LC-PUFA一起存在于三酰基甘油分子中。因此,一般需要纯化和浓缩油中的LC-PUFA。
已知从油(例如海产油、微生物和/或海藻油)产生LC-PUFA浓缩物的多种方法。例如,已经将脂酶用于将来自三酰基甘油的饱和脂肪酸酯交换成乙酯。然后通过蒸馏从混合物中去除饱和脂肪酸,且有时将不饱和酯酯交换回三酰基甘油。其他方法用脂酶从三酰基甘油中选择性地水解饱和脂肪酸,并且通过与尿素形成复合物而去除所得到的游离饱和脂肪酸。通过这些方法获得的油中含有的LC-PUFA的量相对于脂肪酸的量一般为60wt.%或更高,或者70wt.%或更高。
已经发现当在水解反应中使用时,特别是当用于未加工的和精炼的鱼油时,现有的商业化脂酶具有不同程度的有效性,。改善脂酶的选择性和反应速率将会提供更高的油产率和更有效率的处理。例如,一些脂酶会不加选择地从甘油酯水解所有可得的脂肪酸。其他的脂酶会表现出从甘油酯水解脂肪酸的不需要的选择性。将所需的LC-PUFA诸如EPA和DHA留在甘油酯上以在随后的下游处理步骤中效率更高地且有效地浓缩这些LC-PUFA将会是有利的。因此,允许这种选择性和改善的反应速率的脂酶的鉴定和分离将是非常有用的。本发明人已经鉴定出针对所需的LC-PUFA如EPA和DHA具有更好选择性和更高反应速率的脂酶同种型。
发明概述
本文公开了用包含多核苷酸序列的核酸分子转化的宿主细胞,其中该多核苷酸序列编码水解油中的三酰基甘油的酯键的多肽,使用此宿主细胞的方法和用于使用此宿主细胞产生脂酶的方法。
在一些实施方案中,多核苷酸序列与SEQ ID NO:1具有至少75%同一性。在优选的实施方案中,多核苷酸序列与SEQ ID NO:1具有至少80%同一性。在更优选的实施方案中,多核苷酸序列与SEQ ID NO:1具有至少90%同一性。在一些实施方案中,多核苷酸序列与SEQ ID NO:2具有至少75%同一性。在优选的实施方案中,多核苷酸序列与SEQ ID NO:2具有至少80%同一性。在更优选的实施方案中,多核苷酸序列与SEQ ID NO:2具有至少90%同一性。在一些实施方案中,多核苷酸序列与SEQ ID NO:3具有至少75%同一性。在优选的实施方案中,多核苷酸序列与SEQ ID NO:3具有至少80%同一性。在更优选的实施方案中,多核苷酸序列与SEQ ID NO:3具有至少90%同一性。
在一些实施方案中,多核苷酸序列编码脂酶基因。在优选的实施方案中,多核苷酸序列编码脂酶基因的同种型。在更优选的实施方案中,多核苷酸序列编码褶皱假丝酵母(Candida rugosa)或白地霉(Geotrichum candidum)脂酶基因的同种型。
在一些实施方案中,宿主细胞是酵母。在优选的实施方案中,宿主细胞是巴斯德毕赤酵母(Pichia Pastoris)。
在一些实施方案中,三酰基甘油包含至少一个长链多不饱和脂肪酸(LC-PUFA)。在一些实施方案中,LC-PUFA包含二十二碳六烯酸(DHA)、二十碳五烯酸(EPA)和其混合物。在另一个实施方案中,LC-PUFA是DHA。在另外的实施方案中,LC-PUFA是EPA。
发明内容
在随附序列表中列出的核酸序列和推导的氨基酸翻译序列使用如37C.F.R§1.822中所定义的核苷酸碱基和氨基酸标准字母缩写显示。在DNA序列的情况下,仅显示每个核酸序列的一条链,但应理解的是通过任意参照所显示的链而包括互补链。在随附序列表中:
SEQ ID NO:1显示为了在巴斯德毕赤酵母中表达而进行密码子优化的编码褶皱假丝酵母同种型脂酶1(CR Lip1)DNA序列的核苷酸序列:
SEQ ID NO:2显示为了在巴斯德毕赤酵母中表达而进行密码子优化的编码褶皱假丝酵母同种型脂酶3(CR Lip3)DNA序列的核苷酸序列:
SEQ ID NO:3显示编码白地霉同种型脂酶2(GC Lip2)DNA序列的核苷酸序列:
详细说明
阅读下列详细说明后本领域技术人员可以更容易地理解本发明的特征和益处。应当领会到,为了清楚起见,也可以组合在以上和以下的单独的实施方案的上下文中描述的本发明的某些特征以得到其亚组合。
本文鉴定的示例性实施方案意图是示例说明性的和非限制性的。
在本说明书和随后的权利要求中,将会提及许多术语,其将会定义为具有以下含义:
在描述本发明的上下文(尤其是在以下权利要求的上下文中)中使用术语“一(a)”和“一个(an)”和“该(the)”和相似指示词会被解释为涵盖单数和复数,除非本文另有说明或通过上下文明显矛盾。
除非另有说明,否则术语“包含”、“具有”、“包括”和“含有”被解释为开放式术语(即意指“包括但不限于”)。除非本文另有说明,否则本文中对数值范围的描述仅意图用作单独提及落入该范围内的每个单独值的简写方法,并且每个单独的值并入本说明书中,如同其在本文中单独描述一样。
“任选的”或“任选地”意指随后描述的事件或情况能发生或不能发生,并且该描述包括事件或情况发生的实例和不发生的实例。
术语“三酰基甘油”或“TAG”用于指包含脂肪酸的甘油酯的分子。此术语还与“甘油三酯”(TG)同义使用。如上下文所述的“甘油酯”用于指甘油单酯、甘油二酯和/或甘油三酯。
基于从脂肪酸甲基末端的第一个双键的位置对多不饱和脂肪酸(PUFA)分类;ω-3(n-3)脂肪酸在第三个碳处含有第一个双键,而ω-6(n-6)脂肪酸在第六个碳处含有第一个双键。例如,二十二碳六烯酸(DHA)是具有22个碳的链长和6个双键的ω-3长链多不饱和脂肪酸(LC-PUFA),通常称为“22:6n-3”。长链多不饱和脂肪酸(LC-PUFA)的碳原子数为20至24,并且不饱和数为4或5。PUFA和LC-PUFA可以是游离形式、酯或甘油酯形式。
序列同一性和相似性
在本文中序列同一性定义为两个或更多个氨基酸(多肽或蛋白质)序列或者两个或更多个核酸(多核苷酸)序列之间的关系,如通过比较这些序列所确定的。在本领域中,“同一性”还意指氨基酸或核酸序列之间的序列关联性的程度,视情况而定,如通过这些序列的串之间的匹配所确定的。通过比较一个多肽的氨基酸序列及其保守的氨基酸置换与第二多肽的序列确定两个氨基酸序列之间的“相似性”。通过已知的方法可以很容易地计算“同一性”和“相似性”,所述方法包括但不限于在以下中所描述的那些:ComputationalMolecular Biology,Lesk,A.M.,ed.,Oxford University Press,New York,1988;Biocomputing:Informatics and Genome Projects,Smith,D.W.,ed.,Academic Press,New York,1993;Computer Analysis of Sequence Data,Part I,Griffin,A.M.,和Griffin,H.G.,eds.,Humana Press,New Jersey,1994;Sequence Analysis in MolecularBiology,von Heine,G.,Academic Press,1987;和Sequence Analysis Primer,Gribskov,M.和Devereux,J.,eds.,M Stockton Press,New York,1991;和Carillo,H.,and Lipman,D.,SIAM J.Applied Math.,48:1073(1988)。
设计确定同一性的优选方法以给出测试的序列之间的最大匹配。确定同一性和相似性的方法被编写成公开可用的计算机程序。确定两个序列间同一性和相似性的优选的计算机程序方法包括例如GCG程序包(Devereux,J.,et al.,Nucleic Acids Research 12(1):387(1984))、BestFit、BLASTP、BLASTN和FASTA(Altschul,S.F.et al,J.Mol.Biol.215:403-410(1990))。BLAST X程序可从NCBI和其他资源公开获得(BLASTManual,Altschul,S.,et al,NCBI NLM NIH Bethesda,Md.20894;Altschul,S.,et al.,J.Mol.Biol.215:403-410(1990))。还可以使用熟知的Smith Waterman算法来确定同一性。
用于多肽序列比较的优选的参数包括以下:算法:Needleman和Wunsch,J.Mol.Biol.48:443-453(1970);比较矩阵:B来自Hentikoff和Hentikoff的LOSSUM62,Proc.Natl.Acad.Sci.USA.89:10915-10919(1992);空位罚分:12和空位长度罚分:4。使用这些参数的程序可作为来自位于威斯康星州麦迪逊市的Genetics Computer Group的“Ogap”程序公开获得。上述参数是用于氨基酸比较的默认参数(且没有对末端空位进行罚分)。
用于核酸比较的优选的参数包括以下:算法:Needleman和Wunsch,J.Mol.Biol.48:443-453(1970);比较矩阵:匹配=+10,错配=0;空位罚分:50;空位长度罚分:3。作为来自位于威斯康星州麦迪逊市的Genetics Computer Group的Gap程序可获得。上述给出的参数是用于核酸比较的默认参数。任选地,在确定氨基酸相似性程度时,技术人员还可以考虑所谓的“保守的”氨基酸置换,如技术人员所清楚的。保守的氨基酸置换指的是具有相似侧链的残基的可互换性。例如,具有脂肪族侧链的一组氨基酸为甘氨酸、丙氨酸、缬氨酸、亮氨酸和异亮氨酸;具有脂肪族-羟基侧链的一组氨基酸为丝氨酸和苏氨酸;具有含酰胺侧链的一组氨基酸为天冬酰胺和谷氨酰胺;具有芳香族侧链的一组氨基酸为苯丙氨酸、酪氨酸和色氨酸;具有碱性侧链的一组氨基酸为赖氨酸、精氨酸和组氨酸;以及具有含硫侧链的一组氨基酸为半胱氨酸和甲硫氨酸。优选的保守性氨基酸置换组是缬氨酸-亮氨酸-异亮氨酸、苯丙氨酸-酪氨酸、赖氨酸-精氨酸、丙氨酸-缬氨酸和天冬酰胺-谷氨酰胺。本文公开的氨基酸序列的置换变体是其中公开序列中的至少一个残基已被除去且在其位置处插入不同残基的那些。优选地,该氨基酸改变是保守的。对于每种天然存在的氨基酸的优选的保守性的置换如下:Ala至Ser;Arg至Lys;Asn至Gln或His;Asp至Glu;Cys至Ser或Ala;Gln至Asn;Glu至Asp;Gly至Pro;His至Asn或Gln;Ile至Leu或Val;Leu至Ile或Val;Lys至Arg;Gln至Glu;Met至Leu或Ile;Phe至Met、Leu或Tyr;Ser至Thr;Thr至Ser;Trp至Tyr;Tyr至Trp或Phe;和Val至Ile或Leu。
本文公开了用包含多核苷酸序列的核酸分子转化的宿主细胞,其中该多核苷酸序列编码水解油中的包含至少一个长链多不饱和脂肪酸的三酰基甘油的酯键的多肽,使用此宿主细胞的方法和使用此宿主细胞产生酯酶基因的方法。
在一个实施方案中,宿主细胞具有以高产率产生水解甘油三酯的脂酶的能力。通过用包含编码脂酶基因的多核苷酸序列的核酸构建体转化宿主细胞,赋予宿主细胞产生这些脂酶的能力。转化的宿主细胞产生这些脂酶的能力是来自表达宿主(如褶皱假丝酵母或白地霉)的脂酶编码序列的移位(transvection)和启动子基因(如AOX或GAP)的组合。将脂酶基因与能够使重组脂酶分泌到培养物上清液中的酿酒酵母(Saccharomycescerevisiae)的α交配因子融合。在输出天然蛋白后切割该α交配因子。这还允许在不破坏宿主细胞的情况下收获脂酶。
核酸序列编码脂酶基因,该脂酶基因优选以可分泌的形式在转化的宿主细胞中表达,然后以活性形式分泌出宿主细胞。因此,在宿主细胞中该核苷酸序列的表达产生脂酶,当该脂酶转运出宿主细胞时,其在28℃的表达水平大于1U/mL细胞培养物,优选为至少2、3、4、5、10、20、40、60或80U/mL。一个活性单位(U)定义为在标准条件下(37℃,100mM MOPS缓冲液pH7.5、0.24mM对硝基苯酯)每分钟产生1μmol对硝基酚的酶的量。通过如相应的试验方法部分所述的分光光度活性测定,以对硝基苯丁酸酯(p-NPD)作为底物,测量脂酶活性的确定、细胞培养物的量和无细胞的脂酶的制备。
用编码水解三酰基甘油的酯键的多肽的多核苷酸序列转化的宿主细胞优选是能够需氧发酵的宿主。该宿主细胞进一步优选地具有对乙醇和有机酸(例如乳酸、乙酸或甲酸)和糖降解产物(诸如糠醛和羟基甲基糠醛)的高度耐受性。宿主细胞的任何这些特征或活性可以天然存在于宿主细胞中或者通过遗传修饰被引入或修饰。合适的宿主细胞是微生物,例如细菌或真菌,然而,最适合作为宿主细胞的是酵母或丝状真菌。酵母在本文中定义为真核微生物并且包括主要以单细胞形式生长的真菌亚门的所有物种(Alexopoulos,C.J.,1962,In:Introductory Mycology,John Wiley&Sons,Inc.,New York)。酵母可以通过单细胞菌体的芽殖生长或可以通过生物体的裂殖生长。作为宿主细胞的优选酵母属于酵母属(Saccharomyces)、克鲁维酵母属(Kluyveromyces)、念珠菌属(Candida)、毕赤酵母属(Pichia)、裂殖酵母属(Schizosaccharomyces)、汉逊酵母属(Hansenula)、克勒克酵母属(Kloeckera)、许旺酵母属(Schizosaccharomyces)、地霉属(Geotrichia)和耶氏酵母属(Yarrowia)。
在优选的实施方案中,核酸构建体赋予宿主细胞产生多肽诸如脂酶和从细胞释放该多肽的能力。转化的宿主细胞具有在被设计用于酵母培养的多种培养基中生长的能力。因此,本发明的转化的宿主细胞以特定活性水平胞外地表达脂酶,该活性水平取决于质粒的设计和培养条件。
如上所述,可以通过本领域熟知的方法进行用本发明的核酸构建体转化宿主细胞和额外的遗传修饰宿主细胞(优选酵母)。例如,从标准手册中知晓这些方法,例如Sambrook和Russel(2001)"Molecular Cloning:A Laboratory Manual(3rd edition),Cold SpringHarbor Laboratory,Cold Spring Harbor Laboratory Press或F.Ausubel et al,eds.,"Current protocols in molecular biology",Green Publishing and WileyInterscience,New York(1987)。从如EP-A-0 635 574、WO 98/46772、WO 99/60102和WO00/37671中知晓用于转化和遗传修饰真菌宿主细胞的方法。
在一些实施方案中,核酸构建体包含编码脂酶基因的多核苷酸序列且用于转化宿主细胞。在核酸构建体中,编码脂酶基因的多核苷酸序列优选地与用于控制和起始多核苷酸序列在宿主细胞中的转录的启动子可操作地连接。启动子优选地能够在宿主细胞中引起脂酶的充分表达以便赋予该宿主细胞产生脂酶和从细胞分泌该脂酶的能力。优选地,启动子最大化在宿主细胞中脂酶的产生。用于本发明的核酸构建体中的启动子包括组成型和诱导型天然启动子以及工程化启动子。具有这些特征的启动子是广泛可用的且是技术人员已知的。这类启动子的合适实例包括例如来自糖酵解基因的酵母启动子,如酵母磷酸果糖激酶(PPK)、磷酸丙糖异构酶(TPI)、甘油醛-3-磷酸脱氢酶(GPD、TDH3或GAPDH)、丙酮酸激酶(PYK)、磷酸甘油酸激酶(PGK)启动子、TEF1-α基因启动子、PHO90、TH1和AOD启动子;关于这些启动子的更多细节可在(WO 93/03159)中找到。其他有用的启动子是核糖体蛋白编码基因启动子、乳糖酶基因启动子(LAC4)、醇脱氢酶启动子(ADH1、ADH4等)和烯醇酶启动子(ENO)。最优选的是来自毕赤酵母表达载体pD912的启动子(强甲醇诱导型AOX启动子)和来自毕赤酵母表达载体pD915的启动子(中等强度组成型GAP启动子)。其他启动子(组成型和诱导型)和增强子或上游激活序列是本领域技术人员已知的。如果需要,可以修饰在本发明的核酸构建体中使用的启动子以影响它们控制特征。优选地,在用于表达脂酶的核酸构建体中使用的启动子与表达脂酶异构酶的宿主细胞中同源。
在核酸构建体中,编码脂酶基因的核苷酸序列的3'-端优选地与编码分泌因子序列的多核苷酸可操作地连接,所述编码分泌因子序列的多核苷酸能够将重组脂酶分泌到培养物上清液中并且随后在脂酶输出后被切割。优选地,分泌因子序列在选择的宿主细胞(诸如例如选择的酵母种)中是可操作的。在任何情况下,该因子的选择不是关键的,其可以如来自任何酵母基因,尽管如果来自非酵母真核基因,分泌因子有时也可以起作用。分泌因子序列进一步优选地包含酿酒酵母的α-交配因子。
任选地,选择性标记物可以存在于核酸构建体中。如本文所使用的术语“标记物”指的是编码允许选择或筛选含有标记物的宿主细胞的特性或表型的基因。标记物基因可以是抗生素抗性基因,借此能够使用合适的抗生素从未转化的细胞中选择出转化的细胞。合适的抗生素抗性标记物的实例包括例如二氢叶酸还原酶、潮霉素B-磷酸转移酶、博来霉素、3'-O-磷酸转移酶II(卡那霉素、新霉素和G418抗性)。虽然抗生素抗性标记物的使用对于多倍体宿主细胞的转化可能是最方便的,但是优选地使用非抗生素抗性标记物,例如营养缺陷型标记物(URA3、TRP1、LEU2)或S.pombe TPI基因(Russell P R,1985,Gene 40:125-130所描述的)。转化有核酸构建体的宿主细胞可以无标记物基因。用于构建重组的无标记物基因的微生物宿主细胞的方法在EP-A-0635 574中公开,且这些方法基于双向标记物的使用,例如构巢曲霉(A.nidulans)amdS(乙酰胺酶)基因或酵母URA3和LYS2基因。或者,可以将可筛选标记物例如绿色荧光蛋白、lacZ、荧光素酶、氯霉素乙酰转移酶、β-葡萄糖醛酸酶纳入本发明的核酸构建体中,允许筛选转化的细胞。
可以存在于本发明的核酸构建体中的任选的另外的元件包括但不限于一个或多个前导序列、增强子、整合因子和/或报告基因、内含子序列、着丝粒(centromers)、端粒和/或基质附着(MAR)序列。本发明的核酸构建体可以进一步包含用于自主复制的序列,例如ARS序列。合适的附加型(episomal)核酸构建体可以例如基于酵母2.mu.或pKD1(Fleer etal.,1991,Biotechnology 9:968-975)质粒。或者,核酸构建体可以进一步包含用于整合(优选地通过同源重组整合)的序列。因此,这样的序列可以是与宿主细胞基因组中用于整合的靶位点同源的序列。可以以本身已知的方式提供本发明的核酸构建体,其一般包括诸如限制性酶切(restricting)和连接核酸/核酸序列的技术,其参考标准手册诸如Sambrook和Russel(2001)"Molecular Cloning:A Laboratory Manual(3rd edition),Cold SpringHarbor Laboratory,Cold Spring Harbor Laboratory Press或F.Ausubel et al,eds.,"Current protocols in molecular biology",Green Publishing and WileyInterscience,New York(1987)。
在一个实施方案中,本发明涉及用包含多核苷酸序列的核酸转化的宿主细胞,其中该多核苷酸序列编码水解油中的包含至少一个长链多不饱和脂肪酸的三酰基甘油的酯键的多肽。
在另一个实施方案中,本发明涉及使用用包含多核苷酸序列的核酸分子转化的宿主细胞的方法,其中该多核苷酸序列编码水解油中的包含至少一个长链多不饱和脂肪酸的三酰基甘油的酯键的多肽。
在一些实施方案中,用包含多核苷酸序列的核酸分子转化宿主细胞,该多核苷酸序列与SEQ ID NO:1具有至少60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%的同一性。在一些实施方案中,用包含多核苷酸序列的核酸分子转化宿主细胞,该多核苷酸序列与SEQ ID NO:1具有60%至99%、65%至99%、70%至99%、75%至99%、80%至99%、85%至99%、90%至99%、91%至99%、92%至99%、93%至99%、94%至99%、95%至99%、96%至99%、97%至99%或98%至99%的同一性。
在另一个实施方案中,用包含多核苷酸序列的核酸分子转化宿主细胞,该多核苷酸序列与SEQ ID NO:2具有至少65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%的同一性。在一些实施方案中,用包含多核苷酸序列的核酸分子转化宿主细胞,该多核苷酸序列与SEQ ID NO:2具有60%至99%、65%至99%、70%至99%、75%至99%、80%至99%、85%至99%、90%至99%、91%至99%、92%至99%、93%至99%、94%至99%、95%至99%、96%至99%、97%至99%或98%至99%的同一性。
在另一个实施方案中,用包含多核苷酸序列的核酸分子转化宿主细胞,该多核苷酸序列与SEQ ID NO:3具有至少65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%的同一性。在一些实施方案中,用包含多核苷酸序列的核酸分子转化宿主细胞,该多核苷酸序列与SEQ ID NO:3具有60%至99%、65%至99%、70%至99%、75%至99%、80%至99%、85%至99%、90%至99%、91%至99%、92%至99%、93%至99%、94%至99%、95%至99%、96%至99%、97%至99%或98%至99%的同一性。
在一些实施方案中,多核苷酸序列编码脂酶。在优选的实施方案中,多核苷酸序列编码脂酶基因的同种型。在更优选的实施方案中,多核苷酸序列编码源自褶皱假丝酵母或白地霉脂酶基因的脂酶同种型。
在一些实施方案中,水解油中的三酰基甘油的酯键的多肽是脂酶。在优选的实施方案中,水解油中的三酰基甘油的酯键的多肽是脂酶的同种型。在更优选的实施方案中,水解油中的三酰基甘油的酯键的多肽是源自褶皱假丝酵母或白地霉的脂酶的同种型。
在一些实施方案中,宿主细胞是酵母。在优选的实施方案中,宿主细胞是巴斯德毕赤酵母。
在一个实施方案中,脂酶是源自褶皱假丝酵母的同种型的混合物。在优选的实施方案中,脂酶是源自褶皱假丝酵母的一个同种型。在更优选的实施方案中,脂酶是褶皱假丝酵母脂酶1、褶皱假丝酵母脂酶3和其混合物。
在一个实施方案中,脂酶是源自白地霉的同种型的混合物。在优选的实施方案中,脂酶是源自白地霉的一个同种型。在更优选的实施方案中,脂酶是白地霉脂酶2。
在一些实施方案中,三酰基甘油包含至少一个长链多不饱和脂肪酸(LC-PUFA)。在一些实施方案中,LC-PUFA包含ω-3脂肪酸、ω-6脂肪酸和其混合物。在优选的实施方案中,LC-PUFA包含二十二碳六烯酸(DHA)、二十碳五烯酸(EPA)、二十二碳五烯酸(DPA)、花生四烯酸(ARA)、γ-亚麻酸(GLA)、二高-γ-亚麻酸(DGLA)、十八碳四烯酸(SDA)和其混合物。在更优选的实施方案中,LC-PUFA包含DHA、EPA和其混合物。在一个另外的实施方案中,LC-PUFA是DHA。在又一个另外的实施方案中,LC-PUFA是EPA。
在一些实施方案中,宿主细胞是酵母。优选地,酵母能够需氧发酵。在一个实施方案中,宿主细胞是巴斯德毕赤酵母。在另一个实施方案中,宿主细胞是大肠杆菌(Escherichia coli)。
在一些实施方案中,油可以源自海产油,诸如鱼油。这类油通常含有饱和脂肪酸和不饱和脂肪酸、其酯和甘油酯的混合物,但可对其进行处理以形成脂肪酸的特定混合物(例如,含有全部饱和脂肪酸、全部不饱和脂肪酸、两者的混合物,或具有一定链长或链长范围的脂肪酸的混合物)。任何鱼油可用于公开的化合物和方法中。合适的鱼油的实例包括但不限于大西洋鱼油、太平洋鱼油、地中海鱼油、轻压鱼油、碱处理鱼油、热处理鱼油、浅棕色和深棕色鱼油、鲣鱼油、沙丁鱼油、金枪鱼油、黑鲈鱼油、大比目鱼油、旗鱼油、梭鱼油、鳕鱼油、鲱鱼油、沙丁鱼油、鳀鱼油、毛鳞鱼油、鲱鱼油、鲭鱼油、鲑鱼油和鲨鱼油,包括其混合物和组合。非碱处理的鱼油也是合适的。适合在本文中使用的其他海产油包括但不限于鱿鱼油、墨鱼油、章鱼油、磷虾油、海豹油、鲸油等,包括其混合物和组合。任何海产油和海产油的组合可用于公开的组合物和公开的方法中以制备它们。另外的油包括作为海藻油的微生物油(例如,来自沟鞭藻(dinoflagellate)的油,例如寇氏隐甲藻(Crypthecodinium cohnii)、腐霉菌(Phythium))或作为真菌油的微生物油(例如来自破囊壶菌(Thraustochytrium)、裂殖壶菌(Schizochytrium)、高山被孢霉(Mortierella alpina)或其混合物)和/或植物油,包括其混合物和组合物。在优选的实施方案中,油是未加工的或未精炼的油。
在一个实施方案中,用于产生脂酶的过程包括步骤:a)发酵含有转化的宿主细胞的培养基以产生和分泌脂酶,如本文所定义的,由此该宿主细胞发酵且同时产生和分泌脂酶;和任选地,b)回收脂酶。发酵过程优选在对转化的宿主细胞最佳的温度下进行。因此,对于大部分酵母或真菌宿主细胞,发酵过程在低于38℃的温度下进行。对于酵母或丝状真菌宿主细胞,发酵过程优选在低于35℃、33℃、30℃或28℃的温度下且在高于20℃、22℃或25℃的温度下进行。可以通过本领域技术人员已知的各种各样的培养基组成进一步优化发酵培养基以加强这些过程步骤。在优选的实施方案中,脂酶选自由褶皱假丝酵母脂酶1、褶皱假丝酵母脂酶3和白地霉脂酶2组成的组。
实施例
试验方法
分光光度活性测定:为了确定脂酶的活性,在37℃使用分光光度测定,其中对硝基苯酯被水解。可以测量由形成的对硝基酚引起的410nm处吸光度的增加且其与酶活性相关。一个活性单位(U)定义为在所用的条件下每分钟产生1μmol对硝基酚的酶的量。因此,使用含有100mM MOPS缓冲液pH7.5、0.24mM对硝基苯酯和适当稀释的38μl/ml CFE的反应混合物以及含有替代CFE的缓冲液的空白,并且记录吸光度变化持续5分钟。基于该Δabs/min,可以计算体积活性(volumetric activity)(U/ml,参见等式1)和蛋白比活性(proteinspecific activity)(U/mg总蛋白,参见等式2)。测量含有可溶性蛋白级分(可溶的)的CFE和含有总蛋白的CFE(总的)。在第一个实例中,使用对硝基苯基丁酸酯(pNPB)作为底物。
其中:Df=CFE的稀释系数(dilution factor)
ε=12.643(μmol/ml)-1*cm-1
d=路径长度比色皿
游离脂肪酸的确定:为了确定游离脂肪酸的百分比(%FFA),使用Titrino 718终点滴定。将50ml溶剂(甲苯/异丙醇/水=500/500/10)与两滴酚酞(在异丙醇中0.8%(w/w))混合,并用0.15M KOH(10.0g KOH溶解于50ml水中并用950ml乙醇补足)滴定直至溶液颜色维持10-15秒的粉红色。为了确定滴定量,向溶液中加入已知量的苯甲酸并滴定。如等式3中所述计算滴定量,且为了进一步计算,使用三次独立的滴定量确定值的平均值。为了测量样品,将已知量的样品油层加入到粉红色溶剂中,充分混合并滴定回至粉红色。如等式4中所述计算FFA的百分比。
滴定量=m/Mw(Ba)/V(KOH) (3)
其中:滴定量以mol/l计
m=以g计的所用的苯甲酸的质量
Mw(Ba)=苯甲酸的分子量(122.12g/mol)
V(KOH)=以l计的所用的0.15M KOH的体积
%FFA=V(KOH)*滴定量*Mw(KOH)/m (4)
其中:滴定量以mol/l计
m=以g计的所用的样品的质量
Mw(KOH)=KOH的分子量(56.1g/mol)
V(KOH)=以l计的所用的0.15M KOH的体积
通过LC-MS确定油相中(在甘油上)的EPA和DHA浓度:为了分析EPA和DHA浓度,将大约40mg的油层溶解于25ml四氢呋喃中且进一步1:4稀释。按照这些仪器的典型步骤通过LC-MS分析样品。使用的柱是带有前置柱VanGuard的Water Acquity UPLC BEH CI 8 50x2.1mm ID 1.8um。针对DHA和EPA对该系统进行校准。产生针对两种化合物的校准曲线。结果显示EPA和DHA分离良好,因此允许精确计算每种的游离脂肪酸。
实施例1在巴斯德毕赤酵母中表达褶皱假丝酵母脂酶同种型
通过蛋白质-MS测序测量两个可商购的褶皱假丝酵母脂酶Amano AY和BioCataysts Lipomod 034的同种型。发现了5个CR同种型且在两个脂酶中鉴定出的两个主要同种型是CR Lip 1和CR Lip 3。制备全部5个同种型的基因,且为了在巴斯德毕赤酵母中表达通过DNA2.0(Menlo Park,CA)对其密码子优化。将脂酶基因与酿酒酵母的α-交配因子基因融合,所述α-交配因子能够使重组脂酶分泌到培养物上清液中。在天然蛋白质输出后,切割该α-交配因子。制备两个表达载体,一个具有AOX启动子(pD912)并且另一个具有GAP启动子(pD915),并且每个被单独克隆到巴斯德毕赤酵母中。在pD912中,感兴趣的基因克隆至下游,且和α-因子融合并受强甲醇诱导型AOX启动子调控。在pD915中,感兴趣的基因克隆至下游,且和α-因子融合并受中等强度的组成型GAP启动子调控。对于pD912和pD915二者,博来霉素是选择标记物,当整合进毕赤酵母基因组中后,去除对于在大肠杆菌中增殖必需的pUC起始位点。通过DNA2.0(Menlo Park,CA)制备10个DNA构建体,并且用于由DNA2.0制备的2个载体的每个中。还使用阳性对照(来自DNA2.0的pJ912_角质酶)。
用含有褶皱假丝酵母脂酶同种型基因的毕赤酵母表达载体pD912和pD915转化大 肠杆菌
为了转化巴斯德毕赤酵母,需要大量的质粒DNA。通过DNA2.0制备的质粒DNA在大肠杆菌中增殖。制备感受态细胞。将得到的储存物转换为甘油储存物,并且剩余培养物用于提取质粒DNA。
从大肠杆菌中提取质粒DNA
通过使用来自Qiagen公司的标准流程(“使用Qiagen质粒Midi试剂盒纯化质粒DNA”)实现从剩余培养物中提取质粒DNA。在0.8%琼脂糖凝胶上分析获得的质粒DNA,并测量DNA浓度。结果在表1中显示。
表1:Midiprep样品中DNA浓度
样品ID DNA浓度(ng/μl)
912-1 685.9
912-2 553.2
912-3 749.6
912-4 683.5
912-5 825.5
915-1 700.5
915-2 409.9
915-3 613.5
915-4 670.2
915-5 793.5
角质酶 578.2
用含有褶皱假丝酵母脂酶同种型基因的pD912和pD915转化巴斯德毕赤酵母 PPS9010
质粒线性化:增殖并因此获得更高数量的质粒必须线性化(线性质粒对于巴斯德毕赤酵母的转化是必需的)。为了线性化,使用以下限制性内切酶:对于pD912-构建体使用SacI(孵育温度37℃)和对于pD915-构建体使用SwaI(孵育温度25℃)。
向20μgDNA(获自Midiprep)中添加10μl 10x缓冲液和2.5μl的限制性内切酶。将混合物用水补足至100μl。在对于限制性内切酶适当的温度进行孵育两小时。然后,通过将混合物暴露于65℃20min使该酶失活。在0.8%琼脂糖凝胶上分析1μl混合物以验证限制性内切是成功的。利用Quiagen PCR纯化试剂盒按照供应商的手册纯化得到的线性化的DNA。纯化后,测量DNA浓度。结果在表2中显示。
表2:纯化的线性化质粒DNA中DNA浓度
感受态巴斯德毕赤酵母细胞的制备
使用接种环将来自甘油储存物的巴斯德毕赤酵母PPS9010细胞接种于5ml YPD培养基中,并在30℃和180rpm孵育过夜。使用此培养物接种于100ml新鲜YPD培养基至OD600为0.15-0.2,然后将其在30℃和120rpm孵育。当OD600达到1.3-1.5时,将该培养物装于两个50ml Falcon管中并在4℃以500*g离心10min。将上清液倒出并弃置。将片状沉淀物重悬于50ml冰冷的无菌超纯水中,并在4℃以500*g离心5min。也将此上清液倒出并弃置。然后将片状沉淀物再次重悬于50ml冰冷的无菌超纯水中并且在4℃以500*g离心5分钟。还将此上清液倒出并弃置。然后将细胞重悬于20ml冰冷的无菌1M山梨醇中,并在4℃以500*g离心5min。再次将该上清液倒出并弃置。然后将细胞最终重悬于250μl 1M山梨醇中。
感受态巴斯德毕赤酵母的转化
用线性化质粒转化制备的感受态毕赤酵母细胞(如上述的通过使用大肠杆菌放大该线性化质粒的量)。添加10μl线性化质粒(2-4μg)于100μl感受态毕赤酵母细胞,将悬液转移至间隙(gap)为2mm的电穿孔比色皿中。在冰上孵育该细胞5min,然后在1500V、200Ω、25μF电穿孔。添加1ml冰冷的1M山梨醇于此混合物中,并将混合物在30℃孵育1小时。然后在21℃以1000*g离心该混合物5min,并倒出上清液。将片状沉淀物重悬于上清液剩余液滴中。使用接种环将每个菌落(colony)转移至含有200μg/ml博来霉素的5mlYPD培养基中,并在28℃和以180rpm过夜孵育。为了长期保存,将1ml培养物与0.5ml 50%甘油混合,在室温振荡15min,并在-80℃保存。
克隆表达和活性的验证
对所有样品进行三丁酸甘油酯琼脂板测定和SDS-PAGE分析以验证所有测试的克隆显示出对三丁酸甘油酯的活性并且观察到预期的脂酶条带。通过分光光度活性测定以p-NPD作为底物测量培养物的活性。通过Bradford试剂根据标准程序分析样品的蛋白含量。结果显示CR Lip 1克隆具有脂酶的高水平表达。对于任何CR Lip5克隆未检测到活性,然而对于若干CR Lip3和CR Lip4克隆测量到中等活性。CR Lip2克隆的活性一般非常低。需要进行摇瓶表达以获得更恒定的生长条件,并且因此获得更可靠的数据。
AOX和GAP构建体的摇瓶表达
为了AOX构建体的摇瓶表达,使用甘油储存物接种于带有挡板的300ml烧瓶中的25ml BMGY培养基中。在28℃以110rpm孵育此预培养物持续24小时。通过离心(3000*g、5min、室温)收获细胞,重悬于50ml BMMY培养基中且装于带有挡板和泡沫塞的1000ml烧瓶中。为了表达,在28℃以110rpm孵育培养物持续96小时。为了维持诱导,每天一次添加250μl甲醇。96小时后,将该培养物离心(3000*g、5min、4℃)并将上清液转移至单独的管中,其保存在-20℃。
对于GAP构建体的摇瓶表达,使用甘油储存物接种于带有挡板的300ml烧瓶中的25ml YPD培养基中。在28℃以110rpm过夜孵育此预培养物。通过离心(3000*g、5min、室温)收获细胞,重悬于100ml YPD培养基中且装于带有挡板和泡沫塞的1000ml烧瓶中。为了表达,在28℃以110rpm孵育培养物持续96小时。96小时后,将该培养物离心(5000*g、10min、4℃)并将上清液转移至单独的管中,其保存在-20℃。
分光光度活性测定
通过上述的分光光度活性测定来测量培养物上清液的活性。p-NPD(对硝基苯基癸酸酯)作为底物使用。
通过Bradford试剂根据标准程序分析样品的蛋白含量。将样品的以U/mg总蛋白计的比活性与来自Alcaligness属的4个其他商业化脂酶(AI-1、AI-2、AI-3和AI-4)和商业化CRL制剂L11的活性进行比较。结果在表3中显示。
表3:巴斯德毕赤酵母摇瓶表达的活性数和蛋白含量。
实施例2-巴斯德毕赤酵母和大肠杆菌中的表达水平的比较
为了比较,还进行了在大肠杆菌中表达脂酶同种型。遗传构建体订购为来自DNA2.0的合成DNA,并克隆到含有新霉素抗性基因的表达载体中;感兴趣的基因由L-阿拉伯糖经由pBAD启动子诱导。结果在表4中显示。
表4:巴斯德毕赤酵母和大肠杆菌中实现的表达水平的比较
实施例3-褶皱假丝酵母脂酶水解实验
为了测试根据实施例1制备的褶皱假丝酵母脂酶同种型对鱼油的水解,在具有40ml刻度的pH-stat设备中在不滴定的情况下建立在35℃的反应。可商购的来自Amano的褶皱假丝酵母脂酶AY-30(也称为CRL11)用作比较的脂酶。由于CRL Lip2和CR Lip5的低活性,仅使用CR Lip1、CR Lip3和CR Lip4。鱼油浓度为50%(v/v)。对于CR Lip1和CR Lip4,每g鱼油使用8.6U(基于p-NPD活性),其相当于商业化脂酶的0.1%(w/w)E/S。使用50mM KPipH7.5作为缓冲液。由于低酶量,将CR Lip3的酶浓度限制为每g鱼油6.8U,和CR Lip2的酶浓度限制为0.9U(相当于商业化脂酶的0.01%(w/w)E/S)。
如果可能,在添加酶前,将鱼油与缓冲液一起在PH-stat中在2000rpm下搅拌约半小时,同时监测pH值。通过添加酶起始反应后,在不同的时间点取出2ml样品:在0小时、1小时、4小时、18小时和24小时。分析这些样品的游离脂肪酸的浓度(FFA)以及EPA和DHA的浓度。为了使所有游离脂肪酸都进入油层,用3M HCL酸化乳液,充分混合并离心使层分开。如果需要,通过在60℃烘箱中加热几分钟使样品液化。
水解结果在表5和表6中显示,并阐明了反应的转化和选择性。为了便于比较,使用转化程度来比较商业化的比较实例CRL11样品与CR Lip1、CR Lip3和CR Lip4样品的选择性,由于预期随着反应进行到100%转化,所有酶的所有选择性将会丢失。因此,使用转化程度而非反应时间作为用于比较的重要参数(milestone)是有用的。预期反应时间将会对于不同酶同种型而变化,且由于反应时间可以通过许多不同条件来优化,记录反应时间以确保观察到反应的合理时间,但是,其不用作用于比较的重要参数。
表5:褶皱假丝酵母脂酶对FFA中EPA的作用
1油=用THF稀释后测量的EPA和DHA的浓度
2EPA减少的百分比是游离脂肪酸EPA的百分比=(油中的EPA/油)X100
3FFA中EPA减少的百分比是游离EPA相对于FFA总减少的百分比=(EPA减少的百分比/总FFA减少的百分比)X100
表6:褶皱假丝酵母脂酶对FFA中DHA的作用
1油=用THF稀释后测量的EPA和DHA的浓度
2DHA减少的百分比是游离脂肪酸DHA的百分比=(油中的DHA/油)X100
3FFA中DHA减少的百分比是游离DHA相对于FFA总减少的百分比=(DHA减少的百分比/总FFA减少的百分比)X100
实施例4-白地霉脂酶水解实验
在这些实施例中,鉴定来自白地霉的编码脂酶基因的多核苷酸序列,并如上述实施例1中所述在巴斯德毕赤酵母中表达。将可商购的来自Amano的褶皱假丝酵母脂酶AY-30(也称为CRL11)用作比较的脂酶。
对于每个样品(GC Lip1、GC Lip2和CRL11),使用以下方法:将约20g鱼油、3mL的0.95mg/mL脂酶溶液和12mL的BES缓冲液(50mM,pH7.0)置于100mL烧瓶中,并在37℃以360rpm在N2气下搅拌。通过上述的方法监测酸值(即测定游离脂肪酸)来监测反应进程。通过加热至85℃10分钟来终止反应。将混合物用25mL盐水和25mL水洗涤,并将油在真空(1托)下干燥。如下分离甘油酯和脂肪酸:将10g油添加至75mL己烷和25mL乙酸乙酯中。然后,用40mL 0.5M氢氧化钠溶液和40mL乙醇溶液萃取有机层两次。然后用水洗涤上层有机层;在减压下去除溶剂并在高真空下干燥以得到甘油酯。然后用3M HCl将下层碱性层酸化至pH 1,并用75mL己烷和75mL氯仿萃取,蒸发合并的有机物,以得到脂肪酸层。通过EP2.4.29方法测定分离的甘油酯和脂肪酸的脂肪酸谱。结果在表7和表8中显示。
使用GC Lip2和含有约22%EPA和10%DHA的油组合物重复该实验。结果在表9和表10中显示。
表7:白地霉脂酶对18:15油中的FFA中EPA的作用
表8:白地霉脂酶对18:15油中的FFA中DHA的作用
表9:白地霉脂酶对22:10油中的FFA中EPA的作用
表10:白地霉脂酶对22:10油中的FFA中DHA的作用
序列表
<110> 帝斯曼知识产权资产管理有限公司
<120> 三酰基甘油的部分酶水解
<130> 31187-US-PSP
<140> 62/272,833
<141> 2015-12-30
<160> 3
<170> PatentIn 版本3.5
<210> 1
<211> 1608
<212> DNA
<213> 褶皱念珠菌
<400> 1
atggctccta ccgcaactct tgctaatgga gacactatta ctggcttaaa tgctataatc 60
aacgaggcct ttctgggaat tccattcgca gaacctcctg tcggcaatct acgattcaaa 120
gaccctgtcc catattcagg ttccctcgat ggtcaaaagt tcacttccta cggccctagt 180
tgcatgcagc aaaacccgga aggtacatac gaagagaact taccaaaagc agctttggat 240
ttggttatgc aatccaaagt gttcgaagca gtctccccaa gctcagagga ctgtctaacc 300
atcaatgtcg ttagaccacc cggtacaaaa gctggtgcca atttacctgt aatgctgtgg 360
attttcggtg gaggttttga ggttgggggt acatccacat ttcctcccgc acaaatgatc 420
acgaaatcga tcgctatggg taaacctatt atccatgttt cagttaacta ccgtgtatct 480
tcatggggat ttttggccgg agatgaaatc aaagcagaag gatctgctaa tgctggtttg 540
aaggatcaaa gactcggtat gcagtgggtt gcagacaaca tcgctgcttt cggaggtgac 600
ccaacgaagg tgacaatatt cggtgaatca gctggttcca tgtcggtgat gtgtcacatt 660
ctatggaatg acggtgataa cacatataag ggtaagccac tatttagagc aggaataatg 720
caatccggtg ctatggtgcc atcagatgca gttgacggca tctacggtaa tgagattttc 780
gacttattgg caagcaatgc tggatgtggt tccgcctcgg acaagctggc ttgtctgagg 840
ggagtatctt cggacacctt ggaggatgct actaataaca ctccgggttt cttggcctac 900
tcttctttgc gtcttagtta cttacccaga ccagatggtg tcaacatcac tgatgacatg 960
tatgctctgg tgagagaggg taagtacgcc aatattccag tgatcatcgg agatcagaat 1020
gacgaaggaa ctttctttgg tacttcttca ctgaatgtta ctacagatgc acaggctaga 1080
gagtatttca aacagagctt cgtccacgct tctgatgccg agattgatac tcttatgaca 1140
gcttatccag gcgacattac acaaggttcc ccttttgata ctggtatttt gaacgctttg 1200
acaccccaat tcaagagaat ctccgctgtt ttgggtgatt tgggttttac cttggcacgt 1260
aggtatttcc ttaatcatta tactggaggg acaaagtata gctttttgtc aaaacaactt 1320
tccggtttgc ctgttttagg aacgtttcat tctaatgata ttgtgtttca agactacctg 1380
ttgggtagcg gtagtttgat atacaacaat gcattcatcg cgtttgcaac tgatttggac 1440
ccaaatacgg ccggtttact ggtaaaatgg ccagaataca catcctcttc ccaaagtgga 1500
aataacctga tgatgattaa tgcactggga ctttacaccg gtaaggacaa ctttagaact 1560
gctggatatg acgctttgtt ttctaaccca cctagtttct ttgtttaa 1608
<210> 2
<211> 1608
<212> DNA
<213> 褶皱念珠菌
<400> 2
atggctccaa cagctaagtt ggcaaacggt gataccatta ccggtcttaa tgctataatc 60
aatgaagctt tcctgggtat ccctttcgcc gaacccccag ttggaaatct ccgtttcaaa 120
gatccagtgc cttattccgg ttctttgaat ggacagaagt ttacatctta tggtccttca 180
tgtatgcaac aaaatccaga aggaacgttt gaagagaatt tgggcaaaac tgcactggac 240
ttggtcatgc agtcgaaagt ctttcaggcc gtgttaccgc aatccgagga ctgcttgact 300
attaacgtag ttagacctcc aggaactaaa gctggggcta atttgcctgt gatgctgtgg 360
atcttcggtg gtggatttga gatcggttcc ccgactattt tcccacccgc acaaatggtg 420
actaaatcag ttcttatggg taagcctatc attcacgtag ccgttaacta cagggttgcc 480
tcgtggggtt tcttggctgg tgatgacatt aaagctgagg gttccggaaa tgcaggacta 540
aaagatcaac gtttgggtat gcaatgggta gcagacaata ttgccggatt tggaggcgat 600
ccctcaaagg tgacaatttt cggagagagt gctggttcca tgtccgtttt gtgtcacctg 660
atatggaatg acggtgataa cacatataag ggaaagcctt tgtttcgagc aggcatcatg 720
caatcaggtg caatggtccc atctgaccct gtggatggta catatggcaa tgaaatctat 780
gacctttttg tatctagcgc cggatgtggt tcggcttccg acaagttggc ttgtttgaga 840
tctgcttcca gtgacacttt gcttgatgca actaacaata caccaggatt tctagcatac 900
tcctcattga gactttcata cttgcctaga ccagacggta aaaacatcac cgacgacatg 960
tataagttag ttagagatgg taaatacgct agtgtccctg tcatcatcgg tgatcagaat 1020
gacgagggca ctatctttgg tttaagctct ttaaacgtta cgactaatgc acaagctaga 1080
gcgtacttta agcaatcttt catacatgca tctgatgctg aaatcgatac attgatggcc 1140
gcatacccac aagatattac gcaaggtagc ccatttgaca caggaatttt caatgctatc 1200
acacctcaat tcaaaaggat ttcggctgtc ttgggagatc tggccttcat ccacgctaga 1260
agatatttcc tcaaccattt ccaaggtgga actaagtaca gctttctgag taagcagctt 1320
tccggtttac caattatggg taccttccat gctaatgata tcgtttggca ggactatttg 1380
ctgggttccg gttcagtgat atacaataat gctttcattg catttgcaac agatctggac 1440
cccaacactg ctggtttgct agttaactgg ccaaaataca ctagcagttc acagtccggt 1500
aataacttga tgatgattaa tgcactaggt ctgtacaccg ggaaagataa ctttcgtact 1560
gctggatatg atgctttaat gactaaccca tcttctttct ttgtttag 1608
<210> 3
<211> 1911
<212> DNA
<213> 白地霉
<400> 3
atgagatttc cttcaatttt tactgctgtt ttattcgcag catcctccgc attagctgct 60
ccagtcaaca ctacaacaga agatgaaacg gcacaaattc cggctgaagc tgtcatcggt 120
tactcagttt agaaggggat ttcgatgttg ctgttttgcc attttccaac agcacaaata 180
acgggttatt gtttataaat actactattg ccagcattgc tgctaaagaa gaaggggtat 240
ctctcgagaa aagaaggctg aagctcacca tcaccaccat catcaccacc aagctcctac 300
cgcagtcttg aacggtaacg aggtcatttc tggtgtcttg gaaggtaaag tcgacacttt 360
caagggtatc ccttttgctg accacctttg aatgacttga gatttaagca tccacagcca 420
tttactggtt cttaccaagg tttgaaggcc aatgatttct ctccagcctg tatgcagttg 480
gaccctggaa attctttgac cttgttggta aggctttggg attggctaaa gttatcccag 540
aggagtttag aggtcctttg tacgatatgg ctaagggaac tgtctctatg aacgaggatt 600
gcttgtactt gaatgttttt agacctgccg gaactagcca gatgctaagt tgccagttat 660
ggtttggatt tatggtggtg catttgttta cggatcttct gccgcatatc caggtaattc 720
ttacgttaaa gaatctatca acatgggtca acctgttgtt ttgtttctat taactataga 780
acaggacctt tcggtttctt gggaggagac gccattactg ccgagggtaa taccaatgct 840
ggattgcacg accagagaaa aggattggaa tgggtttctg ataacattgt aacttcggag 900
gtgaccctga taaagtcatg attttcggtg agtctgctgg tgctatgtct gtcgcccacc 960
agttgattgc ctacggtgga gataacacct ataatggaaa gaagttgttt cattctccat 1020
cttgcagtct ggtggtccat tgccatacca cgattcttct tctgtcggac cagacatctc 1080
ttataacaga ttcgcccaat atgctggttg tgacacctct gcatctgcaa acgacacatt 1140
ggatgtttga gatctaaatc ttcttctgtt ttgcatgatg cccagaactc ttacgatttg 1200
aaagacttgt tcggattgtt gcctcagttt ttgggttttg gaccaagacc agatggtaac 1260
attattcctg tgccgcttac gaattgttca gatctggtag atacgctaag gtcccttata 1320
tctctggaaa ccaagaagac gaaggaactg ctttcgctcc agtcgcattg aatgcaacta 1380
ctaccccaca cgttaagagt ggttgcagta tatcttctac gacgcctctg aggcttctat 1440
tgacagagtt ttgtctttgt atcctcagac tttgtctgtt ggttctccat ttagaaccgg 1500
tattttgaac gctttgacac cacatttaag agagtcgccg ctatcttgtc tgacatgttg 1560
ttccagtctc ctagaagagt tatgttgtct gccactaagg atgtcaacag atggacctat 1620
ttgtctactc atttgcataa tttggttcca tcttgggtac ttttcatggt aatgaattga 1680
tctttcagtt caacgttaat atcggacctg ctaattctta tttgagatac tttatttctt 1740
tcgccaacca tcacgaccca aacgttggta caaacttgtg caatgggatc aatacacaga 1800
tgaaggaaag gagatgttgg aaatccatat gacagataac gtcatgagaa ccgatgacta 1860
cagaattgaa ggtatctcta atttcgagac cgacgtcaac ttgtaggtta a 1911

Claims (20)

1.一种用包含多核苷酸序列的核酸分子转化的宿主细胞,所述多核苷酸序列与SEQ IDNO:1、SEQ ID NO:2或SEQ ID NO:3具有至少75%的同一性,其中所述多核苷酸序列编码水解油中的包含至少一个长链多不饱和脂肪酸(LC-PUFA)的三酰基甘油的酯键的多肽。
2.权利要求1的宿主细胞,其中所述宿主细胞是巴斯德毕赤酵母(Pichia pastoris)。
3.权利要求1或权利要求2的宿主细胞,其中所述多核苷酸序列与SEQ ID NO:1、SEQ IDNO:2或SEQ ID NO:3具有75%至99%的同一性。
4.权利要求1-3中任一项的宿主细胞,其中所述多核苷酸序列编码脂酶基因。
5.权利要求1-4中任一项的宿主细胞,其中所述多核苷酸序列编码褶皱假丝酵母(Candida rugosa)脂酶1基因。
6.权利要求1-4中任一项的宿主细胞,其中所述多核苷酸序列编码褶皱假丝酵母脂酶3基因。
7.权利要求1-4中任一项的宿主细胞,其中所述多核苷酸序列编码白地霉(Geotrichumcandidum)脂酶2基因。
8.权利要求1-7中任一项的宿主细胞,其中所述长链多不饱和脂肪酸包括二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)和其组合。
9.权利要求1-8中任一项的宿主细胞,其中所述油是未加工的或未精炼的油。
10.权利要求1-9中任一项的宿主细胞,其中所述油是海产油。
11.一种使用用包含多核苷酸序列的核酸分子转化的宿主细胞的方法,所述多核苷酸序列与SEQ ID NO:1、SEQ ID NO:2或SEQ ID NO:3具有至少75%的同一性,其中所述多核苷酸序列编码水解油中的包含至少一个长链多不饱和脂肪酸的三酰基甘油的酯键的多肽。
12.权利要求11的方法,其中所述宿主细胞是巴斯德毕赤酵母。
13.权利要求11或权利要求12的方法,其中所述多核苷酸序列与SEQ ID NO:1、SEQ IDNO:2或SEQ ID NO:3具有75%至99%的同一性。
14.权利要求11-13中任一项的方法,其中所述多核苷酸序列编码脂酶基因。
15.权利要求11-14中任一项的方法,其中所述多核苷酸序列编码褶皱假丝酵母脂酶1基因。
16.权利要求11-14中任一项的方法,其中所述多核苷酸序列编码褶皱假丝酵母脂酶3基因。
17.权利要求11-14中任一项的方法,其中所述多核苷酸序列编码白地霉脂酶2基因。
18.权利要求11-17中任一项的方法,其中所述长链多不饱和脂肪酸包括二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)和其组合。
19.权利要求11-18中任一项的方法,其中所述油是未加工的或未精炼的油。
20.权利要求11-19中任一项的方法,其中所述油是海产油。
CN201680082799.0A 2015-12-30 2016-12-29 三酰基甘油的部分酶水解 Pending CN109153979A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562272833P 2015-12-30 2015-12-30
US62/272,833 2015-12-30
PCT/IB2016/058087 WO2017115323A2 (en) 2015-12-30 2016-12-29 Partial enzymatic hydrolysis of triacylglycerols

Publications (1)

Publication Number Publication Date
CN109153979A true CN109153979A (zh) 2019-01-04

Family

ID=57838437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680082799.0A Pending CN109153979A (zh) 2015-12-30 2016-12-29 三酰基甘油的部分酶水解

Country Status (8)

Country Link
US (1) US11441099B2 (zh)
EP (1) EP3397759A2 (zh)
JP (2) JP2019500041A (zh)
KR (1) KR20180097745A (zh)
CN (1) CN109153979A (zh)
BR (1) BR112018013376A2 (zh)
CA (1) CA3010288A1 (zh)
WO (1) WO2017115323A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982804B (zh) * 2019-12-26 2020-10-02 中国海洋大学 一种脂肪酶及其在获得富集dha甘油酯中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1130100A1 (en) * 2000-02-14 2001-09-05 Unilever N.V. Modified lipolytic enzymes and their use
CN1366056A (zh) * 2001-01-15 2002-08-28 广州市绿巨人生物环保技术有限公司 脂肪酶基因序列及其在酵母中的应用
WO2013043641A1 (en) * 2011-09-21 2013-03-28 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Method for enrichment of eicosapentaenoic acid and docosahexaenoic acid in source oils

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2679920A1 (fr) 1991-08-02 1993-02-05 Rhone Poulenc Rorer Sa Levures recombinantes hautement stables pour la production de proteines recombinantes, leur preparation et leur utilisation.
ATE238425T1 (de) 1993-07-23 2003-05-15 Dsm Nv Selektionmarker-genfreie rekombinante stämme: verfahren zur ihrer herstellung und die verwendung dieser stämme
AU2115897A (en) * 1996-02-01 1997-08-22 North American Vaccine, Inc. Expression of group b neisseria meningitidis outer membrane (mb3) protein from yeast and vaccines
CN1169961C (zh) 1997-04-11 2004-10-06 Dsm公司 基因转变作为工具用于构建重组的工业化丝状真菌
AU4144999A (en) 1998-05-19 1999-12-06 Dsm N.V. Improved (in vivo) production of cephalosporins
KR20010089672A (ko) 1998-12-22 2001-10-08 윌리암 로엘프 드 보에르 개선된 생체내 세팔로스포린 생산
WO2013148049A1 (en) * 2012-03-29 2013-10-03 The General Hospital Corporation Recombinant cytotoxic t-lymphocyte-associated protein 4 (ctla4)
KR101464437B1 (ko) * 2013-06-19 2014-11-27 한국생명공학연구원 재조합 단백질의 효율적인 분비를 위한 코돈 최적화
EP3081644B1 (en) 2013-12-10 2019-03-27 Amano Enzyme Inc. Modified lipase and use thereof
CN104726477B (zh) 2013-12-23 2018-02-13 中国农业大学 一种脂肪酶编码基因及其工程菌株

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1130100A1 (en) * 2000-02-14 2001-09-05 Unilever N.V. Modified lipolytic enzymes and their use
CN1366056A (zh) * 2001-01-15 2002-08-28 广州市绿巨人生物环保技术有限公司 脂肪酶基因序列及其在酵母中的应用
WO2013043641A1 (en) * 2011-09-21 2013-03-28 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Method for enrichment of eicosapentaenoic acid and docosahexaenoic acid in source oils

Also Published As

Publication number Publication date
WO2017115323A3 (en) 2017-08-10
KR20180097745A (ko) 2018-08-31
BR112018013376A2 (pt) 2018-12-18
WO2017115323A2 (en) 2017-07-06
US20210207060A1 (en) 2021-07-08
JP2022001062A (ja) 2022-01-06
JP2019500041A (ja) 2019-01-10
CA3010288A1 (en) 2017-07-06
EP3397759A2 (en) 2018-11-07
US11441099B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
US7939305B2 (en) PUFA-PKS genes from Ulkenia
KR101438981B1 (ko) 디아실글리세롤아실기 전이 효소 유전자 및 그 용도
CN108884480A (zh) 三酰基甘油的部分酶水解
CA2568689A1 (en) Metabolically engineered cells for the production of polyunsaturated fatty acids
CN101993861A (zh) 羧酸酯酶的重组表达
WO2011011568A2 (en) Methods and compositions for the production of fatty acids in photosynthetic prokaryotic microorganisms
KR20150082263A (ko) 재조합 유기체
Yu et al. Identification of a Δ6 fatty acid elongase gene for arachidonic acid biosynthesis localized to the endoplasmic reticulum in the green microalga Myrmecia incisa Reisigl
JP5149812B2 (ja) 脂肪酸合成酵素及びそれをコードするポリヌクレオチド並びにその利用
WO2008000277A2 (en) Metabolically engineered fungal cells with increased content of polyunsaturated fatty acids
WO2019219903A2 (en) Mutant lipase and use thereof
CN109153979A (zh) 三酰基甘油的部分酶水解
He et al. Construction and analysis of a food-grade Lactiplantibacillus plantarum esterase/lipase overexpression system
Lu et al. Identification and characterization of a novel∆ 6-fatty acid desaturase gene from Rhizopus nigricans
US20230250406A1 (en) Mutant lipase and use thereof
AU2016317623B2 (en) Genetically modified strain of eukaryotic microalga having improved triglyceride productivity, and use thereof
CN108753810A (zh) 一种转录调节蛋白基因orf2的用途
Tsai Production of preferable high-oleic acid yeast
WO2010147138A1 (ja) 脂肪酸鎖長延長酵素をコードする遺伝子およびその用途
KR101469689B1 (ko) 지방산 함량 개선을 위한 형질전환 효모 및 그의 제조방법
CN107109378A (zh) 新型ω‑3脂肪酸去饱和酶及二十碳五烯酸的制造方法
Wadman Dioxygenation of polyunsaturated fatty acids in fungi
Okuda Biochemical analysis and molecular breeding of oleaginous microorganisms for ω3 polyunsaturated fatty acid production
Hignett The deletion and overexpression of two esterase genes, IAH1 and TIP1, in Saccharomyces cerevisiae to determine their effects on the aroma and flavour of wine and brandy
WO2009080630A2 (en) Foods and beverages with increased polyunsaturated fatty acid content

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190104