CN109117698A - 一种基于最小均方误差准则的噪声背景估计方法 - Google Patents

一种基于最小均方误差准则的噪声背景估计方法 Download PDF

Info

Publication number
CN109117698A
CN109117698A CN201711445877.1A CN201711445877A CN109117698A CN 109117698 A CN109117698 A CN 109117698A CN 201711445877 A CN201711445877 A CN 201711445877A CN 109117698 A CN109117698 A CN 109117698A
Authority
CN
China
Prior art keywords
noise background
data sequence
mean square
square error
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711445877.1A
Other languages
English (en)
Other versions
CN109117698B (zh
Inventor
姚帅
方世良
方衍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING SHIHAI ACOUSTIC TECHNOLOGY Co Ltd
Original Assignee
NANJING SHIHAI ACOUSTIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING SHIHAI ACOUSTIC TECHNOLOGY Co Ltd filed Critical NANJING SHIHAI ACOUSTIC TECHNOLOGY Co Ltd
Priority to CN201711445877.1A priority Critical patent/CN109117698B/zh
Publication of CN109117698A publication Critical patent/CN109117698A/zh
Application granted granted Critical
Publication of CN109117698B publication Critical patent/CN109117698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及一种基于最小均方误差准则的噪声背景估计方法,该方法包括以下步骤:步骤一:获取信号数据序列x(n);步骤二:计算数据序列x(n)的功率谱P(k);步骤三:设定数据平滑窗长W,背景谷峰D与谷底的判断阈值U,相邻两次迭代输出结果的均方误差最小值的阈值ε,迭代过程的最大迭代次数I;步骤四:将数据序列的功率谱P(k)作为迭代过程的输入,计算出噪声背景;步骤五:迭代过程结束。该方法的算法复杂度小,并对噪声的统计特性不敏感,适合工程上对噪声背景进行较准确的估计。

Description

一种基于最小均方误差准则的噪声背景估计方法
技术领域
本发明涉及信号处理领域,尤其涉及一种基于最小均方误差准则的噪声背景估计方 法。
背景技术
从被有色噪声污染的数据序列中检测有用信号是信号处理中的研究热点之一,其关键 点在于噪声背景的估计。噪声背景估计在通信、雷达、声呐等领域具有广泛的应用,尤其 在信号侦察领域内扮演极其重要的角色。
目前,国内外学者提出了很多噪声背景估计算法,主要有基于参数模型的噪声谱估计、 S3PM(Split Three Pass Mean)算法、OTA(Order Truncate Average)算法以及其改进 算法。其中基于参数模型的算法,物理意义明确且估计效果良好,但对噪声的统计特性敏 感,运算量大。
当噪声的统计特性为平稳或者近似平稳时,利用S3PM算法对噪声背景进行估计并归 一化之后,能有效地降低检测的虚警率,但当处理窗长小于目标信号的主瓣宽度时,会出 现目标信号分裂情况,即将一个目标检测为两个邻近目标的信号,当处理窗长大于目标信 号的主瓣宽度时,利用S3PM算法处理得到的目标信号的能量中心位置不突出,并且主瓣较宽。OTA算法虽然适用于非平稳噪声背景的估计,但是同样存在着与S3PM算法相同的缺点,这些算法均不太适用于要求快速实现以及适用性强的工程实践场合。
发明内容
本发明要解决的技术问题是设计一种,解决现有的技术问题。
为解决上述技术问题,本发明提供了一种基于最小均方误差准则的噪声背景估计方 法,包括以下步骤:
步骤一:获取待处理的正弦信号采样数据序列x(n),n=0,1,…,N-1:从传感器接收 N个采样点的实时采集数据作为待处理的数据序列x(n),n=0,1,…,N-1,或从存储器中提取从检测到信号时刻起始的N个采样点的数据作为待处理的数据序列 x(n),n=0,1,…,N-1,所述的N为检测到的正弦信号脉宽长度所对应的采样点个数,取 值为2的整数次幂;
步骤二:对所述数据序列x(n)做离散傅里叶变换,计算得到数据序列的离散傅里叶 变换X(l),从而可利用周期图法计算得到数据序列的功率谱P(k),计算过程如下:
x(n)的离散傅里叶变换为
其中l代表X(l)的离散频率索引,j表示虚数单位,即则该数据序列的 功率谱为
k=l且k=0,1,2…,N/2 式(2)
其中k为P(k)的离散频率索引,由于实信号的功率谱是对称的所以这里k的最大值只需取到N/2;
步骤三:设定参数W、D、U、ε、I,其中W表示数据做滑动平均的窗长,W (N/2>W≥3)取奇数,滑动窗取矩形窗;D(0<D<1)为判断离散功率谱P(k)点 是否为波峰的阈值;U(0<U<1)为判断离散功率谱P(k)点是否为波谷的阈值;η表 示相邻两次迭代输出之间的误差平方和,其上限阈值为ε(0<ε<1);I(I>1且I为整 数)表示迭代次数的最大值。
步骤四:将P(k)作为迭代过程的输入,计算出噪声背景,包括以下步骤:
(1)为了避免噪声背景归一化时出现极小值除以极小值现象,这里首先对P(k)进行归一化得到Pnorm(k),并同时加上一个常数c(0.5≤c≤1);此时令迭代次数i=1,即:
max(P)表示求最大值。
然后对进行数据扩展得到即:
(2)令:
矩形平滑窗以Qi(k),k=(W-1)/2点为起始点逐点滑动,窗的宽度为W,并计算平滑窗内数据的均值,均值计算的具体过程如下:
令数组A表示平滑窗内的数据,即:
A(k)={Qi(k-W+1),Qi(k-W),…,Qi(k)},k=N/2-(W-1)/2,…,N/2+(W-1)/2
式(7)
则数组A的均值μ计算如下:
其中sum(A)表示对数组求和,min(A)表示求数组的最小值。
若Qi(k)/μ>D,或Qi(k)/μ<U,则令:
否则:
当平滑窗滑动到点Qi(k),k=N/2+(W-1)/2时,则一次迭代过程完成,计算此时 的输入与输出之间的误差平方和η,即:
若i<I,且η>ε,则迭代终止条件不满足,令i=i+1,转到第四步的步骤(2), 迭代过程继续;否则,转到第五步。
步骤五:迭代过程结束,得到估计出的归一化噪声背景Z(k)。
进一步的,本发明方法的第二步中,离散数据序列x(n)的离散傅里叶变换是采用快 速傅里叶变换。
进一步的,本发明方法的方案中,第四步中,当参数取c=1,W=5,D=0.1,U=0.05, ε=0.001,I=30时,估计效果较好。
本发明的有益效果:采用这样的结构后:
(1)本发明的估计方法对信号和噪声的统计特性均不作任何假设,工程实用性强,运算量小,适合对信号进行实时处理。
(2)本发明的方法估计噪声背景时,去除了信号对噪声背景估计的影响,使得估计更加准确。
附图说明
下面结合附图对本发明的具体实施方式做进一步阐明。
图1所示为本发明的流程图;
图2所示为实施例1中叠加有色噪声信号的归一化功率谱;
图3所示为实施例1中原始的噪声背景与估计的噪声背景;
图4所示为实施例1中被噪声污染的信号经过背景噪声归一化以后的结果;
图5所示为实施例2中叠加有色噪声信号的归一化功率谱;
图6所示为实施例2中原始的噪声背景与估计的噪声背景;
图7所示为实施例2中被噪声污染的信号经过背景噪声归一化以后的结果。
具体实施方式
结合图1至图7,本发明的一种基于最小均方误差准则的噪声背景估计方法,包括以下步骤:
第一步,获取待处理的正弦信号采样数据序列x(n),n=0,1,…,N-1:从传感器接收 N个采样点的实时采集数据作为待处理的数据序列x(n),n=0,1,…,N-1,或从存储器中提取从检测到信号时刻起始的N个采样点的数据作为待处理的数据序列 x(n),n=0,1,…,N-1,所述的N为检测到的正弦信号脉宽长度所对应的采样点个数,取 值为2的整数次幂;
第二步:对所述数据序列x(n)做离散傅里叶变换,计算得到数据序列的离散傅里叶 变换X(l),从而可利用周期图法计算得到数据序列的功率谱P(k),计算过程如下:
x(n)的离散傅里叶变换为
其中l代表X(l)的离散频率索引,j表示虚数单位,即则该数据序列的功率 谱为
k=l且k=0,1,2…,N/2 式(2)
其中k为P(k)的离散频率索引,由于实信号的功率谱是对称的所以这里k的最大值只需 取到N/2;
第三步:设定参数W、D、U、ε、I,其中W表示数据做滑动平均的窗长,W (N/2>W≥3)取奇数,滑动窗取矩形窗;D(0<D<1)为判断离散功率谱P(k)点 是否为波峰的阈值;U(0<U<1)为判断离散功率谱P(k)点是否为波谷的阈值;η表 示相邻两次迭代输出之间的误差平方和,其上限阈值为ε(0<ε<1);I(I>1且I为整 数)表示迭代次数的最大值。
第四步:将P(k)作为迭代过程的输入,计算出噪声背景,包括以下步骤:
(1)为了避免噪声背景归一化时出现极小值除以极小值现象,这里首先对P(k)进行归一化得到Pnorm(k),并同时加上一个常数c(0.5≤c≤1);此时令迭代次数i=1,即:
表示求最大值。
然后对进行数据扩展得到即:
(2)令:
矩形平滑窗以Qi(k),k=(W-1)/2点为起始点逐点滑动,窗的宽度为W,并计算平滑窗内数据的均值,均值计算的具体过程如下:
令数组A表示平滑窗内的数据,即:
A(k)={Qi(k-W+1),Qi(k-W),…,Qi(k)},k=N/2-(W-1)/2,…,N/2+(W-1)/2
式(7)
则数组A的均值μ计算如下:
其中sum(A)表示对数组求和,min(A)表示求数组的最小值。
若Qi(k)/μ>D,或Qi(k)/μ<U,则令:
否则:
当平滑窗滑动到点Qi(k),k=N/2+(W-1)/2时,则一次迭代过程完成,计算此时 的输入与输出之间的误差平方和η,即:
若i<I,且η>ε,则迭代终止条件不满足,令i=i+1,转到第四步的步骤(2), 迭代过程继续;否则,转到第五步。
第五步:迭代过程结束,得到估计出的归一化噪声背景Z(k)。
在第四步中,当选取参数c=1,W=5,D=0.1,U=0.05,ε=0.001,I=30时, 估计效果较好。
本发明的实施例中,仿真接收信号模型为:
其中A为信号幅度,f为信号频率,fs为采样频率,r(n)表示叠加的有色噪声,总的观 测长度为N,其中r(n)的归一化功率谱为待估计的噪声背景。
令:S(k)为接收信号s(n)的归一化功率谱,R(k)为有色噪声r(n)的归一化功率谱,则噪声背景归一化即为:
仿真信号参数设置为:采样频率fs=40kHz,不同信号之间的能量均不相同,总的观 测长度为128点,叠加的噪声模型为有色噪声,不同信号的信噪比均不相同。下面的两个实例用于验证本文发明方法在不同信号以及不同信噪比环境下的估计效果。
实施例1
结合图1至图7,设信号总数为3,频率分别为:f1=2kHz,f2=3kHz,f3=15kHz, 三种信号的信噪比分别为0.4dB、0.2dB和0.3dB。
图2所示为被有色噪声污染的原始信号的功率谱,从图中可以看出,此时设定一个阈 值检测出信号比较困难。
图3所示为原始噪声背景与采用本发明方法估计的噪声背景,从图中可以看出本文方 法估计出的噪声背景与实际的噪声背景吻合度较高。
图4所示为利用估计的噪声背景对原信号进行噪声背景归一化以后的结果,图中标出 的三个频点分别对应实际的三个信号频率f1、f2和f3,此时设定一个阈值1.1,即可准确 地检测出信号。
实施例2
结合图1和图5至图7,设信号总数为3,频率分别为:f1=2kHz,f2=15kHz, f3=18kHz,三种信号的信噪比分别为1.5dB、0.4dB和0.3dB。
图5所示为被有色噪声污染的原始信号的功率谱,从图中可以看出,此时设定一个阈 值检测出信号比较困难。
图6所示为原始噪声背景与采用本发明方法估计的噪声背景,从图中可以看出本文方 法估计出的噪声背景与实际的噪声背景吻合度较高。
图7所示为利用估计的噪声背景对原信号进行噪声背景归一化以后的结果,图中标出 的三个频点分别对应实际的三个信号频率f1、f2和f3,此时设定一个阈值1.2,即可准确 地检测出信号。
从实施例1和实施例2的结果可以看出,本发明估计方法在接近于0dB的低信噪比环境下,仍可以获得良好的估计精度,而且计算简单,计算量小,适用于快速估计噪声 背景的场合。
在以上的描述中阐述了很多具体细节以便于充分理解本发明。但是以上描述仅是本发 明的较佳实施例而已,本发明能够以很多不同于在此描述的其它方式来实施,因此本发明 不受上面公开的具体实施的限制。同时任何熟悉本领域技术人员在不脱离本发明技术方案 范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动 和修饰,或修改为等同变化的等效实施例。凡是未脱离本发明技术方案的内容,依据本发 明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术 方案保护的范围内。

Claims (5)

1.一种基于最小均方误差准则的噪声背景估计方法,其特征在于:该方法包括以下步骤:
步骤一,获取待处理的正弦信号采样数据序列:从传感器接收N个采样点的实时采集数据作为待处理的数据序列,或从存储器中提取从检测到信号时刻起始的N个采样点的数据作为待处理的数据序列;
步骤二,对所述数据序列做离散傅里叶变换,计算得到数据序列的离散傅里叶变换,从而可利用周期图法计算得到数据序列的功率谱;
步骤三,设定数据平滑窗长W,背景谷峰D与谷底的判断阈值U,相邻两次迭代输出结果的均方误差最小值的阈值ε,迭代过程的最大迭代次数I;
步骤四,将P(k)作为迭代过程的输入,计算出噪声背景,包括以下步骤:
(1)为了避免噪声背景归一化时出现极小值除以极小值现象,这里首先对P(k)进行归一化得到Pnorm(k),然后对进行数据扩展得到
(2)令k=0,1,2…,N/2+(W-1)
矩形平滑窗以Qi(k),k=(W-1)/2点为起始点逐点滑动,窗的宽度为W,并计算平滑窗内数据的均值μ;若Qi(k)/μ>D,或Qi(k)/μ<U,则令否则,
(3)当平滑窗滑动到点Qi(k),k=N/2+(W-1)/2时,则一次迭代过程完成,计算此时的输入与输出之间的误差平方和η;若i<I,且η>ε,则迭代终止条件不满足,令i=i+1,转到第四步的步骤(2),迭代过程继续;否则,转到步骤五;
步骤五,迭代过程结束,得到估计出的归一化噪声背景。
2.如权利要求1所述的基于最小均方误差准则的噪声背景估计方法,其特征在于:步骤一,所述的为检测到的正弦信号脉宽长度所对应的采样点个数,取值为2的整数次幂。
3.如权利要求1所述的基于最小均方误差准则的噪声背景估计方法,其特征在于:所述W取值范围为N/2>W≥3中取奇数;所述D取值范围为0<D<1;所述U取值范围为0<U<1;所述η为相邻两次迭代输出之间的误差平方和,其上限阈值ε取值范围为0<ε<1;所述I取值范围为I>1且I为整数。
4.如权利要求1所述的基于最小均方误差准则的噪声背景估计方法,其特征在于:对所述数据序列的离散傅里叶变换采用快速傅里叶变换算法。
5.如权利要求1所述的基于最小均方误差准则的噪声背景估计方法,其特征在于:所述步骤四中优选方案的取参数c=1,W=5,D=0.1,U=0.05,ε=0.001,I=30。
CN201711445877.1A 2017-12-27 2017-12-27 一种基于最小均方误差准则的噪声背景估计方法 Active CN109117698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711445877.1A CN109117698B (zh) 2017-12-27 2017-12-27 一种基于最小均方误差准则的噪声背景估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711445877.1A CN109117698B (zh) 2017-12-27 2017-12-27 一种基于最小均方误差准则的噪声背景估计方法

Publications (2)

Publication Number Publication Date
CN109117698A true CN109117698A (zh) 2019-01-01
CN109117698B CN109117698B (zh) 2022-04-19

Family

ID=64822675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711445877.1A Active CN109117698B (zh) 2017-12-27 2017-12-27 一种基于最小均方误差准则的噪声背景估计方法

Country Status (1)

Country Link
CN (1) CN109117698B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924956A (zh) * 2021-02-05 2021-06-08 中国人民解放军国防科技大学 一种降低低频噪声级的背景均衡方法
CN113011261A (zh) * 2021-02-18 2021-06-22 南京信息职业技术学院 一种基于图的正弦信号检测方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289182A2 (en) * 2001-08-24 2003-03-05 Lucent Technologies Inc. Signal detection by a receiver in a multiple antenna time-dispersive system
US20080253678A1 (en) * 2007-04-10 2008-10-16 Arcsoft, Inc. Denoise method on image pyramid
CN106328156A (zh) * 2016-08-22 2017-01-11 华南理工大学 一种音视频信息融合的麦克风阵列语音增强系统及方法
CN106845334A (zh) * 2016-11-29 2017-06-13 国网辽宁省电力有限公司沈阳供电公司 一种基于数学形态学的新型噪声提取方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289182A2 (en) * 2001-08-24 2003-03-05 Lucent Technologies Inc. Signal detection by a receiver in a multiple antenna time-dispersive system
US20080253678A1 (en) * 2007-04-10 2008-10-16 Arcsoft, Inc. Denoise method on image pyramid
CN106328156A (zh) * 2016-08-22 2017-01-11 华南理工大学 一种音视频信息融合的麦克风阵列语音增强系统及方法
CN106845334A (zh) * 2016-11-29 2017-06-13 国网辽宁省电力有限公司沈阳供电公司 一种基于数学形态学的新型噪声提取方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEI JIANG等: "SNR estimation of LFM signal based on the auto-correlation"s main lobe in time-domain fourier series", 《2016 IEEE ADVANCED INFORMATION MANAGEMENT, COMMUNICATES, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IMCEC)》 *
姚帅等: "有色噪声背景下的水声跳频信号参数估计", 《东南大学学报(自然科学版)》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924956A (zh) * 2021-02-05 2021-06-08 中国人民解放军国防科技大学 一种降低低频噪声级的背景均衡方法
CN112924956B (zh) * 2021-02-05 2022-05-13 中国人民解放军国防科技大学 一种降低低频噪声级的背景均衡方法
CN113011261A (zh) * 2021-02-18 2021-06-22 南京信息职业技术学院 一种基于图的正弦信号检测方法及装置
CN113011261B (zh) * 2021-02-18 2023-09-26 南京信息职业技术学院 一种基于图的正弦信号检测方法及装置

Also Published As

Publication number Publication date
CN109117698B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN106443178B (zh) 一种基于IQuinn-Rife综合的正弦信号频率估计方法
CN107064629B (zh) 一种基于频率相对偏差预估的分段综合单频信号频率估计方法
CN106546949B (zh) 一种基于频率预估计的双阵元正弦信号来波方向估计方法
CN106851573A (zh) 基于对数路径损耗模型的联合加权k近邻室内定位方法
CN108509377B (zh) 一种基于沿特征提取的脉冲信号到达时间与脉宽估计方法
CN110007148A (zh) 一种基于离散频谱相位和幅值综合内插的单频信号频率估计方法
CN101984360A (zh) 基于frft的归一化泄露lms自适应动目标检测器
CN110068727A (zh) 一种基于Candan-Rife综合内插的单频信号频率估计方法
CN107561540B (zh) 基于混响对称谱特性的声纳泄露目标的检测方法及装置
CN107800659B (zh) Alpha稳定分布噪声下LFM信号调制参数估计方法
CN109342828A (zh) 一种基于频域恒虚警的雷电脉冲信号检测方法
CN109117698A (zh) 一种基于最小均方误差准则的噪声背景估计方法
CN102621535B (zh) 一种高效的协方差矩阵结构估计方法
CN105866748B (zh) 一种基于检测先验的固定窗长恒虚警检测方法
CN106533394B (zh) 一种基于自适应滤波器幅频响应的高精度频率估计方法
CN109507654A (zh) 一种基于ls的复杂环境下相位信息计算方法
CN116359851A (zh) 一种基于融合网络的雷达有源干扰检测识别方法及装置
CN110196407A (zh) 一种基于频率预估的单矢量水听器信号来波方向估计方法
CN109782249A (zh) 一种两目标相关时延估计算法
CN107884752A (zh) 一种基于压缩感知的外辐射源雷达对目标检测方法
CN105738698B (zh) 一种基于中心频移的谐波参数估计算法
CN108718223B (zh) 一种非合作信号的盲频谱感知方法
CN116819432A (zh) 基于特征谱跟踪的单矢量水听器水下多目标高稳定测向方法及系统
CN109752633A (zh) 一种对变电站局部放电信号进行定位的方法及系统
CN105357154A (zh) 一种联合功率双门限和延时相关矩阵的信号检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant