CN109112483A - 一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法 - Google Patents

一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法 Download PDF

Info

Publication number
CN109112483A
CN109112483A CN201810877306.3A CN201810877306A CN109112483A CN 109112483 A CN109112483 A CN 109112483A CN 201810877306 A CN201810877306 A CN 201810877306A CN 109112483 A CN109112483 A CN 109112483A
Authority
CN
China
Prior art keywords
heat treatment
performance
oxide
superconducting film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810877306.3A
Other languages
English (en)
Other versions
CN109112483B (zh
Inventor
赵跃
吴蔚
储静远
张智巍
金之俭
洪智勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201810877306.3A priority Critical patent/CN109112483B/zh
Publication of CN109112483A publication Critical patent/CN109112483A/zh
Application granted granted Critical
Publication of CN109112483B publication Critical patent/CN109112483B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法,包括如下步骤:A、在衬底材料上沉积稀土钡铜氧前驱膜;B、将步骤A制备的前驱膜进行熔融然后再凝固的热处理,即可;所述熔融然后再凝固的热处理采用先在760‑850℃下第一次保温1秒‑30分钟,然后在760‑850℃下第二次保温1秒‑30分钟。与现有技术相比,本发明具有如下的有益效果:降低对稀土钡铜氧高温超导前驱膜沉积过程中工艺的要求;采用该热处理工艺可以实现超导膜的高速率生长,生长速率达到1纳米/秒以上,且稀土钡铜氧化物具有优良的超导性能。

Description

一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法
技术领域
本发明涉及一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法,属于第二代高温超导材料制备技术领域。
背景技术
稀土钡铜氧化物是一种实用超导材料,如何获得“锐利的双轴织构”是制备高性能薄膜的核心。目前,用于制备“锐利双轴织构”的稀土钡铜氧化物超导膜的制备方法包括,物理气相沉积、化学气相沉积,热蒸发和化学溶液沉积法等。所有沉积技术的核心就是在较苛刻的生长工艺窗口下,以较慢的沉积速率在沉底材料上逐层外延生长超导薄膜。生长工艺参数的偏离或高生长速率将导致超导膜的非取向生长,即形成多晶显微结构,该种显微结构将该生长条件下保持稳定并严重影响超导薄膜的超导电性。在稀土钡铜氧化物的平衡态相图中,存在“液相”的区域。一般认为,利用该“液相”的存在能够实现超导膜的高速外延取向生长,但目前尚无有效热处理工艺可以在超导膜的生长过程中利用“液相”并最终获得高性能的超导膜。
发明内容
针对现有技术中的不足,为了高速率生长高性能的超导膜,本发明提供一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法。本发明采用“熔融再凝固”的热处理工艺,将具有多晶结构的稀土钡铜氧高温超导膜“织构化”。即选取多晶结构的超导膜为前驱膜,对前驱膜进行热处理,利用热处理工艺过程形成的大量可控的“瞬时液相”和再凝固的过程,使得多晶结构超导膜融化后高速率外延生长,获得“锐利的双轴织构”,最终通过吸氧热处理可获得高性能的超导膜。本发明可实现高速率生长高性能的稀土钡铜氧超导氧化物膜。
本发明的目的是通过以下技术方案实现的:
本发明提供了一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法,包括以下步骤:
A、在衬底材料上沉积稀土钡铜氧前驱膜;
B、将步骤A制备的前驱膜进行熔融然后再凝固的热处理,即可。
优选地,步骤A中,所述沉积方法包括物理气相沉积、化学气相沉积、热蒸发和化学溶液沉积中的至少一种。
优选地,步骤A中,所述衬底材料选择单晶衬底材料或织构金属基带衬底材料中的至少一种。
优选地,步骤A中,所述稀土钡铜氧中的稀土、钡、铜的原子比为0.5-2.5:1.5-2.5:2.5-3.5;所述稀土选自钆、钐、钕中的一种或几种。
优选地,所述稀土钡铜氧超导前驱膜具有多晶结构。
优选地,所述步骤A的稀土钡铜氧前驱膜的制备方法具体包括以下步骤:
S1、将溶质和溶剂按比例进行混合,然后在密闭条件下加热并搅拌,冷却后即得前驱液;
S2、将前驱液涂覆在衬底材料上即得所述稀土钡铜氧前驱膜;
步骤A中,所述溶质包括阳离子原子比为0.5-2.5:1.5-2.5:2.5-3.5的稀土醋酸盐,醋酸钡,醋酸铜;所述前驱液中的阳离子浓度为0.5-3mol/L。
优选地,所述稀土醋酸盐包括醋酸钆、醋酸钐,醋酸钕中的一种或几种。
优选地,所述溶剂包括丙酸和甲醇;所述丙酸和甲醇的体积分数比为10:0-2:8。
优选地,步骤S2中,所述加热温度为90-150℃,搅拌时间为1-5小时。
所述前驱液与衬底的接触角在10度以下。
优选地,步骤B中,所述熔融然后再凝固的热处理采用先在760-850℃下第一次保温1秒-30分钟,然后在760-850℃下第二次保温1秒-30分钟。
优选地,步骤B中,所述熔融然后再凝固的热处理在含氧气氛下进行。
优选地,第一次保温采用的含氧量为1ppm,第二次保温采用的含氧量为20%。
优选地,所述方法还包括在热处理后进行吸氧处理,所述吸氧处理采用在400℃下保温3小时。
本发明方法获得的超导膜具有锐利的双轴织构。
本发明的基本原理为:在热处理工艺中,利用稀土钡铜氧平衡态相图中存在“液相”的区域,使得多晶稀土钡铜氧化物前驱膜达到融化的状态,然后通过改变热处理过程中的氧气含量,使融化状态的前驱膜重新凝固,在凝固的过程中外延衬底的晶体学取向,实现“织构化”。所有传统沉积技术是在较苛刻的生长工艺窗口下,以较慢的沉积速率在沉底材料上逐层外延生长超导薄膜。本发明提及的热处理工艺,可以获得大量可控“瞬时液相”,该工艺可显著提高前驱膜“织构化”的生长速率。
与现有技术相比,本发明具有如下的有益效果:
1、降低对稀土钡铜氧高温超导前驱膜沉积过程中工艺的要求;
2、采用该热处理工艺可以实现超导膜的高速率生长,生长速率达到1纳米/秒以上,且稀土钡铜氧具有优良的超导性能。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1是实施例1中,热处理前超导膜的X射线衍射的结果;
图2是实施例1中,热处理后超导膜的X射线衍射的结果;
图3是实施例1中,热处理后超导膜的扫描电子显微镜的结果;
图4是实施例1中,热处理工艺曲线及所用的热处理环境气氛;
图5是实施例1中,热处理后超导膜的临界电流变化曲线;
图6是实施例2中,热处理后超导膜的扫描电子显微镜的结果;
图7是实施例2中,热处理后超导膜的临界电流变化曲线。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
本发明涉及的沉积“多晶”稀土钡铜氧化物超导前驱膜的工艺,可以物理气相沉积、化学气相沉积,热蒸发和化学溶液沉积等技术。通过本发明涉及的热处理工艺,即“熔融再凝固”实现超导前驱膜的“织构化”。织构超导膜的吸氧工艺与其它沉积超导薄膜时所采用的工艺相同或相近。
实施例1
本实施例涉及一种高速率生长高性能的稀土钡铜氧化物超导氧化物膜的热处理,所述方法包括如下步骤:
1)超导前驱膜沉积过程:在氧化铈作为帽子层的织构金属衬底沉积超导层,沉积超导层的工艺为物理气相沉积技术,超导层材料为钆钡铜氧,钆,钡,铜三种阳离子的原子比例为1:2:3。沉积超导层的优化工艺参数窗口可适当变大,如沉积温度较优化工艺参数降低200摄氏度。超导前驱膜的X射线衍射结果如图1所示。结果表明,该超导前驱膜为多晶结构。
2)超导前驱膜热处理过程:对步骤1)获得多晶超导前驱膜进行“融熔再凝固”热处理,即将其加热至760摄氏度保温30分钟,热处理气氛中氧气含量在1ppm,随后在780摄氏度保温10分钟,热处理气氛中氧气含量为20%,该融熔再凝固热处理曲线如图4所示。随后进行吸氧处理,即在600摄氏度保温3小时。热处理前超导膜的X射线衍射的结果如图1,热处理后超导前驱膜的X射线衍射和扫描电镜结果如图2和3所示。采用该热处理工艺,超导膜的生长速率达到1纳米/秒。性能测试结果表明,该实施例获得超导膜在77开尔文,自场条件下电流密度达到2兆安培/平方厘米,其临界电流密度变化曲线如图5所示。
实施例2
本实施例涉及一种高速率生长高性能的稀土钡铜氧化物超导氧化物膜的热处理,所述方法包括如下步骤:
1)超导前驱膜沉积过程:在氧化铈作为帽子层的织构金属衬底沉积超导层,沉积超导层的工艺为化学溶液沉积技术,超导层材料为钆钐钡铜氧。前驱液采用醋酸钆,醋酸钐,醋酸钡,醋酸铜,溶解在丙酸中,阳离子总浓度为1.5摩尔/升,上述四种阳离子比例为0.2:0.3:1.5:2.5。涂敷工艺为浸涂。前驱膜的热处理为氧气,热处理温度为700℃,保温时间为10分钟。超导前驱膜的X射线衍射结果如图1所示。结果表明,该超导前驱膜为多晶结构。
2)超导前驱膜热处理过程:对步骤1)获得多晶超导前驱膜进行“融熔再凝固”热处理,即将其加热至800摄氏度保温10分钟,热处理气氛中氧气含量在100ppm,随后在800摄氏度保温1分钟,热处理气氛中氧气含量为20%,随后进行吸氧处理,即在300摄氏度保温3小时。热处理前超导膜的X射线衍射结果、热处理后超导前驱膜的X射线衍射和扫描电镜结果与实施例1基本相同,热处理后超导前驱膜的扫描电镜结果如图6所示。采用该热处理工艺,超导膜的生长速率达到2纳米/秒。性能测试结果表明,该实施例获得超导膜在77开尔文,自场条件下电流密度达到4.3兆安培/平方厘米,其临界电流密度变化曲线如图7所示。
实施例3
本实施例涉及一种高速率生长高性能的稀土钡铜氧化物超导氧化物膜的热处理,所述方法包括如下步骤:
1)超导前驱膜沉积过程:在铝酸镧单晶衬底沉积超导层,沉积超导层的工艺为化学气相沉积技术,超导层材料为钕钡铜氧,钕,钡,铜三种阳离子的原子比例为1:2:3.5。沉积超导层的优化工艺参数窗口可适当变大,如沉积温度较优化工艺参数降低200摄氏度,沉积气氛可以采用1%氧气。
2)超导前驱膜热处理过程:对步骤1)获得多晶超导前驱膜进行“融熔再凝固”热处理,即将其加热至850摄氏度保温1秒,热处理气氛中氧气含量在0.1%,随后在850摄氏度保温1秒,热处理气氛中氧气含量为100%。随后进行吸氧处理,即在400摄氏度保温3小时。热处理前超导膜的X射线衍射结果、热处理后超导前驱膜的X射线衍射和扫描电镜结果与实施例1基本相同,采用该热处理工艺,超导膜的生长速率达到2纳米/秒。性能测试结果表明,该实施例获得超导膜在77开尔文,自场条件下电流密度达到4兆安培/平方厘米。
实施例4
本实施例涉及一种高速率生长高性能的稀土钡铜氧化物超导氧化物膜的热处理,所述方法包括如下步骤:
1)超导前驱膜沉积过程:在铝酸镧单晶衬底沉积超导层,沉积超导层的工艺为化学气相沉积技术,超导层材料为钕钡铜氧,钕,钡,铜三种阳离子的原子比例为1:2:3.5。沉积超导层的优化工艺参数窗口可适当变大,如沉积温度较优化工艺参数降低200摄氏度,沉积气氛可以采用1%氧气。
2)超导前驱膜热处理过程:对步骤1)获得多晶超导前驱膜进行“融熔在凝固”热处理,即将其加热至850摄氏度保温1秒,热处理气氛中氧气含量在0.1%,随后在850摄氏度保温1秒,热处理气氛中氧气含量为100%。随后进行吸氧处理,即在400摄氏度保温3小时。热处理前超导膜的X射线衍射结果、热处理后超导前驱膜的X射线衍射和扫描电镜结果与实施例1基本相同,采用该热处理工艺,超导膜的生长速率达到2纳米/秒。性能测试结果表明,该实施例获得超导膜在77开尔文,自场条件下电流密度达到4兆安培/平方厘米。
实施例5
本实施例涉及一种高速率生长高性能的稀土钡铜氧化物超导氧化物膜的热处理,所述方法包括如下步骤:
1)超导前驱膜沉积过程:在钛酸锶单晶衬底沉积超导层,沉积超导层的工艺为热蒸发沉积技术,超导层材料为钐钡铜氧,钐,钡,铜三种阳离子的原子比例为2:3:5。沉积超导层的优化工艺参数窗口可适当变大,如沉积温度较优化工艺参数降低100摄氏度。超导前驱膜的X射线衍射和扫描电镜结果与实施例基本相同。
2)超导前驱膜热处理过程:对步骤1)获得多晶超导前驱膜进行“融熔再凝固”热处理,即将其加热至800摄氏度保温30秒,热处理气氛中氧气含量在0.1%,随后在850摄氏度保温30秒,热处理气氛中氧气含量为20%。随后进行吸氧处理,即在400摄氏度保温3小时。热处理前超导膜的X射线衍射结果、热处理后超导前驱膜的X射线衍射和扫描电镜结果与实施例1基本相同,采用该热处理工艺,超导膜的生长速率达到2纳米/秒。性能测试结果表明,该实施例获得超导膜在77开尔文,自场条件下电流密度达到4兆安培/平方厘米。
对比例1
本对比例涉及一种高速率生长高性能的稀土钡铜氧化物超导氧化物膜的热处理,所述方法与实施例1相同,不同之处仅在于:本对比例采用的“融熔再凝固”热处理过程为:将其加热至760摄氏度保温30分钟,热处理气氛中氧气含量在20%,随后在780摄氏度保温10分钟,热处理气氛中氧气含量为1ppm。
所得超导膜的生长速率为10纳米/秒以上,其在77K,自场条件下无超导电流。
对比例2
本对比例涉及一种高速率生长高性能的稀土钡铜氧化物超导氧化物膜的热处理,所述方法与实施例1相同,不同之处仅在于:本对比例采用的“融熔再凝固”热处理过程为:将其加热至700摄氏度保温30分钟,热处理气氛中氧气含量在1ppm,随后在780摄氏度保温10分钟,热处理气氛中氧气含量为20%。
所得超导膜的生长速率为1纳米/秒以上,其在77K,自场条件下电流为0.01兆安培/平方厘米。
对比例3
本对比例涉及一种高速率生长高性能的稀土钡铜氧化物超导氧化物膜的热处理,所述方法与实施例1相同,不同之处仅在于:本对比例采用的“融熔再凝固”热处理过程为:将其加热至760摄氏度保温30分钟,热处理气氛中氧气含量在1ppm,随后在700摄氏度保温10分钟,热处理气氛中氧气含量为20%。
所得超导膜的生长速率为3纳米/秒以上,其在77K,自场条件下电流为无超导电流。
对比例4
本对比例涉及一种高速率生长高性能的稀土钡铜氧化物超导氧化物膜的热处理,所述方法与实施例1相同,不同之处仅在于:本对比例采用的吸氧处理,即在450摄氏度保温3小时。
所得超导膜的生长速率为1纳米/秒以上,其在77K,自场条件下电流为0.1兆安培/平方厘米。
对比例5
本对比例涉及一种高速率生长高性能的稀土钡铜氧化物超导氧化物膜的热处理,所述方法与实施例2相同,不同之处仅在于:本对比例采用的前驱液中,四种阳离子比例为0.2:0.1:1.7:2.5。
所得超导膜的生长速率为1纳米/秒以上,其在77K,自场条件下电流为0.01兆安培/平方厘米。
对比例6
本对比例涉及一种高速率生长高性能的稀土钡铜氧化物超导氧化物膜的热处理,所述方法与实施例4相同,不同之处仅在于:本对比例采用的超导层材料为钐钡铜氧,钐,钡,铜三种阳离子的原子比例为1:2:1.5。
所得超导膜的生长速率为1纳米/秒以上,其在77K,自场条件下无超导电流。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (8)

1.一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法,其特征在于,包括以下步骤:
A、在衬底材料上沉积稀土钡铜氧前驱膜;
B、将步骤A制备的前驱膜进行熔融然后再凝固的热处理,即可。
2.根据权利要求1所述的高速率生长高性能稀土钡铜氧高温超导膜的热处理方法,其特征在于,步骤A中,所述沉积方法包括物理气相沉积、化学气相沉积、热蒸发和化学溶液沉积中的至少一种。
3.根据权利要求1所述的高速率生长高性能稀土钡铜氧高温超导膜的热处理方法,其特征在于,步骤A中,所述衬底材料选择单晶衬底材料或织构金属基带衬底材料中的至少一种。
4.根据权利要求1所述的高速率生长高性能稀土钡铜氧高温超导膜的热处理方法,其特征在于,步骤A中,所述稀土钡铜氧中的稀土、钡、铜的原子比为0.5-2.5:1.5-2.5:2.5-3.5;所述稀土选自钆、钐、钕中的一种或几种。
5.根据权利要求1所述的高速率生长高性能稀土钡铜氧高温超导膜的热处理方法,其特征在于,步骤B中,所述熔融然后再凝固的热处理采用先在760-850℃下第一次保温1秒-30分钟,然后在760-850℃下第二次保温1秒-30分钟。
6.根据权利要求1或5所述的高速率生长高性能稀土钡铜氧高温超导膜的热处理方法,其特征在于,步骤B中,所述熔融然后再凝固的热处理在含氧气氛下进行。
7.根据权利要求6所述的高速率生长高性能稀土钡铜氧高温超导膜的热处理方法,其特征在于,第一次保温采用的含氧量为1ppm-0.1%,第二次保温采用的含氧量为20ppm-100%。
8.据权利要求1所述的高速率生长高性能稀土钡铜氧高温超导膜的热处理方法,其特征在于,所述方法还包括在热处理后进行吸氧处理,所述吸氧处理采用在300-600℃下保温3小时;所述吸氧处理采用100%氧气气氛。
CN201810877306.3A 2018-08-03 2018-08-03 一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法 Active CN109112483B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810877306.3A CN109112483B (zh) 2018-08-03 2018-08-03 一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810877306.3A CN109112483B (zh) 2018-08-03 2018-08-03 一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法

Publications (2)

Publication Number Publication Date
CN109112483A true CN109112483A (zh) 2019-01-01
CN109112483B CN109112483B (zh) 2019-10-08

Family

ID=64851864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810877306.3A Active CN109112483B (zh) 2018-08-03 2018-08-03 一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法

Country Status (1)

Country Link
CN (1) CN109112483B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164490A (zh) * 2021-11-05 2022-03-11 上海大学 一种感应法加热制备高温超导氧化物陶瓷外延膜的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192643A (zh) * 2006-10-27 2008-06-04 尼克桑斯公司 制造超导性电导体的方法
CN101736296A (zh) * 2008-11-07 2010-06-16 北京有色金属研究总院 一种在金属基带上连续制备ybco超导层的方法
CN102884594A (zh) * 2010-02-05 2013-01-16 株式会社瑞蓝 形成陶瓷线的方法、形成陶瓷线的系统、以及采用其的超导体线
CN104795180A (zh) * 2015-04-07 2015-07-22 上海大学 极低氟mod法快速制备rebco超导膜的方法
CN105551681A (zh) * 2016-02-05 2016-05-04 上海上创超导科技有限公司 一种钡铜氧高温超导涂层导体的多层结构
CN107059127A (zh) * 2017-03-17 2017-08-18 陕西师范大学 一种底部籽晶熔渗生长法制备单畴稀土钡铜氧超导环的方法及其制备的超导环
CN107342140A (zh) * 2017-07-28 2017-11-10 清华大学深圳研究生院 一种制作稀土钡铜氧超导膜的方法与恒温浸涂设备
CN107587114A (zh) * 2017-08-11 2018-01-16 兰州空间技术物理研究所 一种无熔滴微带天线用ybco超导膜的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192643A (zh) * 2006-10-27 2008-06-04 尼克桑斯公司 制造超导性电导体的方法
CN101736296A (zh) * 2008-11-07 2010-06-16 北京有色金属研究总院 一种在金属基带上连续制备ybco超导层的方法
CN102884594A (zh) * 2010-02-05 2013-01-16 株式会社瑞蓝 形成陶瓷线的方法、形成陶瓷线的系统、以及采用其的超导体线
CN104795180A (zh) * 2015-04-07 2015-07-22 上海大学 极低氟mod法快速制备rebco超导膜的方法
CN105551681A (zh) * 2016-02-05 2016-05-04 上海上创超导科技有限公司 一种钡铜氧高温超导涂层导体的多层结构
CN107059127A (zh) * 2017-03-17 2017-08-18 陕西师范大学 一种底部籽晶熔渗生长法制备单畴稀土钡铜氧超导环的方法及其制备的超导环
CN107342140A (zh) * 2017-07-28 2017-11-10 清华大学深圳研究生院 一种制作稀土钡铜氧超导膜的方法与恒温浸涂设备
CN107587114A (zh) * 2017-08-11 2018-01-16 兰州空间技术物理研究所 一种无熔滴微带天线用ybco超导膜的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164490A (zh) * 2021-11-05 2022-03-11 上海大学 一种感应法加热制备高温超导氧化物陶瓷外延膜的方法

Also Published As

Publication number Publication date
CN109112483B (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
CN102925976B (zh) 使用NGO单晶基板制备a轴REBCO高温超导厚膜的方法
WO2012018850A1 (en) Iron based superconducting structures and methods for making the same
CN103276447B (zh) 一种制备特定混合取向ybco高温超导厚膜的方法
JP5415696B2 (ja) 機能が向上された厚膜超伝導フィルム
Namburi et al. A robust seeding technique for the growth of single grain (RE) BCO and (RE) BCO–Ag bulk superconductors
JP2008514545A5 (zh)
CN101587763B (zh) 一种高温超导涂层导体缓冲层的制备方法
CN109112483B (zh) 一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
CN1970849A (zh) a轴取向的钇钡铜氧超导厚膜的氧气氛控制制备方法
Li et al. Microstructure studies of epitaxial YBa2Cu3O7–δ films
CN1439747A (zh) 具有过热性质种膜作籽晶液相外延生长超导厚膜材料
Chen et al. Growth condition related orientation transition for YBa2Cu3O7− δ films on NdGaO3 substrate
CN112456538B (zh) 一种rebco纳米粒子复合ybco超导层的制备方法
Dzhafarov et al. The effect of Ag diffusion on properties of BiPbSrCaCuO thin films
CN109023526A (zh) 一种制备钙掺杂ybco高温超导单晶体的方法
JP2004155647A (ja) 高温超伝導層の製造方法
US20030176287A1 (en) Oxide superconducting electroconductive article and method for its preparation
CN103498140B (zh) 一种纳米银掺杂氧化铈涂层的制备方法
Zhang et al. Fe-doped epitaxial YBCO films prepared by chemical solution deposition
Yamada et al. Liquid Phase Growth of YBa2Cu3O7-x at Low Temperatures Using KOHFLUX
CN107311641A (zh) 一种一步热处理工艺制备硼掺杂ybco超导膜的方法
Yao et al. Liquid phase epitaxy of REBa2Cu3O7− δ single-crystalline thick films
US5217947A (en) High-temperature superconductors
CN104178808B (zh) 一种制备高温超导人工晶界的液相外延方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant