CN104451569A - 一种离子注入提高大尺寸磁控溅射膜质量的方法 - Google Patents

一种离子注入提高大尺寸磁控溅射膜质量的方法 Download PDF

Info

Publication number
CN104451569A
CN104451569A CN201310429212.7A CN201310429212A CN104451569A CN 104451569 A CN104451569 A CN 104451569A CN 201310429212 A CN201310429212 A CN 201310429212A CN 104451569 A CN104451569 A CN 104451569A
Authority
CN
China
Prior art keywords
film
magnetron sputtering
large size
plated film
vacuum storehouse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310429212.7A
Other languages
English (en)
Inventor
袁萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUXI HUIMING ELECTRONIC TECHNOLOGY Co Ltd
Original Assignee
WUXI HUIMING ELECTRONIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUXI HUIMING ELECTRONIC TECHNOLOGY Co Ltd filed Critical WUXI HUIMING ELECTRONIC TECHNOLOGY Co Ltd
Priority to CN201310429212.7A priority Critical patent/CN104451569A/zh
Publication of CN104451569A publication Critical patent/CN104451569A/zh
Pending legal-status Critical Current

Links

Abstract

一种离子注入提高大尺寸磁控溅射膜质量的方法,它涉及大尺寸磁控溅射镀膜的强化方法,本发明要解决现有的离子或电子辅助磁控溅射沉积薄膜方法,针对大尺寸衬底材料会存在很难制备出厚度均匀、附着力强的薄膜材料的问题。本发明中一种大尺寸磁控溅射镀膜的简易强化方法按以下步骤进行:一、衬底材料的清洗及加热;二、衬底材料表面反溅清洗;三、向旋转加热台施加负电压条件下镀膜;四、镀膜完成后抽真空,进行离子注入表面强化;五、关闭电源,降温至室温,完成薄膜的制备。本发明方法适用于薄膜工程领域。

Description

一种离子注入提高大尺寸磁控溅射膜质量的方法
技术领域
本发明涉及离子注入提高大尺寸磁控溅射镀膜质量的简易强化方法。
背景技术
磁控溅射,特别是反应磁控溅射,采用此方法制备的薄膜密度较低,薄膜中存在空位、间隙原子、位错以及空洞等缺陷,严重影响薄膜的性能。一般情况下,磁控溅射制备的薄膜,结晶度差,结晶温度高,存在较多缺陷,特别对于反应磁控溅射来说,上述问题尤为严重。
现有的离子或电子辅助磁控溅射沉积薄膜方法,需要在磁控溅射设备上增加离子源或电子源,通过薄膜沉积过程中,对于弱成键离子和成膜原子的撞击以实现动量和能力转换,使得不稳定离子或缺陷及杂质粒子逃离薄膜生长表面,同时增加成膜原子的移动能力。离子或电子源的加入,不仅增加了成本和技术的复杂性,而且离子源的加入破坏了磁控溅射舱体电场分布,易使得薄膜中容易产生畸点。此外,现有的离子或电子辅助沉积薄膜方法,对于小尺寸的衬底材料,可以镀制出厚度均匀、附着力强的薄膜材料,但是对于大尺寸的衬底材料,由于离子束和电子束有效束斑直径的限制,很难制备出直径为米量级的厚度均匀、附着力强的薄膜材料。
发明内容
本发明是要解决现有的离子或电子辅助磁控溅射沉积薄膜方法存在成本高和技术复杂,而且很难制备出大尺寸、厚度均匀、附着力强的薄膜材料的问题,而提出一种大尺寸磁控溅射镀膜的简易强化方法。
本发明中的一种大尺寸磁控溅射镀膜的简易强化方法按以下步骤进行:
一、将衬底材料用丙酮超声波清洗15min-30min,再用无水乙醇清洗15min-30min,最后用去离子水清洗25min-30min后烘干,然后将衬底材料置于磁控溅射真空仓内的旋转加热台上;通过真空泵将真空仓内抽成真空,当真空仓内压强达到1.0×10-4-9.9×10-4Pa时,启动加热装置,将加热台加热至25℃~1000℃,并且保温其中旋转加热台的材质为不锈钢,衬底材料为金属、陶瓷或半导体;
二、向真空仓内通入Ar气,当仓内压强为3Pa-5Pa时,向旋转加热台施加500V-800V的负电压,对衬底表面进行反溅清洗10min-20min;
三、反溅清洗完毕后,向靶材施加射频电源启辉,射频功率为60W-500W,预溅射20min~50min,开始镀膜,镀膜时真空仓内气体压强为0.1Pa-2Pa,镀膜时间为10min~90min,然后拉上挡板,接着向真空仓内通入O2,使用流量计将O2流量控制在4sccm-100sccm,预溅射10min~30min后,调整真空仓内气体压强为0.1Pa-2Pa,向旋转加热台施加100V-400V的负电压,然后移开挡板,继续向衬底表面镀膜,镀膜1h-3h;
四、镀膜完成后,依次按要求关闭射频电源和负压电源,关闭Ar气阀门,质量流量器的电源,O2气路阀门,打开插板阀将真空仓内气体压强抽至1.0×10-4Pa-5.0×10-4Pa;
五、关闭剩余的所有电源,待真空仓内温度降至20℃-25℃:时即制得本发明所述的高密度、低缺陷薄膜。
本发明的工作原理:本发明中磁控溅射强化技术是在薄膜沉积过程中,利用磁控溅射系统本身自生成的Ar离子,对于弱成键离子和成膜原子的撞击以实现动量和能力转换,使得不稳定离子或缺陷及杂质粒子逃离薄膜生长表面,同时增加成膜原子的移动能力,制备出大尺寸、结构稳定、缺陷少的优质薄膜。
本发明包含以下优点:
1、由于引入Ar离子对整个旋转加热台进行轰击,轰击效果均匀一致,因而采用磁控溅射方法可在大尺寸衬底材料上制备出厚度均匀、附着力强的薄膜;
2、制备过程中由于Ar离子轰击薄膜表面,使得不稳定离子或缺陷及杂质粒子逃离薄膜生长表面,同时增加成膜原子的移动能力,制备出结构稳定,缺陷少,密度大的优质薄膜;
3、制备过程中由于Ar离子轰击薄膜表面,为成膜原子的移动提供了能量,在相同的温度条件下,薄膜更易形成晶体结构;
4、由于薄膜结构发生变化,从而引起薄膜物理性能上的变化,薄膜的折射率、硬度和弹性模量都有所提高。
附图说明
图1是本发明的工作原理示意图,其中1为成膜原子,2为Ar尚子,3为杂质原子;
图2是试验一获得氧化钇薄膜与试验二获得氧化钇薄膜的XRD图;
图3是试验一获得氧化钇薄膜与试验二获得氧化钇薄膜的折射率随波长变化曲线;
图4是试验一获得氧化钇薄膜与试验二获得氧化钇薄膜的硬度和弹性模量随施加于旋转加热台的负电压变化曲线。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式中的一种大尺寸磁控溅射镀膜的简易强化方法按以下步骤进行:
一、将衬底材料用丙酮超声波清洗15min-30min,再用无水乙醇清洗15min-30min,最后用去离子水清洗25min-30min后烘干,然后将衬底材料置于磁控溅射真空仓内的旋转加热台上;通过真空泵将真空仓内抽成真空,当真空仓内压强达到1.0×10-4-9.9×10-4Pa时,启动加热装置,将加热台加热至25℃~1000℃,并且保温30min-120min,其中旋转加热台的材质为不锈钢,衬底材料为金属、陶瓷或半导体;
二、真空仓内通入Ar气,当仓内压强为3Pa-5Pa时,向旋转加热台施加500V-800V的负电压,对衬底表面进行反溅清洗10min-20min;
三、反溅清洗完毕后,向靶材施加射频电源启辉,射频功率为60W-500W,预溅射20min~50min,开始镀膜,镀膜时真空仓内气体压强为0.1Pa-2Pa,镀膜时间为10min~90min,然后拉上挡板,接着向真空仓内通入O2,使用流量计将O2流量控制在4sccm-100sccm,预溅射10min~30min后,调整真空仓内气体压强为0.1Pa-2Pa,向旋转加热台施加100V-400V的负电压,然后移开挡板,继续向衬底表面镀膜,镀膜1h-3h;
四、镀膜完成后,依次按要求关闭射频电源和负压电源,关闭红气阀门,质量流量器的电源,O2气路阀门,打开插板阀将真空仓内气体压强抽至1.0×10-4Pa-5.0×10-4Pa;
五、关闭剩余的所有电源,待真空仓内温度降至20℃-25℃:时即制得本发明所述的高密度、低缺陷薄膜。
本发明的工作原理:本发明中磁控溅射强化技术是在薄膜沉积过程中,利用磁控溅射系统本身自生成的Ar离子,对于弱成键离子和成膜原子的撞击以实现动量和能力转换,使得不稳定离子或缺陷及杂质粒子逃离薄膜生长表面,同时增加成膜原子的移动能力,制备出大尺寸、结构稳定、缺陷少的优质薄膜。
本发明包含以下优点:
1、由于引入Ar离子对整个旋转加热台进行轰击,轰击效果均匀一致,因而采用磁控溅射方法可在大尺寸衬底材料上制备出厚度均匀、附着力强的薄膜;
2、制备过程中由于Ar离子轰击薄膜表面,使得不稳定离子或缺陷及杂质粒子逃离薄膜生长表面,同时增加成膜原子的移动能力,制备出结构稳定,缺陷少,密度大的优质薄膜;
3、制备过程中由于Ar离子轰击薄膜表面,为成膜原子的移动提供了能量,在相同的温度条件下,薄膜更易形成晶体结构;
4、由于薄膜结构发生变化,从而引起薄膜物理性能上的变化,薄膜的折射率、硬度和弹性模量都有所提高。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中衬底材料用丙酮超声波清洗20min-25min,再用无水乙醇清洗25min-25min,最后用去离子水清洗26min-28min后烘干。其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一不同的是步骤一中将衬底材料用丙酮超声波清洗24min,再用无水乙醇清洗24min,最后用去离子水清洗27min后烘干。其它步骤及参数与具体实施方式一相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤一中当真空仓内压强达到2.0×10-4Pa-8.0×10-4Pa时,启动加热装置,将加热台加热至100℃~800℃,并且保温45min-90min。其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至三之一不同的是步骤一中当真空仓内压强达到5.0×10-4Pa时,启动加热装置,将加热台加热至300℃,并且保温60min。其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是步骤二中当仓内压强为3.5Pa-4.5Pa时,向旋转加热台施加600V-700V的负电压,对衬底表面进行反溅清洗12min~18min。其它步骤及参数与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至五之一不同的是步骤二中当仓内压强为4Pa时,向旋转加热台施加650V的负电压,对衬底表面进行反溅清洗15min。其它步骤及参数与具体实施方式一至五之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是步骤三中射频功率为100W-400W,预溅射30min-40min,开始镀膜,镀膜时真空仓内气体压强为1Pa-1.6Pa,镀膜时间为30min~70min。其它步骤及参数与具体实施方式一至七之一相同。
具体实施方式九:本实施方式与具体实施方式一至七之一不同的是步骤三中射频功率为200W,预溅射35min,开始镀膜,镀膜时真空仓内气体压强为1.2Pa镀膜时间为50min。其它步骤及参数与具体实施方式一至七之一相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是步骤三中使用流量计将O2流量控制在10sccm-90sccm,预溅射15min-25min后,调整真空仓内气体压强1Pa-1.6Pa,向旋转加热台施加150V~300V的负电压。其它步骤及参数与具体实施方式一至九之一相同。
为了验证本发明的有益效果,进行了以下实验:
实验一:一种大尺寸磁控溅射镀膜的简易强化方法按以下步骤进行:
一、将直径为8英寸的单面抛光P型单晶硅片用丙酮超声波清洗24min,再用无水乙醇清洗24min,最后用去离子水清洗28min后烘干,然后将衬底材料置于磁控溅射真空仓内的旋转加热台上;通过真空泵将真空仓内抽成真空,当真空仓内压强达到5.0×10-4时,启动加热装置,将加热台加热至200℃,并且保温60min;
二、向真空仓内通入Ar气,当仓内压强为4Pa时,向旋转加热台施加650V的负电压,对衬底表面进行反溅清洗15min;
三、反溅清洗完毕后,向靶材施加射频电源启辉,射频功率为300W,预溅射20min,开始镀膜,镀膜时真空仓内气体压强为1.2Pa,镀膜时间为30min,然后拉上挡板,接着向真空仓内通入O2,使用流量计将O2流量控制为4sccm,预溅射10min~30min后,调整真空仓内气体压强为1.2Pa,向旋转加热台施加160V的负电压,然后移开挡板,继续向衬底表面镀膜,镀膜2h;
四、镀膜完成后,依次按要求关闭射频电源和负压电源,关闭Ar气阀门,质量流量器的电源,O2气路阀门,打开插板阀将真空仓内气体压强抽4.0×10-4Pa;
五、关闭剩余的所有电源,待真空仓内温度降至24℃时,即制得本发明所述的高密度、低缺陷薄膜。
实验二:一种大尺寸磁控溅射镀膜的简易强化方法按以下步骤进行:
一、将直径为8英寸的单面抛光P型单晶硅片用丙酮超声波清洗24min,再用无水乙醇清洗24min,最后用去离子水清洗28min后烘干,然后将衬底材料置于磁控溅射真空仓内的旋转加热台上;通过真空泵将真空仓内抽成真空,当真空仓内压强达到5.0×10-4时,启动加热装置,将加热台加热至200℃,并且保温60min;;
二、向真空仓内通入Ar气,当仓内压强为4Pa时,向旋转加热台施加650V的负电压,对衬底表面进行反溅清洗15min;
三、反溅清洗完毕后,向规格为φ49mm×3mm的金属钇靶材施加射频电源启辉,射频功率为300W,预溅射20min,开始镀膜,镀膜时真空仓内气体压强为1.2Pa,镀膜时间为30min,然后拉上挡板,接着向真空仓内通入O2,使用流量计将O2流量控制为4sccm,预溅射10min~30min后,调整真空仓内气体压强为1.2Pa,向旋转加热台施加160V的负电压,然后移开挡板,继续向衬底表面镀膜,镀膜2h;
四、镀膜完成后,依次按要求关闭射频电源和负压电源,关闭Ar气阀门,质量流量器的电源,O2气路阀门,打开插板阀将真空仓内气体压强抽4.0×10-4Pa;
五、关闭剩余的所有电源,待真空仓内温度降至24℃时,即制得本发明所述的高密度、低缺陷薄膜。
将实验一和实验二制备的氧化钇薄膜分别作XPD、折射率、硬度和弹性模量检测。
图2是试验一获得氧化钇薄膜与试验二获得氧化钇薄膜的XRD图,图3是实验一获得氧化钇薄膜与实验二获得氧化钇薄膜的折射率随波长变化曲线,其中-●-为实验一获得氧化钇薄膜的折射率随波长变化曲线,-■-为实验二获得氧化钇薄膜的折射率随波长变化曲线,图4是实验一获得氧化钇薄膜与实验二获得氧化钇薄膜的硬度和弹性模量随施加于旋转加热台的负电压变化曲线,其中数据点●为负电压分别为0V和160V对应的硬度值,数据点■为负电压分别为0V和160V对应的弹性模量值。由图2可以看出在温度为200℃条件下,向旋转加热台分别施加例和-160V电压,在不施加负电压时,制备的氧化钇薄膜基本上是非晶的,在施加-160V电压时,制备的氧化钇薄膜是多晶的,Ar离子的轰击改变了薄膜的结晶状态。由图3可以看出在温度为200℃条件下,施加-160V电压制备的的氧化钇薄膜的折射率要高于不施加负电压制备的的氧化钇薄膜的折射率。由图4可以看出在温度为200℃条件下,施加-160V电压制备的的氧化钇薄膜的硬度和弹性模量要高于不施加负电压制备的的氧化钇薄膜的硬度和弹性模量,Ar离子的轰击改变了薄膜物理性能。

Claims (10)

1.一种大尺寸磁控溅射镀膜的简易强化方法,其特征在于它是通过以下步骤实现的: 
一、将衬底材料用丙酮超声波清洗15min-30min,再用无水乙醇清洗15min-30min,最后用去离子水清洗25min-30min后烘干,然后将衬底材料置于磁控溅射真空仓内的旋转加热台上;通过真空泵将真空仓内抽成真空,当真空仓内压强达到1.0×10-4-9.9×10-4Pa时,启动加热装置,将加热台加热至25℃~1000℃,并且保温30min-120min,其中旋转加热台的材质为不锈钢,衬底材料为金属、陶瓷或半导体; 
二、向真空仓内通入Ar气,当仓内压强为3Pa-5Pa时,向旋转加热台施加500V-800V的负电压,对衬底表面进行反溅清洗10min-20min; 
三、反溅清洗完毕后,向靶材施加射频电源启辉,射频功率为60W-500W,预溅射20min~50min,开始镀膜,镀膜时真空仓内气体压强为0.1Pa-2Pa,镀膜时间为10min~90min,然后拉上挡板,接着向真空仓内通入O2,使用流量计将O2流量控制在4sccm-100sccm,预溅射10min~30min后,调整真空仓内气体压强为0.1Pa-2Pa,向旋转加热台施加100V-400V的负电压,然后移开挡板,继续向衬底表面镀膜,镀膜1h-3h; 
四、镀膜完成后,依次按要求关闭射频电源和负压电源,关闭Ar气阀门,质量流量器的电源,O2气路阀门,打开插板阀将真空仓内气体压强抽至1.0×10-4Pa-5.0×10-4Pa; 
五、关闭剩余的所有电源,待真空仓内温度降至20℃-25℃:时即制得本发明所述的高密度、低缺陷薄膜。 
2.如权利要求1所述的一种大尺寸磁控溅射镀膜的简易强化方法,其特征在于步骤一中将衬底材料用丙酮超声波清洗20min~25min,再用无水乙醇清洗20min~25min,最后用去离子水清洗26min~28min后烘干。 
3.如权利要求1所述的一种大尺寸磁控溅射镀膜的简易强化方法,其特征在于步骤一中将衬底材料用丙酮超声波清洗24min,再用无水乙醇清洗24min,最后用去离子水清洗27min后烘干。 
4.如权利要求1至3中任一项所述的一种大尺寸磁控溅射镀膜的简易强化方法,其特征在于步骤一中当真空仓内压强达到2.0×10-4-8.0×10-4Pa时,启动加热装置,将加热台加热至100℃-800℃,并且保温45min~90min。 
5.如权利要求1至3中任一项所述的一种大尺寸磁控溅射镀膜的简易强化方法,其特征在于步骤一中当真空仓内压强达到5.0×10-4Pa时,启动加热装置,将加热台加热至300℃,并且保温60min。 
6.如权利要求4所述的一种大尺寸磁控溅射镀膜的简易强化方法,其特征在于步骤二中当仓内压强为3.5Pa-4.5Pa时,向旋转加热台施加600V-700V的负电压,对衬底表面进行反溅清洗12min~18min。 
7.如权利要求4所述的一种大尺寸磁控溅射镀膜的简易强化方法,其特征在于步骤二中当仓内压强为4Pa时,向旋转加热台施加650V的负电压,对衬底表面进行反溅清洗。 
8.如权利要求6所述的一种大尺寸磁控溅射镀膜的简易强化方法,其特征在于步骤三中射频功率为100W-400W,预溅射30min-40min,开始镀膜,镀膜时真空仓内气体压强为1Pa-6Pa,镀膜时间为30min~70min。 
9.如权利要求6所述的一种大尺寸磁控溅射镀膜的简易强化方法,其特征在于步骤三中射频功率为 200W,预溅射35min,开始镀膜,镀膜时真空仓内气体压强为1.2Pa,镀膜时间50min。 
10.如权利要求8所述的一种大尺寸磁控溅射镀膜的简易强化方法,其特征在于步骤三中使用流量计将O2流量控制在10sccm-90sccm预溅射后,调整真空仓内气体压强为1Pa-1.6Pa,向旋转加热台施加150V-300V的负电压。 
CN201310429212.7A 2013-09-17 2013-09-17 一种离子注入提高大尺寸磁控溅射膜质量的方法 Pending CN104451569A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310429212.7A CN104451569A (zh) 2013-09-17 2013-09-17 一种离子注入提高大尺寸磁控溅射膜质量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310429212.7A CN104451569A (zh) 2013-09-17 2013-09-17 一种离子注入提高大尺寸磁控溅射膜质量的方法

Publications (1)

Publication Number Publication Date
CN104451569A true CN104451569A (zh) 2015-03-25

Family

ID=52898305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310429212.7A Pending CN104451569A (zh) 2013-09-17 2013-09-17 一种离子注入提高大尺寸磁控溅射膜质量的方法

Country Status (1)

Country Link
CN (1) CN104451569A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046841A (zh) * 2017-12-12 2018-05-18 北京小米移动软件有限公司 黑色氧化锆陶瓷、黑色氧化锆陶瓷壳体及其制备方法
CN108342708A (zh) * 2018-03-22 2018-07-31 深圳大学 一种碳元素注入方法及其改性刀具、模具
CN110894592A (zh) * 2019-12-25 2020-03-20 中建材蚌埠玻璃工业设计研究院有限公司 一种自旋半导体ZrO2薄膜的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046841A (zh) * 2017-12-12 2018-05-18 北京小米移动软件有限公司 黑色氧化锆陶瓷、黑色氧化锆陶瓷壳体及其制备方法
CN108046841B (zh) * 2017-12-12 2021-03-09 北京小米移动软件有限公司 黑色氧化锆陶瓷、黑色氧化锆陶瓷壳体及其制备方法
CN108342708A (zh) * 2018-03-22 2018-07-31 深圳大学 一种碳元素注入方法及其改性刀具、模具
CN110894592A (zh) * 2019-12-25 2020-03-20 中建材蚌埠玻璃工业设计研究院有限公司 一种自旋半导体ZrO2薄膜的制备方法

Similar Documents

Publication Publication Date Title
CN107142463B (zh) 一种等离子体化学气相沉积与磁控溅射或离子镀复合的镀覆方法
CN105543792A (zh) 磁控溅射装置及磁控溅射方法
CN103668095A (zh) 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法
CN104805405B (zh) 一种氮化铝压电薄膜及其制备方法
CN102851645A (zh) 一种低残余应力的铜薄膜制备方法
CN104109841A (zh) 磁控溅射倾斜沉积镀膜装置
CN104451569A (zh) 一种离子注入提高大尺寸磁控溅射膜质量的方法
CN105714256A (zh) 一种磁控溅射低温制备dlc薄膜的方法
CN104513958A (zh) 一种磁控溅射制备氮化硅膜的方法
CN112760604B (zh) 一种在金刚石衬底上沉积高c轴取向氮化铝薄膜的方法
CN108315704B (zh) 一种磁控溅射光学镀膜设备及镀膜方法
CN106381470A (zh) 一种铜基铌三锡薄膜及其制备方法
CN103014645B (zh) 一种大尺寸磁控溅射镀膜的简易强化方法
CN102560384B (zh) 在基底表面上沉积纳米点阵的方法
US8512860B2 (en) Housing and method for making the same
CN102157262B (zh) 一种以Ta2O5薄膜为电介质膜的电容器制备方法
CN105132875B (zh) 一种扩散法制备高浓度梯度azo单晶导电薄膜的方法
CN101798676B (zh) 微波ecr等离子体辅助磁控溅射沉积装置
CN106119795A (zh) 利用真空磁控溅射镀膜技术制备锂电池C‑Si负极涂层的方法
US8512859B2 (en) Housing and method for making the same
CN105420672A (zh) 一种bmn薄膜的制备方法
CN107293605A (zh) 太阳能电池背电极和太阳能电池及其制备方法
CN102605334A (zh) 一种用于全光器件的Ge-Sb-Se非晶薄膜的制备方法
CN103074586B (zh) 一种低温低损伤多功能复合镀膜的装置和方法
CN105970170A (zh) 镁合金上制备铪/氮化硅导电且耐蚀多层结构涂层的方法

Legal Events

Date Code Title Description
DD01 Delivery of document by public notice

Addressee: WUXI HUIMING ELECTRONIC TECHNOLOGY CO., LTD.

Document name: Notification of Passing Preliminary Examination of the Application for Invention

C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150325

WD01 Invention patent application deemed withdrawn after publication