CN109133919A - 一种非对称复合陶瓷透氢膜的制备方法 - Google Patents

一种非对称复合陶瓷透氢膜的制备方法 Download PDF

Info

Publication number
CN109133919A
CN109133919A CN201810993106.4A CN201810993106A CN109133919A CN 109133919 A CN109133919 A CN 109133919A CN 201810993106 A CN201810993106 A CN 201810993106A CN 109133919 A CN109133919 A CN 109133919A
Authority
CN
China
Prior art keywords
hydrogen permeation
permeation membrane
preparation
parts
asymmetric compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810993106.4A
Other languages
English (en)
Inventor
裘友玖
张桂芳
史志新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Anhui And Amperex Technology Ltd
Original Assignee
Foshan Anhui And Amperex Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Anhui And Amperex Technology Ltd filed Critical Foshan Anhui And Amperex Technology Ltd
Priority to CN201810993106.4A priority Critical patent/CN109133919A/zh
Publication of CN109133919A publication Critical patent/CN109133919A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种非对称复合陶瓷透氢膜的制备方法,属于环保材料技术领域。本发明选取化学稳定性较好的钨酸稀土系化合物作为膜材料,通过将电子导电相金属Ni引入到膜中,利用柠檬酸‑硝酸盐燃烧法,把离子形式的镍引入到钨酸稀土系化合物中,再还原成单质Ni,形成电子传导通道,从而提高膜的体相扩散速率,增大膜片透氢量,制备的双相膜两相混合更加均匀,具有更高的透氢量和化学稳定性;本发明通过在透氢膜生坯膜片内壁上沉积具有高催化活性的稀土纳米颗粒作为支撑骨架,与导电相金属Ni形成连续的导电网格,增加电化学反应活性位点,具有良好的催化活性,有效改善透氢膜的稳定性差和透氢率。

Description

一种非对称复合陶瓷透氢膜的制备方法
技术领域
本发明涉及一种非对称复合陶瓷透氢膜的制备方法,属于环保材料技术领域。
背景技术
氢气作为一种重要的化工原料,近年来在电子,化工,能源的需求不断增长。特别是氢气作为一种高效清洁的新型能源,其需求不断增长,如何高效分离提纯氢气成为一个关键技术。陶瓷透氢膜具有完全选择性透氢的性能和低廉的价格,在氢气分离和膜反应的应用具有广泛的前景而受到人们的日益重视。然而如何制备高透量、高稳定性的陶瓷透氢膜成为制约其发展的重要的因素之一。
对于混合导体透氢膜来说,它具有良好的分离选择性以及高温操作性能,而且制备十分简便,于是它有着十分广阔的发展前景,在氢分离和催化膜反应器中应用广泛。但是目前所开发材料的氢渗透量远远达不到实际工业应用需求,而混合导体透氢膜要获得优异的氢气渗透量就必须具备充足的质子导电性和充足的电子导电性,而前期研究比较多的是单相混合导体透氢膜,但由于其往往缺乏充足的电子导电性而导致其氢气分离量偏低,难以满足工业应用的需求,因此双相氢气分离膜是目前所研究的趋势。但是研究较多的金属-陶瓷双相氢分离膜由于存在金属和陶瓷在热稳定性和化学稳定性等方面的兼容性比较差的问题,所以也在工业应用上出现了瓶颈。
新型的陶瓷-陶瓷双相氢分离膜能有效的解决上述金属-陶瓷双相膜所出现的问题,给氢分离膜的应用带来了新的希望,可是它也存在陶瓷与陶瓷相在高温下容易离子迁移而产生杂相的问题,因此考虑到实际工业应用的需要,开发一种两相兼容和具有化学稳定性的陶瓷-陶瓷双相氢分离膜,使得它在实际应用环境中具有可靠性、稳定性和长期性的优势将成为开发双相陶瓷-陶瓷氢分离膜的重要指标。
发明内容
本发明所要解决的技术问题:针对现有陶瓷透氢膜透氢量比较低,化学稳定性等方面的兼容性比较差的问题的问题,提供了一种非对称复合陶瓷透氢膜的制备方法。
为解决上述技术问题,本发明采用的技术方案是:
(1)按照分子式Nd5.5W0.5Mo0.5O11.25-δ(0.05<δ<0.5)中元素的量取各元素的氧化物装入球磨机中球磨至粉体粒径为100~1000nm,得混合粉体;
(2)将混合粉体置于马弗炉中煅烧10~12h,冷却至室温后得前驱体粉末;
(3)取硝酸镍、前驱体粉末,加入去离子水中搅拌均匀,再加入柠檬酸、质量分数为10%氨水,搅拌1~2h后置于马弗炉中加热至自燃,冷却研磨,过300目筛,得复合粉末;
(4)取复合粉末、N-甲基吡咯烷酮、聚醚砜、聚乙烯吡咯烷酮装入球磨机中,以300~360r/min球磨8~10h,得浆料;
(5)取硝酸镧、硝酸镍、硝酸铁、柠檬酸加入去离子水中搅拌20~30min,再在80~90℃下搅拌20~30min,得处理液;
(6)取浆料装入相转化反应的模具中,真空处理1~2h后在模具上放置一片不锈钢网,再将模具整体浸泡在处理液中发生相转化反应,使浆料固化成膜片,得生坯膜;
(7)将生坯膜烘干后置于马弗炉中烧结,得非对称复合陶瓷透氢膜。
步骤(2)所述煅烧温度为800~900℃。
步骤(3)所述硝酸镍、前驱体粉末、去离子水、柠檬酸、氨水的重量份为40~50份硝酸镍,50~60份前驱体粉末,150~200份去离子水,15~30份柠檬酸,50~80份氨水。
步骤(4)所述复合粉末、N-甲基吡咯烷酮、聚醚砜、聚乙烯吡咯烷酮的重量份为50~60份复合粉末,30~40份N-甲基吡咯烷酮,6~8份聚醚砜,1~2份聚乙烯吡咯烷酮。
步骤(5)所述硝酸镧、硝酸镍、硝酸铁、柠檬酸的摩尔比为(10~20):(6~12):(4~8):(30~45)。
步骤(7)所述生坯膜烘干温度为80~150℃。
步骤(7)所述烧结过程为以0.5℃/min的升温速率从室温升温至400~500℃,并在400~500℃下保温3~5h,再以1℃/min的升温速率升温至800~900℃,并在800~900℃下保温3~5h后以2℃/min的降温速率降温至室温。
本发明与其他方法相比,有益技术效果是:
(1)本发明选取化学稳定性较好的钨酸稀土系化合物作为膜材料,通过将电子导电相金属Ni引入到膜中,利用柠檬酸-硝酸盐燃烧法,把离子形式的镍引入到钨酸稀土系化合物中,再还原成单质Ni,形成电子传导通道,从而提高膜的体相扩散速率,增大膜片透氢量,制备的双相膜两相混合更加均匀,具有更高的透氢量和化学稳定性;
(2)本发明通过在透氢膜生坯膜片内壁上沉积具有高催化活性的稀土纳米颗粒作为支撑骨架,与导电相金属Ni形成连续的导电网格,增加电化学反应活性位点,具有良好的催化活性,有效改善透氢膜的稳定性差和透氢率。
具体实施方式
按照分子式Nd5.5W0.5Mo0.5O11.25-δ(0.05<δ<0.5)中元素的量取各元素的氧化物装入球磨机中球磨至粉体粒径为100~1000nm,得混合粉体,将混合粉体置于马弗炉中,在800~900℃下煅烧10~12h,冷却至室温后得前驱体粉末,取40~50g硝酸镍,50~60g前驱体粉末,加入150~200mL去离子水中,以300~400r/min搅拌20~30min,再加入15~30g柠檬酸,50~80g质量分数为10%氨水,继续搅拌1~2h后置于马弗炉中加热至自燃,冷却至室温后转入研磨机中研磨,过300目筛,得复合粉末,取50~60g复合粉末,30~40gN-甲基吡咯烷酮,6~8g聚醚砜,1~2g聚乙烯吡咯烷酮,装入球磨机中,以300~360r/min球磨8~10h,得浆料,取0.1~0.2mol硝酸镧,0.06~0.12mol硝酸镍,0.04~0.08mol硝酸铁,0.30~0.45mol柠檬酸,加入1~2L去离子水中,以300~400r/min搅拌20~30min,再在80~90℃下搅拌20~30min,得处理液,取浆料装入相转化反应的模具中,真空处理1~2h后在模具上放置一片不锈钢网,再将模具整体浸泡在处理液中发生相转化反应,使浆料固化成膜片,得生坯膜,将生坯膜在80~150℃下烘干后置于马弗炉中,以0.5℃/min的升温速率从室温升温至400~500℃,并在400~500℃下保温3~5h,再以1℃/min的升温速率升温至800~900℃,并在800~900℃下保温3~5h后以2℃/min的降温速率降温至室温,得非对称复合陶瓷透氢膜。
实例1
按照分子式Nd5.5W0.5Mo0.5O11.25-δ(0.05<δ<0.5)中元素的量取各元素的氧化物装入球磨机中球磨至粉体粒径为100nm,得混合粉体,将混合粉体置于马弗炉中,在800℃下煅烧10h,冷却至室温后得前驱体粉末,取40g硝酸镍,50g前驱体粉末,加入150mL去离子水中,以300r/min搅拌20min,再加入15g柠檬酸,50g质量分数为10%氨水,继续搅拌1h后置于马弗炉中加热至自燃,冷却至室温后转入研磨机中研磨,过300目筛,得复合粉末,取50g复合粉末,30gN-甲基吡咯烷酮,6g聚醚砜,1g聚乙烯吡咯烷酮,装入球磨机中,以300r/min球磨8h,得浆料,取0.1mol硝酸镧,0.06mol硝酸镍,0.04mol硝酸铁,0.30mol柠檬酸,加入1L去离子水中,以300r/min搅拌20min,再在80℃下搅拌20min,得处理液,取浆料装入相转化反应的模具中,真空处理1h后在模具上放置一片不锈钢网,再将模具整体浸泡在处理液中发生相转化反应,使浆料固化成膜片,得生坯膜,将生坯膜在80℃下烘干后置于马弗炉中,以0.5℃/min的升温速率从室温升温至400℃,并在400℃下保温3h,再以1℃/min的升温速率升温至800℃,并在800℃下保温3h后以2℃/min的降温速率降温至室温,得非对称复合陶瓷透氢膜。
实例2
按照分子式Nd5.5W0.5Mo0.5O11.25-δ(0.05<δ<0.5)中元素的量取各元素的氧化物装入球磨机中球磨至粉体粒径为550nm,得混合粉体,将混合粉体置于马弗炉中,在850℃下煅烧11h,冷却至室温后得前驱体粉末,取45g硝酸镍,55g前驱体粉末,加入175mL去离子水中,以350r/min搅拌25min,再加入22g柠檬酸,65g质量分数为10%氨水,继续搅拌1.5h后置于马弗炉中加热至自燃,冷却至室温后转入研磨机中研磨,过300目筛,得复合粉末,取55g复合粉末,35gN-甲基吡咯烷酮,7g聚醚砜,1.5g聚乙烯吡咯烷酮,装入球磨机中,以330r/min球磨9h,得浆料,取0.15mol硝酸镧,0.09mol硝酸镍,0.06mol硝酸铁,0.37mol柠檬酸,加入1.5L去离子水中,以350r/min搅拌25min,再在85℃下搅拌25min,得处理液,取浆料装入相转化反应的模具中,真空处理1.5h后在模具上放置一片不锈钢网,再将模具整体浸泡在处理液中发生相转化反应,使浆料固化成膜片,得生坯膜,将生坯膜在115℃下烘干后置于马弗炉中,以0.5℃/min的升温速率从室温升温至450℃,并在450℃下保温4h,再以1℃/min的升温速率升温至850℃,并在850℃下保温4h后以2℃/min的降温速率降温至室温,得非对称复合陶瓷透氢膜。
实例3
按照分子式Nd5.5W0.5Mo0.5O11.25-δ(0.05<δ<0.5)中元素的量取各元素的氧化物装入球磨机中球磨至粉体粒径为1000nm,得混合粉体,将混合粉体置于马弗炉中,在900℃下煅烧12h,冷却至室温后得前驱体粉末,取50g硝酸镍,60g前驱体粉末,加入200mL去离子水中,以400r/min搅拌30min,再加入30g柠檬酸,80g质量分数为10%氨水,继续搅拌2h后置于马弗炉中加热至自燃,冷却至室温后转入研磨机中研磨,过300目筛,得复合粉末,取60g复合粉末,40gN-甲基吡咯烷酮,8g聚醚砜,2g聚乙烯吡咯烷酮,装入球磨机中,以360r/min球磨10h,得浆料,取0.2mol硝酸镧,0.12mol硝酸镍,0.08mol硝酸铁,0.45mol柠檬酸,加入2L去离子水中,以400r/min搅拌30min,再在90℃下搅拌30min,得处理液,取浆料装入相转化反应的模具中,真空处理2h后在模具上放置一片不锈钢网,再将模具整体浸泡在处理液中发生相转化反应,使浆料固化成膜片,得生坯膜,将生坯膜在150℃下烘干后置于马弗炉中,以0.5℃/min的升温速率从室温升温至500℃,并在500℃下保温5h,再以1℃/min的升温速率升温至900℃,并在900℃下保温5h后以2℃/min的降温速率降温至室温,得非对称复合陶瓷透氢膜。
将本发明制备的非对称复合陶瓷透氢膜及市售陶瓷透氢膜进行测试,检测结果如下表所示。
检测方法:
(1)热膨胀系数测定:
非对称复合陶瓷透氢膜的热膨胀系数对于膜整体的热稳定兼容性影响巨大。运用德国NETZSCHDIL402C高温热膨胀仪对焙烧后的片状膜进行TEC测试,测试的样品均需要打磨到方形6×6mm,厚度约为2.0mm方可用于测试。测试所用的温度范围为30℃到1000℃,升温的速率控制在每分钟5℃,在Ar气氛中进行测试。
(2)透氢性能测试:
通过气相色谱法测定片状膜的透氢性能时,先要用502胶水将一定厚度的SCHOTT玻璃环固定在刚玉管上,再用502胶水将片粘接到玻璃环上,组装好模具后将其放置到立式高温测试炉上,程序以1.5℃/min的速率升温至1200℃活化1h后,然后以1℃/min的速率降至测试温度(850℃到950℃)。在片状膜的原料侧通入一定浓度的氢气和氦气的混合气,在吹扫侧通入一定流速的氩气,这样就在透氢膜的两侧产生一定的氢气浓度差,使得透氢过程可以发生。所有进料的气体都需要用气体质量流量计进行流速校准后通入到模具内,氩气吹扫将透氢膜渗透分离得到的氢气一并带出来后进入到气相色谱仪进行定量的分析,并用皂泡流量计测定尾气流速,整个实验的过程均在常压下进行,而且密封效果良好,氢气泄露量小于10%。
表1非对称复合陶瓷透氢膜性能表征
由表1可知本发明制备的非对称复合陶瓷透氢膜,膜片透氢量增大,化学稳定性好,具有广阔的市场价值和应用前景。

Claims (7)

1.一种非对称复合陶瓷透氢膜的制备方法,其特征在于,具体制备步骤为:
(1)按照分子式Nd5.5W0.5Mo0.5O11.25-δ(0.05<δ<0.5)中元素的量取各元素的氧化物装入球磨机中球磨至粉体粒径为100~1000nm,得混合粉体;
(2)将混合粉体置于马弗炉中煅烧10~12h,冷却至室温后得前驱体粉末;
(3)取硝酸镍、前驱体粉末,加入去离子水中搅拌均匀,再加入柠檬酸、质量分数为10%氨水,搅拌1~2h后置于马弗炉中加热至自燃,冷却研磨,过300目筛,得复合粉末;
(4)取复合粉末、N-甲基吡咯烷酮、聚醚砜、聚乙烯吡咯烷酮装入球磨机中,以300~360r/min球磨8~10h,得浆料;
(5)取硝酸镧、硝酸镍、硝酸铁、柠檬酸加入去离子水中搅拌20~30min,再在80~90℃下搅拌20~30min,得处理液;
(6)取浆料装入相转化反应的模具中,真空处理1~2h后在模具上放置一片不锈钢网,再将模具整体浸泡在处理液中发生相转化反应,使浆料固化成膜片,得生坯膜;
(7)将生坯膜烘干后置于马弗炉中烧结,得非对称复合陶瓷透氢膜。
2.如权利要求1所述的一种非对称复合陶瓷透氢膜的制备方法,其特征在于,步骤(2)所述煅烧温度为800~900℃。
3.如权利要求1所述的一种非对称复合陶瓷透氢膜的制备方法,其特征在于,步骤(3)所述硝酸镍、前驱体粉末、去离子水、柠檬酸、氨水的重量份为40~50份硝酸镍,50~60份前驱体粉末,150~200份去离子水,15~30份柠檬酸,50~80份氨水。
4.如权利要求1所述的一种非对称复合陶瓷透氢膜的制备方法,其特征在于,步骤(4)所述复合粉末、N-甲基吡咯烷酮、聚醚砜、聚乙烯吡咯烷酮的重量份为50~60份复合粉末,30~40份N-甲基吡咯烷酮,6~8份聚醚砜,1~2份聚乙烯吡咯烷酮。
5.如权利要求1所述的一种非对称复合陶瓷透氢膜的制备方法,其特征在于,步骤(5)所述硝酸镧、硝酸镍、硝酸铁、柠檬酸的摩尔比为(10~20):(6~12):(4~8):(30~45)。
6.如权利要求1所述的一种非对称复合陶瓷透氢膜的制备方法,其特征在于,步骤(7)所述生坯膜烘干温度为80~150℃。
7.如权利要求1所述的一种非对称复合陶瓷透氢膜的制备方法,其特征在于,步骤(7)所述烧结过程为以0.5℃/min的升温速率从室温升温至400~500℃,并在400~500℃下保温3~5h,再以1℃/min的升温速率升温至800~900℃,并在800~900℃下保温3~5h后以2℃/min的降温速率降温至室温。
CN201810993106.4A 2018-08-29 2018-08-29 一种非对称复合陶瓷透氢膜的制备方法 Pending CN109133919A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810993106.4A CN109133919A (zh) 2018-08-29 2018-08-29 一种非对称复合陶瓷透氢膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810993106.4A CN109133919A (zh) 2018-08-29 2018-08-29 一种非对称复合陶瓷透氢膜的制备方法

Publications (1)

Publication Number Publication Date
CN109133919A true CN109133919A (zh) 2019-01-04

Family

ID=64828748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810993106.4A Pending CN109133919A (zh) 2018-08-29 2018-08-29 一种非对称复合陶瓷透氢膜的制备方法

Country Status (1)

Country Link
CN (1) CN109133919A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870648A (zh) * 2022-05-17 2022-08-09 华南理工大学 一种混合导体透氢膜材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227141A (en) * 1991-08-12 1993-07-13 Korea Institute Of Science And Technology Membrane catalytic reactor comprising heteropolyacid catalyst and polysulfone membrane
CN106943888A (zh) * 2017-03-31 2017-07-14 华南理工大学 一种阴离子掺杂的萤石型钨酸基混合导体透氢膜材料及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227141A (en) * 1991-08-12 1993-07-13 Korea Institute Of Science And Technology Membrane catalytic reactor comprising heteropolyacid catalyst and polysulfone membrane
CN106943888A (zh) * 2017-03-31 2017-07-14 华南理工大学 一种阴离子掺杂的萤石型钨酸基混合导体透氢膜材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谢慧琦: "钨酸镧型混合导体透氢膜的优化及其透氢性能研究", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870648A (zh) * 2022-05-17 2022-08-09 华南理工大学 一种混合导体透氢膜材料及其制备方法和应用
CN114870648B (zh) * 2022-05-17 2023-07-18 华南理工大学 一种混合导体透氢膜材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106925136B (zh) 一种阴离子掺杂的钙钛矿型混合导体透氢膜材料及其制备方法与应用
JP5126535B2 (ja) 複合体型混合導電体
He et al. A novel dual phase membrane 40 wt% Nd 0.6 Sr 0.4 CoO 3− δ–60 wt% Ce 0.9 Nd 0.1 O 2− δ: design, synthesis and properties
Yan et al. Influence of fabrication process of Ni–BaCe0. 7Zr0. 1Y0. 2O3− δ cermet on the hydrogen permeation performance
CN105845945B (zh) 一种中低温质子导体固体氧化物电池用复合电极及制备
CN101479021A (zh) 氧气分离膜
CN106943888B (zh) 一种阴离子掺杂的萤石型钨酸基混合导体透氢膜材料及其制备方法与应用
Liu et al. Effects of B-site Nb doping on the CO 2 resistance and rate-controlling step of Ce 0.8 Gd 0.2 O 2− δ–Pr 0.6 Sr 0.4 Co 0.5 Fe 0.5 O 3− δ dual-phase membranes
Guo et al. Highly oxygen-permeable and CO2-stable Ce0. 8Sm0. 2O2− δ-SrCo0. 9Nb0. 1O3− δ dual-phase membrane for oxygen separation
CN109133919A (zh) 一种非对称复合陶瓷透氢膜的制备方法
Meng et al. CO2-stable and cobalt-free Ce0. 8Sm0. 2O2-δ-La0. 8Ca0. 2Al0. 3Fe0. 7O3-δ dual-phase hollow fiber membranes for oxygen separation
CN106887626B (zh) 中温固体氧化物燃料电池复合电解质及其制备方法
CN106966728B (zh) 一种阴离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用
Idemoto et al. Determination of thermodynamic data of Ln1. 85Ce0. 15CuO4 and Ln2CuO4 (Ln= Nd, Sm, Eu) by the EMF method
CN112694329B (zh) 一种非金属阴离子掺杂的lamox型氧离子导体透氧膜材料及其制备方法与应用
Zhu et al. Universally applicable kinetic model for mixed ionic-electronic conducting membranes
CN103936079B (zh) 用于生产合成气体的高稳定材料及其制备方法
CN110092664B (zh) 一种自分相混合导体三相膜材料及其制备方法与应用
Zhang et al. Excellent and CO2-resistant permeability of Ce0. 85Nd0. 1Cu0. 05O2-δ-NdxSr1-xFe1-yCuyO3-δ dual-phase oxygen transport membranes
Zhu et al. A Comparative Study of the Performance of SrCo 0.76 Fe 0.19 Al 0.1 O x and (SrCo 0.8 Fe 0.2 O 3− δ) 0.95 (SrAl 2 O 4) 0.05 Mixed‐Conducting Membranes
Zhang et al. Preparation and characterization of Ce0. 8Sm0. 2O1. 9–La0. 8Sr0. 2Cr0. 5Fe0. 5O3-δ dual-phase membranes for oxygen permeation
CN108939943A (zh) 一种非金属阳离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用
Zhang et al. Tailoring Alkaline Metals Ion‐Doped La2Ce2O7− δ Proton Conductor for Hydrogen Permeation Membranes
CN109985535A (zh) 一种u型中空混合导体透氢膜的制备方法
CN108947529A (zh) 一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190104

WD01 Invention patent application deemed withdrawn after publication