CN109136858B - 一种基于二维材料的氧化物薄膜剥离方法 - Google Patents

一种基于二维材料的氧化物薄膜剥离方法 Download PDF

Info

Publication number
CN109136858B
CN109136858B CN201810858211.7A CN201810858211A CN109136858B CN 109136858 B CN109136858 B CN 109136858B CN 201810858211 A CN201810858211 A CN 201810858211A CN 109136858 B CN109136858 B CN 109136858B
Authority
CN
China
Prior art keywords
oxide film
transition metal
dimensional transition
protective layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810858211.7A
Other languages
English (en)
Other versions
CN109136858A (zh
Inventor
毕磊
肖敏
孙睿智
朱煜鹏
袁秀芳
康同同
秦俊
邓龙江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810858211.7A priority Critical patent/CN109136858B/zh
Publication of CN109136858A publication Critical patent/CN109136858A/zh
Application granted granted Critical
Publication of CN109136858B publication Critical patent/CN109136858B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明属于集成光学领域,具体涉及用脉冲激光沉积法在亲水性刚性基底上高温生长氧化物薄膜如Y3Fe5O12、VO2、Fe3O4等,利用二维材料范德华异质结将其剥离并转移到任意基底上的方法。本发明通过在二维过渡金属上溅射一层具有亲水性的保护层,一方面防止氧化物薄膜沉积时二维过渡金属被氧化;另一方面在与极性溶液接触浸润后,二维过渡金属层的疏水性以及保护层的亲水性将导致二维过渡金属层与保护层极易分离,剥离后二维过渡金属层继续保留在衬底上,实现了将毫米级尺寸的氧化物薄膜的快速、完整地转移到柔性基底上,且因为选择的是无污染的极性溶液如去离子水,不存在刻蚀液损坏氧化物薄膜的情况。

Description

一种基于二维材料的氧化物薄膜剥离方法
技术领域
本发明属于集成光学领域,具体涉及用脉冲激光沉积(PLD)法在亲水性刚性基底上高温生长氧化物薄膜如Y3Fe5O12、VO2、Fe3O4等,利用二维材料范德华异质结将其剥离并转移到任意基底上的方法。
背景技术
柔性、可穿戴电子设备具有传统的硅基技术不能满足的一些独特性能,例如质轻、可弯曲,在新兴技术应用中非常重要,且具有丰富的商业价值。在柔性电子设备中,那些具有多功能特性,特别是具有磁性、磁光性能的材料,在生物医学巨磁阻传感器,能量收集设备,微致动器,微波器件,自旋波器件等方面有重要应用。
将功能氧化物材料集成到柔性聚合物材料中已被证明是实现功能电子器件的灵活性的有效方式。然而,由于不同材料界面的化学和机械不相容性使得直接在柔性聚合物基板上合成高质量的单晶/多晶氧化物薄膜仍然是一个巨大的挑战。近年来,研究者们基于转移打印法,通过刻蚀牺牲层转移多晶/单晶氧化物薄膜,如在SiO2/Si基底上生长VO2薄膜,通过BOE刻蚀液选择性刻蚀SiO2牺牲层,再用PDMS印章将VO2薄膜转移到任意衬底上,但存在速率慢、氧化物薄膜尺寸小、刻蚀液损坏氧化物薄膜等问题。
发明内容
针对上述存在问题或不足,为解决现有氧化物薄膜剥离方法存在的速率慢、尺寸小、刻蚀液损坏氧化物薄膜的问题,本发明提供了一种基于二维材料的氧化物薄膜剥离方法。
具体包括以下步骤:
步骤1:采用脉冲激光沉积(PLD)法在亲水性刚性基底上生长一层厚度为5~30nm的二维过渡金属薄膜(如MoS2薄膜);
步骤2:在步骤1所得的二维过渡金属薄膜上生长一层厚度为10nm~100nm的亲水性保护层(如SiO2);
步骤3:采用脉冲激光沉积(PLD)法在步骤2所得样品的保护层上生长厚度为50~400nm的氧化物薄膜;
步骤4:将步骤3所得样品进行退火使其结晶;
步骤5:将柔性基底贴合在步骤4所得氧化物薄膜表面,然后置于极性溶液(如去离子水中)浸润3s~300s,再将整个结构从二维过渡金属薄膜与保护层之间直接剥离分开,最终氧化物薄膜留在柔性基底上。
本发明通过在二维过渡金属上生长一层具有亲水性的保护层,一方面防止氧化物薄膜沉积时二维过渡金属被氧化;另一方面在与极性溶液接触浸润后,二维过渡金属层的疏水性以及保护层的亲水性将导致二维过渡金属层与保护层极易分离,剥离后二维过渡金属层继续保留在衬底上,实现了将毫米级尺寸的氧化物薄膜的快速、完整地转移到柔性基底上,且因为选择的是无污染的极性溶液如去离子水,不存在刻蚀液损坏氧化物薄膜的情况。
综上所述,本发明解决了氧化物薄膜剥离方法存在的速率慢、尺寸小和刻蚀液损坏氧化物薄膜的问题。
附图说明
图1为具体实施例中样品转移前的结构示意图;
图2为转移流程图;
图3a实施例中转移前YIG薄膜的光学显微镜图,图3b为实施例中转移后YIG薄膜的光学显微镜图;
图4为具体实施例中转移前后样品的XRD谱图。
具体实施方式
下面结合附图和实施例对本发明作进一步阐述。
如附图1所示,在SiO2/Si基底上通过脉冲激光沉积以及磁控溅射方法获得此结构的薄膜样品。
实施例:
步骤1、用脉冲激光沉积(PLD)法在SiO2/Si基底上生长10nm的MoS2,沉积气压为高真空(P=5×10-4Pa),沉积温度为700℃,靶基距为5.5cm,激光能量为50mJ,频率为5Hz;
步骤2、用磁控溅射法在MoS2/SiO2/Si上溅射一层厚度为60nm的SiO2作为保护层,溅射功率为80W,氩气压为0.5Pa;
步骤3、用脉冲激光沉积(PLD)法在SiO2/MoS2/SiO2/Si上沉积80nm厚的YIG薄膜,沉积时氧分压为0.67Pa,温度为400℃;靶基距为5.5cm,激光频率为10Hz;
步骤4、将步骤3所得YIG/SiO2/MoS2/SiO2/Si置于快速退火中退火使得YIG结晶,退火时,氮气压保持在20Torr,升温时间设置为50s,使样品从室温升温到850℃,在850℃保温5min,然后自然冷却至室温。
步骤5、对步骤4所得退火后的YIG薄膜进行转移。
将柔性PI胶带贴合于步骤4所得的YIG薄膜表面,置于极性溶液离子水中浸润5s后取出;PI胶朝下,样品朝上,用镊子将Si/SiO2/MoS2剥离,YIG薄膜留在PI胶上。
图3(a)是实施例中的结晶YIG的光学显微镜图,表面平整。
图3(b)是步骤5转移到PI胶上的YIG薄膜的光学显微镜图,本实施例中,将毫米级(4mm×4mm)尺寸的YIG薄膜转移到PI胶上,且无明显破损情况。
图4是实施例中转移前后样品的XRD谱图,从图中可以看出:转移前后,YIG薄膜的结构未发生变化,转移前有MoS2(002)峰,转移后只有原基底上出现MoS2(002)峰,PI胶上没有MoS2(002)峰,只有YIG的峰。说明YIG薄膜被成功转移到PI胶上,而MoS2留在原基底上。

Claims (1)

1.一种基于二维材料的氧化物薄膜剥离方法,具体包括以下步骤:
步骤1:采用脉冲激光沉积法在亲水性刚性基底上生长一层厚度为5~30nm的二维过渡金属薄膜;
步骤2:在步骤1所得的二维过渡金属薄膜上生长一层厚度为10nm~100nm的亲水性保护层;
步骤3:采用脉冲激光沉积法在步骤2所得样品的保护层上生长厚度为50~400nm的氧化物薄膜;
步骤4:将步骤3所得样品进行退火使其结晶;
步骤5:将柔性基底贴合在步骤4所得产物的氧化物薄膜表面,然后置于极性溶液浸润3s~300s,再将整个结构从二维过渡金属薄膜与保护层之间直接剥离分开,最终氧化物薄膜留在柔性基底上。
CN201810858211.7A 2018-07-31 2018-07-31 一种基于二维材料的氧化物薄膜剥离方法 Active CN109136858B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810858211.7A CN109136858B (zh) 2018-07-31 2018-07-31 一种基于二维材料的氧化物薄膜剥离方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810858211.7A CN109136858B (zh) 2018-07-31 2018-07-31 一种基于二维材料的氧化物薄膜剥离方法

Publications (2)

Publication Number Publication Date
CN109136858A CN109136858A (zh) 2019-01-04
CN109136858B true CN109136858B (zh) 2020-09-25

Family

ID=64799419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810858211.7A Active CN109136858B (zh) 2018-07-31 2018-07-31 一种基于二维材料的氧化物薄膜剥离方法

Country Status (1)

Country Link
CN (1) CN109136858B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190182B (zh) * 2019-05-28 2023-07-25 衢州学院 一种超薄自旋阀器件的设计方法
CN111146079B (zh) * 2019-12-18 2022-05-06 湖南大学 一种二维金属-半导体范德华异质结阵列的合成及其应用
CN116067734A (zh) * 2023-02-10 2023-05-05 中国科学院长春光学精密机械与物理研究所 二维材料在不同衬底间的转移方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120433A (zh) * 2004-06-04 2008-02-06 伊利诺伊大学评议会 用于制造并组装可印刷半导体元件的方法和设备
CN102020271A (zh) * 2009-09-21 2011-04-20 三星泰科威株式会社 制造石墨烯的方法和通过该方法制造的石墨烯
CN103741116A (zh) * 2014-01-27 2014-04-23 吉林大学 金刚石网及其分离油水混合物和转移液滴的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120433A (zh) * 2004-06-04 2008-02-06 伊利诺伊大学评议会 用于制造并组装可印刷半导体元件的方法和设备
CN102020271A (zh) * 2009-09-21 2011-04-20 三星泰科威株式会社 制造石墨烯的方法和通过该方法制造的石墨烯
CN103741116A (zh) * 2014-01-27 2014-04-23 吉林大学 金刚石网及其分离油水混合物和转移液滴的应用

Also Published As

Publication number Publication date
CN109136858A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN109136858B (zh) 一种基于二维材料的氧化物薄膜剥离方法
CN111137847B (zh) 一种屈曲微纳结构可调控的柔性功能氧化物薄膜制备方法
CN108517555B (zh) 基于范德华外延获得大面积高质量柔性自支撑单晶氧化物薄膜的方法
CN113200523B (zh) 一种大面积层状二维材料的剥离及其转移方法
CN106244984B (zh) 一种a轴取向增强型AlN薄膜及其制备方法
DE60233418D1 (de) Verfahren zur grosstechnischen herstellung von cdte/cds dünnschicht-solarzellen
CN109023261B (zh) 一种石墨烯促进结晶的可转移钙钛矿氧化物压电织构薄膜的制备方法
EP3948935B1 (en) Graphene and two-dimensional materials transfer method by using free-standing bilayer polymeric membrane
CN108660417B (zh) 一种自支撑Ga2O3薄膜及其制备方法
CN111599915A (zh) 一种基于种子层结构的高性能氮化铝钪的制备方法及其产品
CN113990739A (zh) 基于范德华薄膜上的氧化镓外延层转印方法
TW201341554A (zh) 藉由物理氣相沉積法在基板上成長碳薄膜或無機材料薄膜的方法
CN111362309A (zh) 一种利用可溶性支撑层转移钙钛矿氧化物薄膜的方法
US10889914B2 (en) Location-specific growth and transfer of single crystalline TMD monolayer arrays
CN111446363B (zh) 一种自支撑的三维自组装磁电复合薄膜结构及其制备方法
CN104733292B (zh) 超薄自支撑单晶钛酸钡薄膜制备方法
CN107385394B (zh) ZnO/AlN/Si多层结构薄膜及制备方法与应用
CN109166790B (zh) 一种利用金属应力层剥离石墨烯上钙钛矿氧化物压电薄膜的方法
CN111155065B (zh) 一种六方氮化硼薄膜的制备剥离及转移方法
CN109896543A (zh) 一种远程外延生长可转移钛酸钡单晶薄膜的方法
CN112919454B (zh) 一种控制双层石墨烯堆叠角度的方法
CN108517503A (zh) 一种锆钛酸铅薄膜的制备方法
JP2014190932A (ja) 金属単結晶薄膜の製造方法、光学デバイスの製造方法及び光学デバイス
CN106498352A (zh) 基于石英衬底的掺杂钇铁石榴石薄膜脉冲激光沉积方法
CN113707451A (zh) 基于范德瓦尔斯外延制备柔性铁磁性金属薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant