CN108947529A - 一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料及其制备方法与应用 - Google Patents

一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料及其制备方法与应用 Download PDF

Info

Publication number
CN108947529A
CN108947529A CN201810663232.3A CN201810663232A CN108947529A CN 108947529 A CN108947529 A CN 108947529A CN 201810663232 A CN201810663232 A CN 201810663232A CN 108947529 A CN108947529 A CN 108947529A
Authority
CN
China
Prior art keywords
preparation
hydrogen
electronic conductor
wolframic acid
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810663232.3A
Other languages
English (en)
Other versions
CN108947529B (zh
Inventor
王海辉
庄丽彬
薛健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810663232.3A priority Critical patent/CN108947529B/zh
Publication of CN108947529A publication Critical patent/CN108947529A/zh
Application granted granted Critical
Publication of CN108947529B publication Critical patent/CN108947529B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种非金属离子掺杂的钨酸镧型混合质子‑电子导体透氢材料及其制备方法与应用。该材料的化学通式为LnaW1‑xMxO12‑δ,其中Ln是镧系元素La、Nd、Eu、Er中的一种;M是非金属元素P、S的一种;δ为非化学计量比;0≤δ≤1,5.3≤a≤5.7,0≤x≤0.5。本发明的材料可采用甘氨酸‑硝酸盐燃烧法制备。本发明的材料中,通过非金属离子的掺杂提高了膜材料的电导率,从而使得膜材料的透氢量得到提升。并且该材料在含氢气氛下具有很好的操作稳定性,可以用于从含氢混合气中分离氢气。

Description

一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材 料及其制备方法与应用
技术领域
本发明属于氢气分离材料应用技术领域,具体涉及一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料及其制备方法与应用。
背景技术
混合质子-电子导体透氢材料是一种无机致密陶瓷材料,因其同时具有质子和电子导电性,在高温下对氢气的选择性高达100%。另外,将它用于一系列涉氢反应中能有效提高反应的效率和能量的利用率。因此,混合质子-电子导体透氢材料被广泛地研究。
自从1970年La2O3-WO3体系的相平衡被研究以来,钨酸镧型氧化物备受关注。Haugsrud等人研究了Ca掺杂的Ln6WO12 (Ln = La、Nd、Gd、Er)的导电性,发现La6WO12表现出最高的质子导电性3-5×10-3 S•cm-1,在潮湿的气氛下且操作温度低于1150 °C时,质子是主要的离子传导载体。Escolástico等人对Nd6WO12-Eu6WO12-Er6WO12的晶体结构、晶粒大小和导电性进行了研究,发现他们的晶体结构是立方萤石对称结构,并且Eu6WO12显示出最高的导电性能。他们还研究了Nd6WO12片状膜的透氢性能,510 μm的膜在1000 °C透氢量为0.023mL/(min•cm2)。Gil和Escolástico分别研究了非对称片状膜La28-xW4+xO54+3x/2和对称片状膜La5.5WO11.25-δ的透氢性能。总的来说,钨酸镧型混合导体透氢膜这类材料的透氢性能较低,在含氢气氛下长期操作稳定性不足。
发明内容
为了解决现有技术的缺点和不足之处,本发明的目的在于提供一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料及其制备方法。
本发明的另一目的在于提供上述一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料在氢气分离中的应用。
本发明的目的通过以下技术方案实现。
一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料,该材料的化学通式为LnaW1-xMxO12-δ,其中Ln是镧系元素La、Nd、Eu和Er中的一种;M是非金属元素P和S的一种;δ为非化学计量比;0 ≤δ≤ 1,5.3 ≤ a ≤ 5.7,0 ≤ x ≤ 0.5。
以上所述的一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料的制备方法,制备方法为甘氨酸-硝酸盐燃烧法,包括以下步骤:
(1)称量原料金属氧化物La2O3、Nd2O3、Eu2O3、Er2O3、WO3,非金属铵盐NH4H2PO4、NH4H2SO4
(2)将步骤(1)中称取的La2O3、Nd2O3、Eu2O3或Er2O3溶于浓硝酸中,将WO3溶于氨水中,NH4H2PO4或NH4H2SO4溶于水中,三种溶液混合均匀,在所得的混合液中加入甘氨酸,加热搅拌混合液至凝胶状;
(3)将步骤(2)中获得的凝胶放入电炉中焙烧,得到粉体的前驱体;
(4)将步骤(3)中得到的粉体的前驱体放入马弗炉中,在800~1000℃下保温,得到成相粉体;
(5)将步骤(4)中获得的成相粉体放入铸铁模具中,在10MPa~20MPa压力下保压,获得生坯;
(6)将步骤(5)中得到的生坯放入高温马弗炉中,在1300~1600℃下保温,得到非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料。
优选的,步骤(2)中加入的甘氨酸的量为混合液中每1mol金属离子加入90~110g甘氨酸。
优选的,步骤(2)所述加热搅拌的温度为150~300℃,时间为24~36h。
优选的,步骤(3)中电炉焙烧的温度为150~450℃。
优选的,步骤(4)、步骤(6)所述保温的时间为5~10h。
优选的,步骤(4)中马弗炉热处理的升降速率为每分钟1~5℃。
优选的,步骤(5)所述保压的时间为5~20min。
优选的,步骤(6)中高温马弗炉热处理的升降速率为每分钟1~2℃。
以上所述的一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料应用于混合气中分离氢气的反应器。
与现有技术相比,本发明具有如下优点及有益效果:
(1)本发明通过甘氨酸-硝酸盐燃烧法获得的粉体颗粒直径小,粉体成相温度低,节约能耗;
(2)本发明的非金属离子掺杂的混合质子-电子导体透氢材料透氢量相比未掺杂的有所提升;
(3)本发明选择非金属离子掺杂的混合质子-电子导体透氢材料在含氢氛围下能长期稳定操作。
附图说明
图1为实施例1制备一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料的过程示意图。
图2为所得粉体LWP25、NWS10、LWO的相结构表征图。
图3为实施例1所得粉体LWP25的扫描电镜图。
图4a、图4b分别为实施例1所得LWP25透氢材料的表面和截面扫描电镜图。
图5是实施例1制备得到的的LWP25和LWO透氢材料在透氢性能测试中的氢气渗透量曲线图。
图6是LWP25透氢材料在900℃下进行50h的透氢测试的性能图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
本实施例的一种磷离子掺杂的钨酸镧基混合质子-电子导体透氢材料La5.5W0.75P0.25O12-δ (δ = 0.5)(LWP25)和未掺杂的钨酸镧基混合质子-电子导体材料La5.5WO12-δ (δ = 0.4) (LWO),如图1所示,制备方法包括以下步骤:
(1)称取LWP25原料:12.334g La2O3溶于质量分数为65%的浓硝酸,2.553g WO3溶于质量分数为18%的氨水,0.317g NH4H2PO4 溶于去离子水,三者混合均匀,在混合液中加入8.56g甘氨酸;
(2)称取LWO原料:11.916g La2O3溶于质量分数为65%的浓硝酸,3.083g WO3溶于质量分数为18%的氨水,二者混合均匀,在混合液中加入8.65g甘氨酸;
(3)分别将步骤(1)和(2)中获得的硝酸盐混合液加热到150℃搅拌36h,至溶液呈现凝胶状,随后将凝胶放入电炉中,加热至300℃焙烧,获得粉体的前驱体;将粉体置于马弗炉中,以升降温速率每分钟1℃至800℃保温10h,获得粉体LWP25和LWO。
(3)分别称取1g成相粉体LWP25和LWO放入铸铁模具中,在10MPa压力下保持20min,得到生坯;将生坯放入高温马弗炉中以升降温速率每分钟2℃至1300℃保温10h,即可获得致密的LWP25和LWO透氢材料。
(4)将制备得到的膜材料分别使用220目、400目、800目、2000目砂纸进行打磨和抛光,直至膜片厚度为0.5mm。随后将膜放入乙醇介质中进行超声清洗并烘干。使用陶瓷密封胶进行将膜材料密封在刚玉管上,刚玉管外侧套以一石英管作为进料侧。室温下静置12h后,升温至950℃开始进行透氢性能测试,测试温度范围为850至950℃。透氢性能测试的条件为:进料侧通入40mL/min氢气和40mL/min氦气混合气,吹扫侧通入30mL/min氩气,吹扫侧尾气通入气相色谱中进行氢气含量的检测和稳定性测试,尾气流速使用皂泡流量计校准。
将步骤(2)中获得的粉体LWP25进行相结构表征,如图2所示,表明磷离子掺杂的钨酸镧型材料保持了原有的钨酸镧的相结构;还进行了扫描电镜表征,图3中显示制得的粉体的颗粒直径分布在0.5至1.0μm。
将步骤(3)中获得的膜材料进行扫描电镜表征,图4是烧结致密的LWP25透氢材料表面和截面电镜图片,在表面图中晶界清晰分明,各个晶胞紧密相连,截面图中显示材料内部并无明显的缺陷或通孔,证明制备得到的透氢材料是致密的。
图5是制备得到的LWP25和LWO透氢材料在透氢性能测试中的透氢量,LWP25在850至950℃范围内的透氢量高于LWO在该温度范围的透氢量,证明磷离子掺杂能提高钨酸镧基透氢材料的性能。
图6是在900℃下,LWP25透氢材料进行50h的透氢测试的性能图,LWP25透氢材料在50h测试中透氢量无明显下降,表明LWP25透氢材料具有良好的性能稳定性。
实施例2
本实施例的一种硫离子掺杂的钨酸镧基混合质子-电子导体透氢材料Nd5.3W0.9S0.1O12-δ(δ = 1)(NWS10)制备方法包括以下步骤:
(1)称取NWP10原料:8.01g Nd2O3溶于质量分数为65%的浓硝酸,1.87g WO3溶于质量分数为18%的氨水,0.103g NH4H2SO4 溶于去离子水,三者混合均匀,在混合液中加入5.56g甘氨酸;
(2)将步骤(1)中获得的硝酸盐混合液加热到300℃搅拌24h,至溶液呈现凝胶状,随后将凝胶放入电炉中,加热至150℃焙烧,获得粉体的前驱体;将粉体置于马弗炉中,以升降温速率每分钟3℃至1000℃保温5h,获得粉体NWS10。
(3)称取2g 成相粉体NWS10放入铸铁模具中,在20MPa压力下保持5min,得到生坯;将生坯放入高温马弗炉中以升降温速率每分钟1℃至1400℃保温8h,即可获得致密的NWS10透氢材料。
(4)将获得的NWS10透氢材料进行性能表征。测试温度范围为850至950℃。透氢性能测试的条件为:进料侧通入40 mL/min氢气和40 mL/min氦气混合气,吹扫侧通入30 mL/min氩气。NWS10在950 oC下的透氢量为0.03 mL/(min cm2)。
实施例3
本实施例的一种磷离子掺杂的钨酸镧基混合质子-电子导体透氢材料Eu5.7W0.5P0.5O12-δ(δ = 0)(EuWP50)制备方法包括以下步骤:
(1)称取EWP50原料:10.43g Eu2O3溶于质量分数为65%的浓硝酸,1.21g WO3溶于质量分数为18%的氨水,0.59g NH4H2PO4 溶于去离子水,三者混合均匀,在混合液中加入6.45g甘氨酸;
(2)将步骤(1)中获得的硝酸盐混合液加热到220℃搅拌28h,至溶液呈现凝胶状,随后将凝胶放入电炉中,加热至250℃焙烧,获得粉体的前驱体;将粉体置于马弗炉中,以升降温速率每分钟1.5℃至900℃保温7.5h,获得粉体EuWP50。
(3)称取1.8g成相粉体EuWP50放入铸铁模具中,在16MPa压力下保持9min,得到生坯;将生坯放入高温马弗炉中以升降温速率每分钟1.5℃至1500℃保温10h,即可获得致密的EWP50透氢材料。
(4)将获得的EWP50透氢材料进行性能表征。测试温度范围为850至950℃。透氢性能测试的条件为:进料侧通入40 mL/min氢气和40 mL/min氦气混合气,吹扫侧通入30 mL/min氩气。EWP50在850 oC下的透氢量为0.009 mL/(min cm2)。
实施例4
本实施例的一种硫离子掺杂的钨酸镧基混合质子-电子导体透氢材料Er5.6W0.7S0.3O12-δ(δ = 0.75)(ErWS30)制备方法包括以下步骤:
(1)称取ErWS30原料:11.09g Er2O3溶于质量分数为65%的浓硝酸,1.68g WO3溶于质量分数为18%的氨水,0.36g NH4H2SO4 溶于去离子水,三者混合均匀,在混合液中加入6.53g甘氨酸;
(2)将步骤(1)中获得的硝酸盐混合液加热到190℃搅拌32h,至溶液呈现凝胶状,随后将凝胶放入电炉中,加热至450℃焙烧,获得粉体的前驱体;将粉体置于马弗炉中,以升降温速率每分钟5℃至950℃保温6h,获得粉体ErWS30。
(3)称取1.3g成相粉体ErWS30放入铸铁模具中,在13MPa压力下保持10min,得到生坯;将生坯放入高温马弗炉中以升降温速率每分钟2℃至1600℃保温5h,即可获得致密的ErWS10透氢材料。
(4)将获得的ErWS10透氢材料进行性能表征。测试温度范围为850至950℃。透氢性能测试的条件为:进料侧通入40 mL/min氢气和40 mL/min氦气混合气,吹扫侧通入30 mL/min氩气。ErWS10在900 oC下的透氢量为0.011 mL/(min cm2)。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料,其特征在于,该材料的化学通式为LnaW1-xMxO12-δ,其中Ln是镧系元素La、Nd、Eu和Er中的一种;M是非金属元素P和S的一种;δ为非化学计量比;0 ≤δ≤ 1,5.3 ≤ a ≤ 5.7,0 ≤ x ≤ 0.5。
2.制备权利要求1所述的一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料的方法,其特征在于,制备方法为甘氨酸-硝酸盐燃烧法,包括以下步骤:
(1)称量原料金属氧化物La2O3、Nd2O3、Eu2O3、Er2O3、WO3,非金属铵盐NH4H2PO4、NH4H2SO4
(2)将步骤(1)中称取的La2O3、Nd2O3、Eu2O3或Er2O3溶于浓硝酸中,将WO3溶于氨水中,NH4H2PO4或NH4H2SO4溶于水中,三种溶液混合均匀,在所得的混合液中加入甘氨酸,加热搅拌混合液至凝胶状;
(3)将步骤(2)中获得的凝胶放入电炉中焙烧,得到粉体的前驱体;
(4)将步骤(3)中得到的粉体的前驱体放入马弗炉中,在800~1000℃下保温,得到成相粉体;
(5)将步骤(4)中获得的成相粉体放入铸铁模具中,在10MPa~20MPa压力下保压,获得生坯;
(6)将步骤(5)中得到的生坯放入高温马弗炉中,在1300~1600℃下保温,得到非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料。
3.根据权利要求2所述的制备方法,其特征在于,步骤(2)中加入的甘氨酸的量为混合液中每1mol金属离子加入90~110g甘氨酸。
4.根据权利要求2所述的制备方法,其特征在于,步骤(2)所述加热搅拌的温度为150~300℃,时间为24~36h。
5.根据权利要求2所述的制备方法,其特征在于,步骤(3)中电炉焙烧的温度为150~450℃。
6.根据权利要求2所述的制备方法,其特征在于,步骤(4)、步骤(6)所述保温的时间为5~10h。
7.根据权利要求2所述的制备方法,其特征在于,步骤(4)中马弗炉热处理的升降速率为每分钟1~5℃。
8.根据权利要求2所述的制备方法,其特征在于,步骤(5)所述保压的时间为5~20min。
9.根据权利要求2所述的制备方法,其特征在于,步骤(6)中高温马弗炉热处理的升降速率为每分钟1~2℃。
10.权利要求1所述的一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料应用于混合气中分离氢气的反应器。
CN201810663232.3A 2018-06-25 2018-06-25 一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料及其制备方法与应用 Active CN108947529B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810663232.3A CN108947529B (zh) 2018-06-25 2018-06-25 一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810663232.3A CN108947529B (zh) 2018-06-25 2018-06-25 一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN108947529A true CN108947529A (zh) 2018-12-07
CN108947529B CN108947529B (zh) 2021-05-14

Family

ID=64486620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810663232.3A Active CN108947529B (zh) 2018-06-25 2018-06-25 一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN108947529B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870648A (zh) * 2022-05-17 2022-08-09 华南理工大学 一种混合导体透氢膜材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1934033A (zh) * 2004-04-21 2007-03-21 Lg化学株式会社 具有新型晶体结构的金属复合氧化物及其作为离子型导体的用途
WO2009065180A1 (en) * 2007-11-23 2009-05-28 The University Of Queensland Non-metal doped metal oxide nanosheets and method of production thereof
CN102812587A (zh) * 2010-02-12 2012-12-05 普罗迪亚股份有限公司 质子传导膜
CN105330290A (zh) * 2015-10-19 2016-02-17 华南理工大学 一种用于h2s分解的混合导体陶瓷膜的制备及测试方法
CN106943888A (zh) * 2017-03-31 2017-07-14 华南理工大学 一种阴离子掺杂的萤石型钨酸基混合导体透氢膜材料及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1934033A (zh) * 2004-04-21 2007-03-21 Lg化学株式会社 具有新型晶体结构的金属复合氧化物及其作为离子型导体的用途
WO2009065180A1 (en) * 2007-11-23 2009-05-28 The University Of Queensland Non-metal doped metal oxide nanosheets and method of production thereof
CN102812587A (zh) * 2010-02-12 2012-12-05 普罗迪亚股份有限公司 质子传导膜
CN105330290A (zh) * 2015-10-19 2016-02-17 华南理工大学 一种用于h2s分解的混合导体陶瓷膜的制备及测试方法
CN106943888A (zh) * 2017-03-31 2017-07-14 华南理工大学 一种阴离子掺杂的萤石型钨酸基混合导体透氢膜材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI.MR ETAL.: ""SrCo0.85Fe0.1P0.05O3-δperovskite as a cathode for intermediate-temperature solid oxide fuel cells", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870648A (zh) * 2022-05-17 2022-08-09 华南理工大学 一种混合导体透氢膜材料及其制备方法和应用

Also Published As

Publication number Publication date
CN108947529B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
JP5126535B2 (ja) 複合体型混合導電体
Wang et al. Microstructures and proton conduction behaviors of Dy-doped BaCeO3 ceramics at intermediate temperature
CN106925136B (zh) 一种阴离子掺杂的钙钛矿型混合导体透氢膜材料及其制备方法与应用
CN103208634A (zh) 用于中低温质子传输固体氧化物燃料电池的复合阴极材料
Wang et al. Layered perovskite PrBa0. 5Sr0. 5CoCuO5+ δ as a cathode for intermediate-temperature solid oxide fuel cells
Chen et al. Tailoring hydrogen separation performance through the ceramic lanthanum tungstate membranes by chlorine doping
CN101479021A (zh) 氧气分离膜
CN114656262A (zh) 一种低热导率的高熵陶瓷气凝胶粉体及其制备方法
Lee et al. Thin film preparation and hydrogen pumping characteristics of BaCe0. 8Y0. 2O3− δ
Zhu et al. Performance evaluation of Ca3Co4O9-δ cathode on Sm0. 075Nd0. 075Ce0. 85O2-δ electrolyte for solid oxide fuel cells
CN106943888B (zh) 一种阴离子掺杂的萤石型钨酸基混合导体透氢膜材料及其制备方法与应用
CN108242554A (zh) 一种铈酸钡基电解质材料及其制备方法和应用
CN108947529A (zh) 一种非金属离子掺杂的钨酸镧型混合质子-电子导体透氢材料及其制备方法与应用
CN108939944A (zh) 一种非金属离子掺杂的钙钛矿型混合导体透氢膜及其制备方法和应用
CN102389723B (zh) 一种用于油气回收的有机/无机复合膜及其制备方法
CN106966728B (zh) 一种阴离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用
Liu et al. Highly active Sm0. 2Ce0. 8O1. 9 powders of very low apparent density derived from mixed cerium sources
CN106887626B (zh) 中温固体氧化物燃料电池复合电解质及其制备方法
CN109742431B (zh) 一种氧化铈基体掺杂氧化镝复合电解质材料及其制备方法
CN103936079B (zh) 用于生产合成气体的高稳定材料及其制备方法
Hua et al. Preparation of nanoscale composite LSCF/GDCS cathode materials by microwave sintering for intermediate-temperature SOFC applications
JPWO2005092794A1 (ja) 多孔質アルミナ粒子、その製造方法、およびその使用方法
CN101543732B (zh) 一种金属氧化物质子传导材料及其制备方法
CN109437882A (zh) 掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备方法
CN111205079B (zh) 一种镧掺杂钇铝石榴石陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant