CN109136831B - 一种质量厚度为700-1400μg/cm2自支撑锗薄膜及其制备方法 - Google Patents

一种质量厚度为700-1400μg/cm2自支撑锗薄膜及其制备方法 Download PDF

Info

Publication number
CN109136831B
CN109136831B CN201810933359.2A CN201810933359A CN109136831B CN 109136831 B CN109136831 B CN 109136831B CN 201810933359 A CN201810933359 A CN 201810933359A CN 109136831 B CN109136831 B CN 109136831B
Authority
CN
China
Prior art keywords
germanium film
thickness
self
supporting
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810933359.2A
Other languages
English (en)
Other versions
CN109136831A (zh
Inventor
欧志清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taian Taishan Technology Co ltd
Taian Zhongquan Information Technology Co ltd
Original Assignee
Guangzhou Benkang Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Benkang Environmental Protection Technology Co ltd filed Critical Guangzhou Benkang Environmental Protection Technology Co ltd
Priority to CN201810933359.2A priority Critical patent/CN109136831B/zh
Publication of CN109136831A publication Critical patent/CN109136831A/zh
Application granted granted Critical
Publication of CN109136831B publication Critical patent/CN109136831B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种大尺度自支撑锗薄膜及其制备方法,包括以下步骤:(1)在衬底表面沉积氯化钠脱模剂;(2)采用90度磁过滤阴极真空弧(FCVA)系统在衬底表面沉积氧化铝缓冲薄膜;(3)将样品旋转180°,采用直管磁过滤阴极真空弧(FCVA)系统再次沉积锗薄膜;(4)将得到的衬底放入盛有乙醇溶液的容器中进行脱模处理;(5)用打捞板将锗薄膜捞起,得到质量厚度为700‑1400μg/cm2自支撑锗薄膜。采用本发明可以制备出质量厚度为700‑1400μg/cm2、具有低应力、均匀且致密的自支撑锗薄膜,且工艺简单。

Description

一种质量厚度为700-1400μg/cm2自支撑锗薄膜及其制备方法
技术领域
本发明涉及薄膜制备领域,具体涉及一种质量厚度为700-1400μg/cm2自支撑锗薄膜及其制备方法。
背景技术
自支撑薄膜,相对于有衬底薄膜而言,是指在使用过程中无衬底支撑的薄膜。常用的自支撑薄膜制备技术是在固体抛光表面(如抛光硅片或玻璃片) 涂覆或生长可溶性脱膜剂后,沉积薄膜,再将脱膜剂溶解。
自支撑薄膜除要求能自支撑外,还要求具有无缺陷、均匀平坦、纯净、大面积、低应力等特性。中国专利CN106868460A,采用聚焦重离子溅射法制备了质量厚度为400~2000μg/cm2自支撑Ir靶,解决了现有技术制备工艺出现靶膜卷曲、平整性极差的技术问题。然而,由于在溅射的过程中容易导致Ir沉积层与铜基之间存在较大的残余应力,在溶解分立时释放应力会致使Ir沉积层出现裂纹,影响自支撑靶的使用。另外,该发明制备步骤复杂,在沉积Ir沉积层时,采用了两步,需要将Ir沉积层取出聚焦重离子溅射沉积系统后再次放入沉积。
发明内容
本发明的目的是根据现有技术所存在的缺陷,提供了一种质量厚度为700-1400μg/cm2、具有低应力、均匀且致密的自支撑锗薄膜的制备方法。
为了解决现有技术所存在的问题,本发明提供的技术方案如下:一种质量厚度为700-1400μg/cm2自支撑锗薄膜的制备方法,包括以下步骤:
(1)在衬底表面沉积氯化钠脱模剂;
(2)采用90度磁过滤阴极真空弧(FCVA)系统在衬底表面沉积氧化铝缓冲薄膜;(3)将样品旋转180°,采用直管磁过滤阴极真空弧(FCVA)系统再次沉积锗薄膜;
(4)将得到的衬底放入盛有乙醇溶液的容器中进行脱模处理;
(5)用打捞板将锗薄膜捞起,得到质量厚度为700-1400μg/cm2自支撑锗薄膜。
优选地,步骤(1)中所述衬底为玻璃或者单晶硅衬底。
优选地,步骤(1)中采用电阻丝热蒸发法沉积氯化钠脱模剂,所述氯化钠脱模剂厚度100-160nm,优选为120-140nm。
优选地,步骤(2)中采用氧化铝靶材作为90度FCVA阴极,起弧电流为40-50A,弯管磁场2.0-5.0A,束流60-90mA,负偏压为-250~-350V,沉积时间为10-20min,占空比为40-90%。
优选地,步骤(2)中所述氧化铝缓冲薄膜厚度为150-200nm,优选地,为160-180nm。
优选地,步骤(3)中采用锗靶材作为直管FCVA阴极,起弧电流为70-90A,弯管磁场1.5-3.0A,束流65-85mA,负偏压为-150~-190V,沉积时间为60-90min,占空比为60-80%。
优选地,步骤(3)中所述锗薄膜厚度为15-30μm,优选地,为20-25μm。
优选地,步骤(4)中所述乙醇溶液含水质量为5%-8%。
本发明的目的之二,在于提供一种所述制备方法制备得到的质量厚度为700-1400μg/cm2自支撑锗薄膜。
本发明与现有技术相比,其有益效果为:
(1)通过采用90度磁过滤阴极真空弧(FCVA)系统以及直管磁过滤阴极真空弧(FCVA)系统共同制备缓冲薄膜、锗薄膜,制备过程中无需中途去除衬底,方法简单且易于工业应用。
(2)本发明通过在锗薄膜与衬底之间制备氧化铝作为缓冲层,在脱模处理的过程中可以避免残余应力的释放导致自支撑锗薄膜的破裂。
(3)直管磁过滤阴极真空弧(FCVA)系统原子离化率非常高,大约在90%以上。由于原子离化率高,可使等离子体密度增加,成膜时大颗粒减少,有利于提高薄膜致密性、结合力等。
(4)本发明经过创造性的设计,采用所述制备方法制备出质量厚度为700-1400μg/cm2、具有低应力、均匀且致密的自支撑锗薄膜。
附图说明
图1为本发明所采用的沉积装置示意图。
图2为实施例1、2脱模处理之前得到的自支撑锗薄膜示意图。
图3为实施例1、2脱模处理之后得到的自支撑锗薄膜示意图。
图4为实施例1得到的自支撑锗薄膜的SEM图。
图5为实施例2得到的自支撑锗薄膜的SEM图。
附图标记说明
1 衬底
2 氯化钠脱模剂
3 氧化铝缓冲薄膜
4 锗薄膜
5 90度FCVA阴极
6 等离子体导管
7 弯管磁场
8 抽真空接口
9 工件台
10 负偏压端子
11 进气口
12 反应腔
13 直管FCVA阴极。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。
实施例1
一种质量厚度为900μg/cm2自支撑锗薄膜的制备方法,包括以下步骤:选择2cm×2cm×0.5cm的玻璃作为衬底1,采用电阻丝热蒸发法沉积氯化钠脱模剂2,所述氯化钠脱模剂2厚度250nm;
将玻璃衬底1放置于工件台9上,采用氧化铝靶材作为90度FCVA阴极5、锗靶材作为直管FCVA阴极13,通过抽真空接口8对沉积装置抽真空,使得反应腔12内真空度为1.1×10- 4Pa;随后从进气口11通入氩气,使得反应腔12内真空度为1.1Pa;开启90度磁过滤阴极真空弧(FCVA)系统并设置沉积参数为:起弧电流为40A,弯管磁场2.7A,束流70mA,负偏压为-280V,沉积时间为15min,占空比为90%,在氯化钠脱模剂2表面沉积厚度为200nm的氧化铝缓冲薄膜3。关闭90度磁过滤阴极真空弧(FCVA)系统,将玻璃衬底1旋转180°,开启直管磁过滤阴极真空弧(FCVA)系统并设置沉积参数为:起弧电流为80A,弯管磁场2.0A,束流75mA,负偏压为-170V,沉积时间为70min,占空比为70%,在氧化铝缓冲薄膜3上沉积厚度为25μm的锗薄膜4。将得到的玻璃衬底1放入盛有含水质量为6%的乙醇溶液的容器中进行脱模处理4min。用打捞板将锗薄膜捞起,得到质量厚度为900μg/cm2自支撑锗薄膜。
对比例1
一种自支撑锗薄膜的制备方法,包括以下步骤:选择2cm×2cm×0.5cm的玻璃作为衬底1,采用电阻丝热蒸发法沉积氯化钠脱模剂2,所述氯化钠脱模剂2厚度250nm;
将玻璃衬底1放置于工件台9上,采用锗靶材作为直管FCVA阴极13,通过抽真空接口8对沉积装置抽真空,使得反应腔12内真空度为1.1×10-4Pa;随后从进气口11通入氩气,使得反应腔12内真空度为1.1Pa;开启直管磁过滤阴极真空弧(FCVA)系统并设置沉积参数为:起弧电流为80A,弯管磁场2.0A,束流75mA,负偏压为-170V,沉积时间为70min,占空比为70%,在氧化铝缓冲薄膜3上沉积厚度为25μm的锗薄膜4。将得到的玻璃衬底1放入盛有含水质量为6%的乙醇溶液的容器中进行脱模处理4min。用打捞板将锗薄膜捞起,得到自支撑锗薄膜。
实施例2
一种质量厚度为1300μg/cm2自支撑锗薄膜的制备方法,包括以下步骤:选择2cm×2cm×0.5cm的单晶硅作为衬底1,采用电阻丝热蒸发法沉积氯化钠脱模剂2,所述氯化钠脱模剂2厚度140nm;将单晶硅衬底1放置于工件台9上,采用氧化铝靶材作为90度FCVA阴极5、锗靶材作为直管FCVA阴极13,通过抽真空接口8对沉积装置抽真空,使得反应腔12内真空度为1.5×10-4Pa;随后从进气口11通入氩气,使得反应腔12内真空度为1.2Pa;开启90度磁过滤阴极真空弧(FCVA)系统并设置沉积参数为:起弧电流为45A,弯管磁场4.0A,束流90mA,负偏压为-300V,沉积时间为20min,占空比为80%,在氯化钠脱模剂2表面沉积厚度为200nm的氧化铝缓冲薄膜3。关闭90度磁过滤阴极真空弧(FCVA)系统,将玻璃衬底1旋转180°,开启直管磁过滤阴极真空弧(FCVA)系统并设置沉积参数为:起弧电流为80A,弯管磁场2.5A,束流70mA,负偏压为-190V,沉积时间为80min,占空比为65%,在氧化铝缓冲薄膜3上沉积厚度为20μm的锗薄膜4。将得到的玻璃衬底1放入盛有含水质量为5%的乙醇溶液的容器中进行脱模处理6min。用打捞板将锗薄膜捞起,得到质量厚度为1300μg/cm2自支撑锗薄膜。
对比例2
一种自支撑锗薄膜的制备方法,包括以下步骤:选择2cm×2cm×0.5cm的单晶硅作为衬底1,采用电阻丝热蒸发法沉积氯化钠脱模剂2,所述氯化钠脱模剂2厚度140nm;将单晶硅衬底1放置于工件台9上,采用锗靶材作为直管FCVA阴极13,通过抽真空接口8对沉积装置抽真空,使得反应腔12内真空度为1.5×10-4Pa;随后从进气口11通入氩气,使得反应腔12内真空度为1.2Pa;开启直管磁过滤阴极真空弧(FCVA)系统并设置沉积参数为:起弧电流为80A,弯管磁场2.5A,束流70mA,负偏压为-190V,沉积时间为80min,占空比为65%,在氧化铝缓冲薄膜3上沉积厚度为20μm的锗薄膜4。将得到的玻璃衬底1放入盛有含水质量为5%的乙醇溶液的容器中进行脱模处理6min。用打捞板将锗薄膜捞起,得到自支撑锗薄膜。
采用X射线应力测定方法测定自支撑锗薄膜的残余应力,结果记于表1。
表1
实施例1 对比例1 实施例2 对比例2
残余应力(MPa) 254 417 244 431
从实施例1-2制备自支撑锗薄膜的扫描电镜图可以看出,锗薄膜具有致密结构;从实施例1-2与对比例1-2制备自支撑锗薄膜的残余应力结构可以得出,采用本发明提供的制备方法可以显著降低自支撑锗薄膜的残余应力。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

1.一种质量厚度为700-1400μg/cm2自支撑锗薄膜的制备方法,其特征在于,包括以下步骤:
(1)在衬底表面沉积氯化钠脱模剂;
(2)采用90度磁过滤阴极真空弧(FCVA)系统在衬底表面沉积氧化铝缓冲薄膜;(3)将样品旋转180°,采用直管磁过滤阴极真空弧(FCVA)系统再次沉积锗薄膜;
(4)将得到的衬底放入盛有乙醇溶液的容器中进行脱模处理;
(5)用打捞板将锗薄膜捞起,得到质量厚度为700-1400μg/cm2自支撑锗薄膜。
2.根据权利要求1所述一种质量厚度为700-1400μg/cm2自支撑锗薄膜的制备方法,其特征在于,步骤(1)中所述衬底为玻璃或者单晶硅衬底。
3.根据权利要求1-2任一项所述一种质量厚度为700-1400μg/cm2自支撑锗薄膜的制备方法,其特征在于,步骤(1)中采用电阻丝热蒸发法沉积氯化钠脱模剂,所述氯化钠脱模剂厚度200-300nm。
4.根据权利要求3所述一种质量厚度为700-1400μg/cm2自支撑锗薄膜的制备方法,其特征在于,步骤(2)中采用氧化铝靶材作为90度FCVA阴极,起弧电流为60-80A,弯管磁场1.0-3.0A,束流40-70mA,负偏压为-100~-150V,沉积时间为10-30min,占空比为40-80%。
5.根据权利要求4所述一种质量厚度为700-1400μg/cm2自支撑锗薄膜的制备方法,其特征在于,步骤(2)中所述氧化铝缓冲薄膜厚度为150-250nm。
6.根据权利要求5所述一种质量厚度为700-1400μg/cm2自支撑锗薄膜的制备方法,其特征在于,步骤(3)中采用锗靶材作为直管FCVA阴极,起弧电流为70-90A,弯管磁场2.0-4.0A,束流60-80mA,负偏压为-150~-250V,沉积时间为50-100min,占空比为50-90%。
7.根据权利要求6所述一种质量厚度为700-1400μg/cm2自支撑锗薄膜的制备方法,其特征在于,步骤(3)中所述锗薄膜厚度为15-35μm。
8.根据权利要求7所述一种质量厚度为700-1400μg/cm2自支撑锗薄膜的制备方法,其特征在于,步骤(4)中所述乙醇溶液含水质量为5%-8%。
9.一种质量厚度为700-1400μg/cm2自支撑锗薄膜,其特征在于采用如权利要求1-8任一项所述制备方法制备。
CN201810933359.2A 2018-08-16 2018-08-16 一种质量厚度为700-1400μg/cm2自支撑锗薄膜及其制备方法 Active CN109136831B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810933359.2A CN109136831B (zh) 2018-08-16 2018-08-16 一种质量厚度为700-1400μg/cm2自支撑锗薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810933359.2A CN109136831B (zh) 2018-08-16 2018-08-16 一种质量厚度为700-1400μg/cm2自支撑锗薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN109136831A CN109136831A (zh) 2019-01-04
CN109136831B true CN109136831B (zh) 2020-04-24

Family

ID=64789574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810933359.2A Active CN109136831B (zh) 2018-08-16 2018-08-16 一种质量厚度为700-1400μg/cm2自支撑锗薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN109136831B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111074215B (zh) * 2019-12-27 2021-07-02 季华实验室 一种新型阴极电弧的颗粒过滤器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI312151B (en) * 2005-06-14 2009-07-11 Chang Ching Ra Tunable magnetic recording medium and its fabricating method
JP5128335B2 (ja) * 2008-03-26 2013-01-23 古河電気工業株式会社 GaN系半導体基板、その製造方法および半導体素子
CN101321427B (zh) * 2008-07-22 2011-03-16 核工业西南物理研究院 直流磁过滤阴极真空弧等离子体源
CN102976264B (zh) * 2012-12-13 2015-04-15 中国科学院物理研究所 一种自支撑多层微纳米结构的制备方法
JP2016176104A (ja) * 2015-03-19 2016-10-06 Jxエネルギー株式会社 自立した銅薄膜の製造方法
CN106868460B (zh) * 2017-01-03 2020-08-21 中国原子能科学研究院 一种质量厚度为400~2000μg/cm2自支撑Ir靶的制备工艺
CN107142449B (zh) * 2017-05-04 2019-05-28 中国工程物理研究院激光聚变研究中心 一种高精度极小尺寸自支撑铍薄膜的制备方法
CN107611004B (zh) * 2017-08-14 2020-01-31 南京大学 一种制备自支撑GaN衬底材料的方法

Also Published As

Publication number Publication date
CN109136831A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN106868460B (zh) 一种质量厚度为400~2000μg/cm2自支撑Ir靶的制备工艺
CN104498883B (zh) 在柔性衬底上沉积高c轴取向氮化铝薄膜的方法
CN110541153A (zh) 一种沉积制备膜的方法及镀膜机
CN106637207B (zh) 一种石墨基材上的耐高温类金刚石涂层方法
CN104451580A (zh) RB-SiC基底反射镜表面改性层的制备方法
CN104388903A (zh) 多元合金薄膜的单靶低成本制备方法
CN109136831B (zh) 一种质量厚度为700-1400μg/cm2自支撑锗薄膜及其制备方法
CN108977781B (zh) 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法
CN108300964B (zh) 电镀渐变色的方法
CN109082634B (zh) 一种质量厚度为500-1000μg/cm2自支撑镓薄膜及其制备方法
CN109023230B (zh) 一种质量厚度为700-1000μg/cm2自支撑锡薄膜及其制备方法
CN109136832B (zh) 一种质量厚度为600-1200μg/cm2自支撑铟薄膜及其制备方法
CN105568228A (zh) 一种放射状金属纳米线-陶瓷复合薄膜的制备方法
JP3723366B2 (ja) Ito透明導電膜付き基板およびito透明導電膜の成膜方法
CN111850469A (zh) 一种用于大面积微结构气体探测器的dlc阻性电极原位制备方法
CN104451569A (zh) 一种离子注入提高大尺寸磁控溅射膜质量的方法
CN108517502B (zh) 一种在软基材表面制备低应力dlc薄膜的方法
CN105420672A (zh) 一种bmn薄膜的制备方法
CN111826612B (zh) 基于氢储运装备内表面的阻氢涂层及制备方法
KR20150076467A (ko) 조직제어가 가능한 알루미늄 코팅층 및 그 제조방법
CN109839392B (zh) 一种自支撑薄膜类透射电镜样品及其制备方法
JPH01149957A (ja) 薄膜形成装置および薄膜形成方法
CN113278931A (zh) 复合材料表面磁控溅射镀层增厚方法
CN114277347B (zh) 硅制靶板及其制备、再生方法
CN117448827B (zh) 用于人工关节摩擦表面的低粗糙度氮化钛涂层及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200602

Address after: 233700 No.9, Niushi West Lane, Beimen, Cuihu garden, Chengguan Town, Guzhen County, Bengbu City, Anhui Province

Patentee after: Guzhen Kean Chuangbing Information Technology Co.,Ltd.

Address before: 510530 Guangzhou High-tech Industrial Development Zone, Guangzhou, Guangdong Province, 72 Science Avenue, building C2, the first, second and third floors of green space International Creator Center office card A176

Patentee before: GUANGZHOU BENKANG ENVIRONMENTAL PROTECTION TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210927

Address after: 271000 high end talent entrepreneurship base in the middle of Nantianmen street, high tech Zone, Tai'an City, Shandong Province

Patentee after: Taian Zhongquan Information Technology Co.,Ltd.

Address before: 233700 No.9 Niushi West Lane, north gate of Cuihu garden, Chengguan Town, Guzhen County, Bengbu City, Anhui Province

Patentee before: Guzhen Kean Chuangbing Information Technology Co.,Ltd.

Effective date of registration: 20210927

Address after: 271000 China Taishan high-end talent entrepreneurship base in the middle of Nantianmen street, development zone, Tai'an City, Shandong Province

Patentee after: Taian Taishan Technology Co.,Ltd.

Address before: 271000 high end talent entrepreneurship base in the middle of Nantianmen street, high tech Zone, Tai'an City, Shandong Province

Patentee before: Taian Zhongquan Information Technology Co.,Ltd.