CN109100408B - 基于FePc/N,B-rGO修饰电极用于检测人体血清中谷胱甘肽的方法 - Google Patents

基于FePc/N,B-rGO修饰电极用于检测人体血清中谷胱甘肽的方法 Download PDF

Info

Publication number
CN109100408B
CN109100408B CN201811113078.9A CN201811113078A CN109100408B CN 109100408 B CN109100408 B CN 109100408B CN 201811113078 A CN201811113078 A CN 201811113078A CN 109100408 B CN109100408 B CN 109100408B
Authority
CN
China
Prior art keywords
nitrogen
rgo
fepc
graphene oxide
reduced graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811113078.9A
Other languages
English (en)
Other versions
CN109100408A (zh
Inventor
雷鹏
周影
洪沙沙
杨亚娟
双少敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN201811113078.9A priority Critical patent/CN109100408B/zh
Publication of CN109100408A publication Critical patent/CN109100408A/zh
Application granted granted Critical
Publication of CN109100408B publication Critical patent/CN109100408B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于电化学电极材料制备技术领域,提供一种基于铁酞菁/氮、硼掺杂还原氧化石墨烯的电化学传感器及其制备方法和应用。电化学传感器是基于铁酞菁/氮、硼掺杂还原氧化石墨烯(FePc/N,B‑rGO)复合材料,并用其修饰玻碳电极表面制备而成,具有高的灵敏度和选择性,电极修饰过程更加简便,且具有良好的稳定性和重现性,该传感器可以应用于检测人体血清中谷胱甘肽。该方法制备的传感器可用于谷胱甘肽的检测。该传感器具有高灵敏度和选择性、响应迅速、具有良好的稳定性、重现性和较大的检测范围等特点,并且可以应用于人体血清中谷胱甘肽的检测。

Description

基于FePc/N,B-rGO修饰电极用于检测人体血清中谷胱甘肽的 方法
技术领域
本发明属于电化学电极材料制备技术领域,具体涉及一种基于铁酞菁/氮、硼掺杂还原氧化石墨烯的电化学传感器及其制备方法,以及所制备的传感器在检测人体血清中谷胱甘肽的应用。
背景技术
还原型谷胱甘肽(GSH)在人体中起着至关重要的作用,包括氧化还原平衡,细胞生长和分解代谢。作为哺乳动物中发现的细胞外硫醇类的主要成分,在蛋白质的结构维持中起着不可或缺的作用,也可以作为机体中的抗癌剂、辐射防护剂、抗毒素、抗氧化剂和自由基清除剂的癌症。GSH的异常水平直接关系到儿童生长缓慢、细胞和器官受损,甚至与癌症、艾滋病、阿尔茨海默氏症、糖尿病和心血管等疾病。因此,研发一种简单、灵敏检测GSH的方法具有重要的现实意义。
已经开发了各种分析方法来测定谷胱甘肽,例如高效液相色谱法,气相色谱法(GC)和毛细管电泳法,但存在灵敏度低、选择性有限、检测费用昂贵等缺点。
金属酞菁(MPc)作为优良的电催化剂已被广泛用于许多重要分析物的电化学氧化,这些分析物基于其大环性质,包括扩展的π-π系统,使它们能够进行快速的氧化还原。例如已报道的作用,通过用钴酞菁(CoPc)物理吸附或电聚合改性的电极对硫醇如L-半胱氨酸和2-巯基乙磺酸在碱性水溶液中表现出高催化活性。
发明内容
本发明目的在于提供一种基于铁酞菁/氮、硼掺杂还原氧化石墨烯的电化学传感器及其制备方法和应用。电化学传感器是基于铁酞菁/氮、硼掺杂还原氧化石墨烯(FePc/N,B-rGO)复合材料,并用其修饰玻碳电极表面制备而成,具有高的灵敏度和选择性,电极修饰过程更加简便,且具有良好的稳定性和重现性,该传感器可以应用于检测人体血清中谷胱甘肽。
本发明由如下技术方案实现的:一种基于铁酞菁/氮、硼掺杂还原氧化石墨烯的电化学传感器的制备方法,步骤如下:
(1)水热法制备氮、硼掺杂还原氧化石墨烯N,B-rGO:超声波辅助下将25 mg的GO分散在50mL水中,形成浓度为0.5 mg/mL的均匀GO悬浮液,加入摩尔分数为5%的稀氨水将悬浮液pH调节至8.0,在剧烈搅拌下向悬浮液中加入2.0g尿素和100 mg硼酸;将混合物在室温下搅拌30分钟,120℃下转移到Teflon衬里的反应釜中12小时,然后空气中冷却,12000 rpm离心收集N,B-rGO复合物并用水和乙醇反复洗涤,60℃下真空干燥,得到N,B-rGO复合物;
(2)铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极的制备:将铁酞菁FePc溶于二次水中,在40 KHz频率下超声10 min~30 min充分溶解,制成浓度为0.5~5.0mM的铁酞菁溶液,向溶液中加入0.2 mg/mL~2.0 mg/mL氮、硼掺杂还原氧化石墨烯N,B-rGO,40 KHz超声10 min~30 min使其形成分散液,然后将分散液滴涂到玻碳电极上,滴涂量为4.0μL~10.0μL;在红外灯下干燥5 min~30 min,最后用二次水冲洗除去松散吸附的纳米复合材料,得到铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极。
所制备的铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极用于目标物检测,步骤为:先配制pH值为3.0、4.0、5.0、6.0、7.0、8.0、9.0、10.0,浓度为0.01~0.1 M的磷酸盐缓冲溶液,进而配制含有目标物的磷酸缓冲液;采用三电极体系,以铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极为工作电极,氯化银电极为参比电极,铂丝为对电极,通过电化学工作站,检测电流对浓度的响应。
铁酞菁的浓度为2.0 mM。氮、硼掺杂还原氧化石墨烯的浓度为1.0 mg/mL。超声时间为30 min;红外灯下干燥的时间30 min。分散液滴涂到玻碳电极表面的量8.0μL。磷酸盐缓冲溶液的pH值为7.0,浓度为0.1 M。
本发明方法制备的电化学传感器可用于检测人体血清中谷胱甘肽。
石墨烯由于其独特的结构和优异的性能,如大的表面积、优良的导电性、易于官能化和生产,为电子器件和传感器提供了理想的基底。氮、硼掺杂还原氧化石墨烯(N,B-rGO)可以通过形成具有氮,硼原子孤电子对的sp2杂化碳骨架的离域共轭体系,进一步提高石墨烯的反应性和电催化性能。此外,N,B-rGO为非共价官能化提供了丰富的结合位点以及生物传感应用中增强的生物相容性和灵敏度。氮、硼掺杂还原氧化石墨烯(N,B-rGO)与铁酞菁(FePc)两者的结合发挥了两者的协同作用,有助于传感器的导电性以及电子转移能力,并且FePc提供了大量的反应活性位点,改善了对谷胱甘肽的催化作用。
与现有技术相比,本发明的优点在于:基于铁酞菁/氮、硼掺杂还原氧化石墨烯(FePc/N,B-rGO)复合材料,将其修饰在玻碳电极表面,提高了电极的灵敏度且使电极修饰过程更加简单。制得的电化学传感器,将其用于构建实际检测人体血清中谷胱甘肽的传感体系,可以显著提高电极的选择性。
本发明制备得到的电化学传感器可检测实际检测人体血清中谷胱甘肽。制得的电化学传感器,具有良好的稳定性和重现性,是铁酞菁独特性质的开发和应用,也为未来谷胱甘肽的检测提供了新的思路。
附图说明
图1为本发明制备电化学传感器的修饰过程。图2为本发明制备电化学传感器用扫描电镜表征氮、硼掺杂还原氧化石墨烯。图3为本发明制备电化学传感器扫描电镜表征图像。图4为本发明制备电化学传感器用循环伏安法表征电极修饰过程。图5为本发明制备电化学传感器在谷胱甘肽溶液中氧化峰电流随孵育时间的影响结果图。图6为本发明制备电化学传感器随在不同浓度谷胱甘肽溶液中孵育其氧化峰电流的变化。图7为本发明制备电化学传感器谷胱甘肽浓度与峰电流的线性关系。图8为本发明制备电化学传感器用差分脉冲法峰电流表征传感器选择性。
具体实施方式
本发明是基于铁酞菁/氮、硼掺杂还原氧化石墨烯复合材料,并用以修饰玻碳电极表面,制备一种电化学传感器,并用于人体血清中谷胱甘肽的检测。下面通过实施例结合附图对本发明作进一步说明。
实施例1:一种基于铁酞菁/氮、硼掺杂还原氧化石墨烯的电化学传感器,具体制备方法为:
(1)水热法制备氮、硼掺杂还原氧化石墨烯N,B-rGO:超声波辅助下将25 mg的GO分散在50mL水中,形成浓度为0.5 mg/mL的均匀GO悬浮液,加入稀氨水(摩尔分数为5%)将悬浮液pH调节至8.0,在剧烈搅拌下向悬浮液中加入2.0g尿素和100 mg硼酸;将混合物在室温下搅拌30分钟,120℃下转移到Teflon衬里的反应釜中12小时,然后空气中冷却,离心(转速为12000 rpm)收集N,B-rGO复合物并用水和乙醇反复洗涤,60℃下真空干燥,得到N,B-rGO复合物;
(2)铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极的制备:将铁酞菁FePc溶于二次水中,在40 KHz频率下超声30 min充分溶解,制成浓度为2.0 mM的铁酞菁溶液,向溶液中加入1 mg氮、硼掺杂还原氧化石墨烯N,B-rGO,40 KHz超声30 min,使其形成浓度为1 mg/mL的分散液,然后将8.0μL分散液滴涂到玻碳电极上,在红外灯下干燥30 min,最后用二次水冲洗除去松散吸附的纳米复合材料,得到铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极。制备的电化学传感器修饰过程示意图见图1。
实施例2:一种基于铁酞菁/氮、硼掺杂还原氧化石墨烯的电化学传感器,具体制备方法为:将铁酞菁FePc溶于二次水中,在40 KHz频率下超声20min充分溶解,制成浓度为5.0mM的铁酞菁溶液,向溶液中加入2.0 mg氮、硼掺杂还原氧化石墨烯N,B-rGO,40 KHz超声20min,使其形成浓度为2 mg/mL的分散液,然后将10.0μL分散液滴涂到玻碳电极上,在红外灯下干燥20 min,最后用二次水冲洗除去松散吸附的纳米复合材料,得到铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极。其余制备方法同实施例1所述方法。
实施例3:一种基于铁酞菁/氮、硼掺杂还原氧化石墨烯的电化学传感器,具体制备方法为:将铁酞菁FePc溶于二次水中,在40 KHz频率下超声10min充分溶解,制成浓度为0.5mM的铁酞菁溶液,向溶液中加入0.2 mg氮、硼掺杂还原氧化石墨烯N,B-rGO,40 KHz超声10min,使其形成浓度为0.2 mg/mL的分散液,然后将4.0μL分散液滴涂到玻碳电极上,在红外灯下干燥5 min,最后用二次水冲洗除去松散吸附的纳米复合材料,得到铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极。其余制备方法同实施例1所述方法。
实验例1:对所制备的氮、硼掺杂还原氧化石墨烯(N,B-rGO)使用扫描电镜进行观察。如图2所示,扫描电镜图片中,可以清楚地看到氮、硼掺杂还原氧化石墨烯具有多孔结构的起皱纳米片。
实验例2:对实施例1制备的铁酞菁/氮、硼掺杂还原氧化石墨烯(FePc/N,B-rGO)修饰电极表面进行扫描电镜表征。如图3所示,从图中可以看到,铁酞菁通过π-π堆积附着在氮、硼掺杂还原氧化石墨烯表面,可以使传感器的灵敏度有很大的提高。说明本发明制备的铁酞菁/氮、硼掺杂还原氧化石墨烯修饰电极成功。
实验例3:实施例1制备的免疫电化学传感器修饰过程表征:
取实施例1制备的修饰电极,在0.1 M pH=7.0的磷酸缓冲(PBS)溶液中以5.0 mM[Fe(CN)6]3-/4-作为探针利用循环伏安法表征电极的修饰过程。如图4所示:修饰了铁酞菁(FePc)后电极产生的峰电流略微降低,这是因其具有导电性较弱。在修饰了铁酞菁/氮、硼掺杂还原氧化石墨烯(FePc/N,B-rGO)之后,由于氮、硼掺杂还原氧化石墨烯(N,B-rGO)具有良好的导电性,电极表面电子转移效率较高,以及铁酞菁(FePc)优良的催化效果使得峰电流明显提高。该图说明了实施例1中制备的电极修饰过程都是成功的。
实验例4:实施例1制备的电化学传感器在谷胱甘肽溶液中氧化峰电流随孵育时间的影响:
将实施例1中制备的传感器电极插入3.0 mM的谷胱甘肽溶液中,每五分钟用循环伏安法测定检测一次电流值。氧化峰电流随浸泡时间的影响见图5:浸泡时间越长,电极表面吸附着的谷胱甘肽越多,峰电流相应变大。起初变化明显,最后变化缓慢,在25 min时电流值不变,说明电极表面达到了饱和。因此选用25 min为孵育时间。
实验例5:实施例1制备的电化学传感器对谷胱甘肽检测的实验
采用差分脉冲法用于实施例1制备的电化学传感器对谷胱甘肽检测的实验。如图6所示,实施例1制备的免疫电极在一系列浓度从低到高的标准浓度的谷胱甘肽pH=7.0的磷酸缓冲液中孵育25 min,其中a-o谷胱甘肽浓度分别为5.0×10-9~1.6×10-3。此外,本发明制备的电化学传感器的电流变化与谷胱甘肽浓度呈良好的线性关系,如图7所示,在浓度为5.0×10-9~1.6×10-3范围内,线性方程为I p(μA)=0.01317C+0.197,R2=0.9944。
实验例6:实施例1制备的电化学传感器对谷胱甘肽选择性的实验
通过对一些常见的干扰物质的测试研究,来分析实施例1制备的传感器的选择性。如图8所示,选择苯丙氨酸、同型半胱氨酸、半胱氨酸、谷氨酸、色氨酸、酪氨酸、精氨酸、赖氨酸、多巴胺、尿素、抗坏血酸作为干扰物质,在相同条件下进行研究。结果表明,本发明制备的检测谷胱甘肽的电化学传感器选择性良好。
实验例7:实施例1制备的电化学传感器在血清中谷胱甘肽检测应用的实验
采用标准加入法用于实施例1制备的电化学传感器在血清中谷胱甘肽检测应用的实验。如表1所示,将谷胱甘肽标准溶液加入到稀释了10倍的人体血清中,用传感器进行定量检测,回收率为95%-109%,说明实施例1制备的电化学传感器可以用于人体血清中谷胱甘肽的测定。
表1为本发明制备的电化学传感器用于人体血清中谷胱甘肽的检测
Figure 646893DEST_PATH_IMAGE001

Claims (4)

1.一种基于铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极用于检测人体血清中谷胱甘肽的方法,其特征在于:所述铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极的制备方法为:
(1)水热法制备氮、硼掺杂还原氧化石墨烯N,B-rGO:超声波辅助下将25 mg的GO分散在50mL水中,形成浓度为0.5 mg/mL的均匀GO悬浮液,加入摩尔分数为5%的稀氨水将悬浮液pH调节至8.0,在剧烈搅拌下向悬浮液中加入2.0g尿素和100 mg硼酸;将混合物在室温下搅拌30分钟,120℃下转移到Teflon衬里的反应釜中12小时,然后空气中冷却,12000 rpm离心收集N,B-rGO复合物并用水和乙醇反复洗涤,60℃下真空干燥,得到N,B-rGO复合物;
(2)铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极的制备:将浓度为2.0mM的铁酞菁FePc溶于二次水中,在40 KHz频率下超声10 min~30 min充分溶解,制成浓度为0.5~5.0 mM的铁酞菁溶液,向溶液中加入0.2 mg/mL~2.0 mg/mL氮、硼掺杂还原氧化石墨烯N,B-rGO,40 KHz超声10 min~30 min使其形成分散液,然后将分散液滴涂到玻碳电极上,滴涂量为4.0μL~10.0μL;在红外灯下干燥5 min~30 min,最后用二次水冲洗除去松散吸附的纳米复合材料,得到铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极;
将人体血清中谷胱甘肽作为目标物,检测方法为:先配制pH值为7.0,浓度为0.1 M的磷酸盐缓冲溶液,进而配制含有目标物的磷酸缓冲液;采用三电极体系,以铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极为工作电极,氯化银电极为参比电极,铂丝为对电极,通过电化学工作站,检测电流对浓度的响应;
所述检测方法采用差分脉冲法,所得检测电流变化与谷胱甘肽浓度呈良好的线性关系,在浓度为5.0×10-9~1.6×10-3M范围内,线性方程为I p=0.01317C+0.197,R2=0.9944,I p的单位为μA。
2.根据权利要求1所述的基于铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极用于检测人体血清中谷胱甘肽的方法,其特征在于:氮、硼掺杂还原氧化石墨烯的浓度为1.0 mg/mL。
3.根据权利要求1所述的基于铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极用于检测人体血清中谷胱甘肽的方法,其特征在于:超声时间为30 min;红外灯下干燥的时间30 min。
4.根据权利要求1所述的基于铁酞菁/氮、硼掺杂还原氧化石墨烯FePc/N,B-rGO修饰电极用于检测人体血清中谷胱甘肽的方法,其特征在于:分散液滴涂到玻碳电极表面的量8.0μL。
CN201811113078.9A 2018-09-25 2018-09-25 基于FePc/N,B-rGO修饰电极用于检测人体血清中谷胱甘肽的方法 Active CN109100408B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811113078.9A CN109100408B (zh) 2018-09-25 2018-09-25 基于FePc/N,B-rGO修饰电极用于检测人体血清中谷胱甘肽的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811113078.9A CN109100408B (zh) 2018-09-25 2018-09-25 基于FePc/N,B-rGO修饰电极用于检测人体血清中谷胱甘肽的方法

Publications (2)

Publication Number Publication Date
CN109100408A CN109100408A (zh) 2018-12-28
CN109100408B true CN109100408B (zh) 2021-05-14

Family

ID=64867369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811113078.9A Active CN109100408B (zh) 2018-09-25 2018-09-25 基于FePc/N,B-rGO修饰电极用于检测人体血清中谷胱甘肽的方法

Country Status (1)

Country Link
CN (1) CN109100408B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224147B (zh) * 2019-07-03 2021-11-26 河北工业大学 B、N共掺杂C纳米层与Co纳米颗粒复合材料、制备方法与应用
CN110487862A (zh) * 2019-08-30 2019-11-22 同济大学 一种酞菁铁修饰金属有机框架的三氯乙酸电化学传感器及其制备方法
CN111521653B (zh) * 2020-05-06 2022-10-18 河南中医药大学 一种四羟基酞菁锌-还原氧化石墨烯纳米复合物及其制备的电化学传感器和应用
CN111855779A (zh) * 2020-07-31 2020-10-30 褚美洁 氮掺杂石墨烯-异核酞菁铜氧钒电化学传感器的制备及应用
CN111855773B (zh) * 2020-07-31 2024-05-31 浙江丰能医药科技有限公司 氮掺杂石墨烯-异核酞菁锰镍电化学传感器的制备及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815696A (zh) * 2012-08-09 2012-12-12 广西师范大学 一种铜酞菁功能化石墨烯及其层组装膜的制备与应用
CN104777207A (zh) * 2015-04-10 2015-07-15 武汉大学 一种三维氮掺杂石墨烯复合材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6047742B2 (ja) * 2012-10-31 2016-12-21 国立大学法人 熊本大学 鉄フタロシアニン/グラフェンナノ複合体、鉄フタロシアニン/グラフェンナノ複合体担持電極及びこれらの製造方法
CN106044754B (zh) * 2016-05-31 2018-07-20 中国科学院山西煤炭化学研究所 一种杂原子掺杂石墨烯多级孔碳材料的制备方法
KR101900572B1 (ko) * 2016-12-09 2018-09-19 성균관대학교산학협력단 3차원 그래핀/탄소나노튜브/무기산화물 구조체, 이의 제조 방법, 및 이를 포함하는 리튬 이온 전지
CN108390035A (zh) * 2018-02-09 2018-08-10 山东丰元化学股份有限公司 石墨烯/三元复合材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815696A (zh) * 2012-08-09 2012-12-12 广西师范大学 一种铜酞菁功能化石墨烯及其层组装膜的制备与应用
CN104777207A (zh) * 2015-04-10 2015-07-15 武汉大学 一种三维氮掺杂石墨烯复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN109100408A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
CN109100408B (zh) 基于FePc/N,B-rGO修饰电极用于检测人体血清中谷胱甘肽的方法
Wu et al. Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode
Abdelwahab et al. Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded Au nanoclusters
Wei et al. Voltammetric determination of folic acid with a multi-walled carbon nanotube-modified gold electrode
Wang et al. Fabrication of a novel laccase biosensor based on silica nanoparticles modified with phytic acid for sensitive detection of dopamine
CN102928488B (zh) 酶电化学生物传感器检测水体环境中酚类化合物的方法
Wu et al. A novel molecularly imprinted electrochemiluminescence sensor for isoniazid detection
Ensafi et al. Simultaneous determination of guanine and adenine in DNA based on NiFe2O4 magnetic nanoparticles decorated MWCNTs as a novel electrochemical sensor using adsorptive stripping voltammetry
Ensafi et al. Simultaneous determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly (3, 3′-bis [N, N-bis (carboxymethyl) aminomethyl]-o-cresolsulfonephthalein) modified glassy carbon electrode
Li et al. Electrochemical tyrosine sensor based on a glassy carbon electrode modified with a nanohybrid made from graphene oxide and multiwalled carbon nanotubes
Scampicchio et al. Nylon nanofibrous membrane for mediated glucose biosensing
CN108845009B (zh) 一种光电化学适配体传感器及其制备方法和应用
CN101832965B (zh) 基于磁性碳纳米管和壳聚糖/二氧化硅凝胶的漆酶生物传感器及其制备方法和应用
Wang et al. A novel biosensor for reduced l-glutathione based on cobalt phthalocyaninetetrasulfonate-intercalated layered double hydroxide modified glassy carbon electrodes
CN105954336B (zh) 一种无酶超氧阴离子电化学传感器及其制备方法和应用
Zhang et al. A cathodic electrogenerated chemiluminescence biosensor based on luminol and hemin-graphene nanosheets for cholesterol detection
CN110794017B (zh) 一种检测降钙素原的电化学免疫传感器的制备方法
Chekin et al. Fabrication of chitosan‐multiwall carbon nanotube nanocomposite containing ferri/ferrocyanide: application for simultaneous detection of D‐penicillamine and tryptophan
Kun et al. Electrochemical behavior of propranolol hydrochloride in neutral solution on calixarene/multi-walled carbon nanotubes modified glassy carbon electrode
CN103175884A (zh) 一种高灵敏度葡萄糖生物传感器及其制备方法
Li et al. A simple strategy for the detection of Pb (II) and Cu (II) by an electrochemical sensor based on Zn/Ni-ZIF-8/XC-72/Nafion hybrid materials
CN112229891B (zh) 一种检测水体中恩诺沙星的方法
CN103224925B (zh) 二茂铁多肽纳米线-葡萄糖氧化酶复合物及其制备和应用方法
He et al. Electrochemical aptasensor based on aptamer-complimentary strand conjugate and thionine for sensitive detection of tetracycline with multi-walled carbon nanotubes and gold nanoparticles amplification
Wang et al. Sensitive voltammetric detection of caffeine in tea and other beverages based on a DNA-functionalized single-walled carbon nanotube modified glassy carbon electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant