CN109103239B - 一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管 - Google Patents

一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管 Download PDF

Info

Publication number
CN109103239B
CN109103239B CN201810952687.7A CN201810952687A CN109103239B CN 109103239 B CN109103239 B CN 109103239B CN 201810952687 A CN201810952687 A CN 201810952687A CN 109103239 B CN109103239 B CN 109103239B
Authority
CN
China
Prior art keywords
layer
cap layer
field effect
effect transistor
type channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810952687.7A
Other languages
English (en)
Other versions
CN109103239A (zh
Inventor
贾护军
仝宜波
李涛
朱顺威
胡梅
赵玥阳
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201810952687.7A priority Critical patent/CN109103239B/zh
Publication of CN109103239A publication Critical patent/CN109103239A/zh
Application granted granted Critical
Publication of CN109103239B publication Critical patent/CN109103239B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种具有栅下局部低掺杂的4H‑SiC金属半导体场效应晶体管,自下而上包括4H‑SiC半绝缘衬底、P型缓冲层、N型沟道层,N型沟道层的两侧表面设有源极帽层和漏极帽层,源极帽层和漏极帽层表面设有源电极,漏极帽层表面设有漏电极,所述N型沟道层沟道底部且靠近源极帽层的一侧设有栅电极,在N型沟道层底部且位于栅电极下方设有与栅电极中心对称的低掺杂层,栅电极的底部与低掺杂层上端紧密接触。与现有技术相比,本发明的场效应晶体管击穿电压得到提高,从而提高器件输出功率密度。

Description

一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管
技术领域
本发明涉及场效应晶体管技术领域,特别是一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管。
背景技术
碳化硅(SiC)由于其具有的宽禁带宽度、高临界电场、高饱和漂移速度和高热导率等优良的电学性能吸引了人们的注意,成为第三代半导体材料。这些优良特性使碳化硅(SiC)常常应用于高压、高温、高频、大功率等工作条件下。SiC在微波功率器件,尤其是金属半导体场效应晶体管(MESFET)的应用中占有主要地位,已成为近年来微波功率器件领域内研究的热点。
在微波频段的功率器件中,4H-SiCMESFET有着极大的饱和漏极输出电流和击穿电压。目前,针对4H-SiCMESFET器件进行的改进主要是在传统4H-SiCMESFET的几何形状上,对栅、沟道区、漂移区等进行结构改进。但由于传统器件结构的局限性,器件受到饱和漏电流和击穿电压均衡的限制,在保证器件击穿电压较大的条件下,则必须牺牲器件相关的饱和漏电流换取更大的击穿电压。
如中国专利申请号:201510001340.0公开的一种具有双凹陷缓冲层的4H-SiC金属半导体场效应晶体管,自下而上包括4H-SiC半绝缘衬底、P型缓冲层、N型沟道层,N型沟道层的两侧分别为源极帽层和漏极帽层,源极帽层和漏极帽层表面分别是源电极和漏电极,沟道上方且靠近源极帽层的一侧形成栅电极,P型缓冲层的上端面在栅源和栅漏间下方设有凹槽。该具有双凹陷缓冲层的4H-SiC金属半导体场效应晶体管虽然也具有输出漏极电流高,击穿电压稳定的优点,但是该双凹陷缓冲层主要是对场效应晶体管的交流特性进行的改进,而且该性能还能够再提高,因此,可以在此基础上加以改进,并对场效应晶体管的直流特性加以改进。
发明内容
本发明的目的是要提供一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管,使击穿电压得到提高,从而提高器件输出功率密度。
为达到上述目的,本发明是按照以下技术方案实施的:
一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管,自下而上包括4H-SiC半绝缘衬底、P型缓冲层、N型沟道层,N型沟道层的两侧表面设有源极帽层和漏极帽层,源极帽层和漏极帽层表面设有源电极,漏极帽层表面设有漏电极,所述N型沟道层沟道顶部且靠近源极帽层的一侧设有栅电极,在N型沟道层顶部且位于栅电极下方设有与栅电极中心对称的低掺杂层,栅电极的下表面与低掺杂层上表面紧密接触。
进一步,所述低掺杂层以源侧栅电极为起点,长度为0.7μm。
进一步,所述低掺杂层的深度为0.08-0.13μm。
进一步,所述低掺杂层通过高能离子注入和高温退火工艺实现,低掺杂层的掺杂浓度为1×1015-3×1015cm-3
与现有技术相比,本发明的有益效果如下:
1.击穿电压提高:本发明在栅电极的下方加入低掺杂层,使漏侧漂移区产生更大的耗尽层,进而产生了新的电场峰,缓解了栅极漏侧的电场强度,提高了击穿电压。
2.栅极跨导提高:栅极下方的低掺杂层具有辅助栅对沟道耗尽的作用,因此增强了栅极电压对沟道电流的控制能力,使跨导增大。
3.相比于具有双凹陷缓冲层的4H-SiC金属半导体场效应晶体管,本发明主要改进了效应晶体管的直流特性,击穿电压提高至125.9V,栅极跨导提高至63.53mS。
附图说明
图1为本发明的结构示意图。
图中标记:1、4H-SiC半绝缘衬底;2、P型缓冲层;3、N型沟道层;4、源极帽层;5、漏极帽层;6、源电极;7、漏电极;8、栅电极;9、低掺杂层。
具体实施方式
下面结合具体实施例对本发明作进一步描述,在此发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
实施例1
如图1所示,本实施例的一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管,自下而上包括4H-SiC半绝缘衬底1、P型缓冲层2、N型沟道层3,N型沟道层3的两侧表面设有源极帽层4和漏极帽层5,源极帽层4和漏极帽层5表面设有源电极6,漏极帽层5表面设有漏电极7,所述N型沟道层3沟道顶部且靠近源极帽层4的一侧设有栅电极8,在N型沟道层3顶部且位于栅电极8下方设有与栅电极8中心对称的低掺杂层9,栅电极8的下表面与低掺杂层9上表面紧密接触。
本实施例中,低掺杂层9以源侧栅电极为起点,长度为0.7μm,低掺杂层9的深度为0.08μm,低掺杂层9通过高能离子注入和高温退火工艺实现,注入条件:温度400℃,能量/剂量120KeV/1.0×1012cm-2,退火条件:温度1600℃,时间10min,Ar气保护,得到低掺杂层9的掺杂浓度为1×1015cm-3
实施例2
如图1所示,本实施例的一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管,自下而上包括4H-SiC半绝缘衬底1、P型缓冲层2、N型沟道层3,N型沟道层3的两侧表面设有源极帽层4和漏极帽层5,源极帽层4和漏极帽层5表面设有源电极6,漏极帽层5表面设有漏电极7,所述N型沟道层3沟道顶部且靠近源极帽层4的一侧设有栅电极8,在N型沟道层3顶部且位于栅电极8下方设有与栅电极8中心对称的低掺杂层9,栅电极8的下表面与低掺杂层9上表面紧密接触。
本实施例中,所述低掺杂层9以源侧栅电极为起点,长度为0.7μm,低掺杂层9的深度为0.13μm,低掺杂层9通过高能硼离子注入和高温退火工艺实现,注入条件:温度400℃,能量/剂量180KeV/8.0×1012cm-2,退火条件:温度1600℃,时间10min,Ar气保护,得到低掺杂层9的掺杂浓度为3×1015cm-3
实施例3
如图1所示,本实施例的一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管,自下而上包括4H-SiC半绝缘衬底1、P型缓冲层2、N型沟道层3,N型沟道层3的两侧表面设有源极帽层4和漏极帽层5,源极帽层4和漏极帽层5表面设有源电极6,漏极帽层5表面设有漏电极7,所述N型沟道层3沟道顶部且靠近源极帽层4的一侧设有栅电极8,在N型沟道层3顶部且位于栅电极8下方设有与栅电极8中心对称的低掺杂层9,栅电极8的下表面与低掺杂层9上表面紧密接触。
本实施例中,所述低掺杂区9以源侧栅电极为起点,长度为0.7μm,低掺杂层9的深度为0.1μm,低掺杂层9通过高能离子注入和高温退火工艺实现,注入条件:温度400℃,能量/剂量150KeV/4.0×1012cm-2,退火条件:温度1600℃,时间10min,Ar气保护,得到低掺杂区9的掺杂浓度为2×1015cm-3
本发明的技术方案不限于上述具体实施例的限制,凡是根据本发明的技术方案做出的技术变形,均落入本发明的保护范围之内。

Claims (4)

1.一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管,自下而上包括4H-SiC半绝缘衬底(1)、P型缓冲层(2)、N型沟道层(3),N型沟道层(3)的两侧表面设有源极帽层(4)和漏极帽层(5),源极帽层(4)和漏极帽层(5)表面设有源电极(6),漏极帽层(5)表面设有漏电极(7),其特征在于:所述N型沟道层(3)沟道顶部且靠近源极帽层(4)的一侧设有栅电极(8),在N型沟道层(3)顶部且位于栅电极(8)下方设有与栅电极(8)中心对称的低掺杂层(9),栅电极(8)的下表面与低掺杂层(9)上表面紧密接触。
2.根据权利要求1所述的具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管,其特征在于:所述低掺杂层(9)以源侧栅电极为起点,长度为0.7μm。
3.根据权利要求1所述的具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管,其特征在于:所述低掺杂层(9)的深度为0.08-0.13μm。
4.根据权利要求1所述的具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管,其特征在于:低掺杂层(9)的掺杂浓度为1×1015-3×1015cm-3
CN201810952687.7A 2018-08-21 2018-08-21 一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管 Active CN109103239B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810952687.7A CN109103239B (zh) 2018-08-21 2018-08-21 一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810952687.7A CN109103239B (zh) 2018-08-21 2018-08-21 一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管

Publications (2)

Publication Number Publication Date
CN109103239A CN109103239A (zh) 2018-12-28
CN109103239B true CN109103239B (zh) 2020-09-11

Family

ID=64850467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810952687.7A Active CN109103239B (zh) 2018-08-21 2018-08-21 一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管

Country Status (1)

Country Link
CN (1) CN109103239B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257887A (zh) * 2021-03-23 2021-08-13 西安电子科技大学 一种具有三种区域的4H-SiC金属半导体场效应晶体管

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2757915B2 (ja) * 1996-01-19 1998-05-25 日本電気株式会社 Ii−vi族半導体デバイス及びその製造方法
US6365925B2 (en) * 1997-09-12 2002-04-02 Sony Corporation Semiconductor device
JP2014239201A (ja) * 2013-05-08 2014-12-18 ソニー株式会社 半導体装置、アンテナスイッチ回路、および無線通信装置
CN104393047B (zh) * 2014-10-28 2017-06-30 西安电子科技大学 具有阶梯缓冲层结构的4H‑SiC金属半导体场效应晶体管
CN105789056A (zh) * 2016-04-22 2016-07-20 西安电子科技大学 一种具有部分高掺杂沟道4H-SiC金半场效应管的制备方法
CN106910775B (zh) * 2017-03-20 2020-01-10 西安电子科技大学 一种具有多凹陷缓冲层的4H-SiC金属半导体场效应晶体管

Also Published As

Publication number Publication date
CN109103239A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
CN107275407B (zh) 一种碳化硅vdmos器件及其制作方法
CN110148629B (zh) 一种沟槽型碳化硅mosfet器件及其制备方法
CN102364688B (zh) 一种垂直双扩散金属氧化物半导体场效应晶体管
CN113571584B (zh) 一种SiC MOSFET器件及其制备方法
CN103258847A (zh) 一种双面场截止带埋层的rb-igbt器件
WO2019157819A1 (zh) 一种具有三维沟道的复合栅igbt芯片
CN104538450A (zh) 具有低特征导通电阻的SiC VDMOSFET结构及其制造方法
US9263560B2 (en) Power semiconductor device having reduced gate-collector capacitance
CN115188814B (zh) 一种rc-jgbt器件及其制作方法
CN114843332A (zh) 低功耗高可靠性半包沟槽栅mosfet器件及制备方法
CN113314613A (zh) 具有雪崩电荷渡越缓冲层的碳化硅mosfet器件及制备方法
CN102779839A (zh) 一种具有深能级杂质注入的绝缘栅双极性晶体管
CN117766566A (zh) 集成高k介质三沟槽型碳化硅纵向功率器件及制备方法
CN109103239B (zh) 一种具有栅下局部低掺杂的4H-SiC金属半导体场效应晶体管
EP3637474B1 (en) Silicon carbide switch device and manufacturing method therefor
WO2019114201A1 (zh) 一种低导通电阻的碳化硅功率半导体器件
CN109524474B (zh) 具有栅边缘漏侧部分轻掺杂的4H-SiC金属半导体场效应晶体管
CN105789282B (zh) 一种具有部分高掺杂沟道4H-SiC金半场效应管
CN106910775B (zh) 一种具有多凹陷缓冲层的4H-SiC金属半导体场效应晶体管
CN109346517B (zh) 一种碳化硅mos栅控晶闸管
WO2023184812A1 (zh) 基于异质结的高功率密度隧穿半导体器件及其制造工艺
CN108172618B (zh) 高k介质沟槽横向双扩散金属氧化物宽带隙半导体场效应管及其制作方法
CN214279987U (zh) 一种新型的槽栅型mos器件
CN113488540A (zh) 一种具有垂直场板保护的SiC基槽栅MOSFET结构
Iwasaki et al. Current enhancement by conductivity modulation in diamond JFETs for next generation low-loss power devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant