CN109095509A - 一种纳米级的超顺磁性空心Fe3O4纳米粒子及其制备方法和应用 - Google Patents

一种纳米级的超顺磁性空心Fe3O4纳米粒子及其制备方法和应用 Download PDF

Info

Publication number
CN109095509A
CN109095509A CN201710474938.0A CN201710474938A CN109095509A CN 109095509 A CN109095509 A CN 109095509A CN 201710474938 A CN201710474938 A CN 201710474938A CN 109095509 A CN109095509 A CN 109095509A
Authority
CN
China
Prior art keywords
hollow
nanoparticle
superparamagnetism
nanoscale
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710474938.0A
Other languages
English (en)
Other versions
CN109095509B (zh
Inventor
周治国
王丹利
邓广
杨仕平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
University of Shanghai for Science and Technology
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN201710474938.0A priority Critical patent/CN109095509B/zh
Publication of CN109095509A publication Critical patent/CN109095509A/zh
Application granted granted Critical
Publication of CN109095509B publication Critical patent/CN109095509B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/085Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier conjugated systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/221Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by the targeting agent or modifying agent linked to the acoustically-active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及一种造影剂,尤其是一种纳米级的超顺磁性空心Fe3O4纳米粒子及其制备方法和在超声及MRI造影剂方面的应用。其制备方法为将叠氮多巴胺与单羧基聚乙二醇溶于去离子水中;加入饱和Na2CO3溶液,超声混匀,形成混合溶液;加入空心Fe3O4纳米粒子分散液,摇床反应;在反应液中加入乙醇离心分离,获得纳米级的超顺磁性空心Fe3O4纳米粒子,并保存在去离子水中。本发明制备得到的超顺磁性空心Fe3O4纳米粒子粒径均一,直径为6‑8nm,形貌可控,重复性好,生物相容性高,具有明显的空心结构,具有很好的体内T1加权成像效果,而且超声造影效果好;超声信号稳定,至少可维持30min。

Description

一种纳米级的超顺磁性空心Fe3O4纳米粒子及其制备方法和 应用
技术领域
本发明涉及一种造影剂,尤其是一种纳米级的超顺磁性空心Fe3O4纳米粒子及其制备方法和在超声及MRI造影剂方面的应用。
背景技术
肿瘤的形成是长时间、多步骤、多基因突变、多因素控制的复杂变化过程,大多数恶性肿瘤都是单克隆起源,呈现无控制性生长。在临床上,相当一部分患者寻求医治时,疾病已经进入中、晚期,丧失了最佳的治疗时间,这是肿瘤死亡率居高不下的原因之一。
MRI(核磁共振成像)是一项非常重要的非侵入性疾病诊断技术。MRI的显著优点之一是能够获得关于整个组织样本和具有高空间分辨率的动物的三维断层信息和软组织对比度。此外,还可以在不使用电离辐射或放射性示踪剂的情况下获取图像。核磁共振成像虽然具备多种优点,但因其较低的灵敏度却不能满足肿瘤早期诊断的要求。这是因为,早期肿瘤和正常组织在物理特性上差异较小(例如T1和T2),这种微小的物理特性差异不足以产生肿瘤和正常组织的影像对比。为了解决这一难题,人们应用核磁共振造影剂来增强肿瘤和正常组织影像的对比度以利于肿瘤的早期诊断。造影剂一般是顺磁性、超顺磁性或铁磁性材料,能够同氢核发生磁性相互作用,降低本体水质子的弛豫时间。
根据原理可将造影剂分为T1类造影剂和T2造影剂。T1类造影剂在T1加权成像中增加信号的强度,使图像变亮。T2造影剂在T2加权成像中降低信号强度,使图像变暗。临床使用哪一类造影剂则根据组织的特点而定。T1缩短的过程要求氢质子与造影剂的磁性部分直接作用,即水分子的氢核要尽可能地接近磁性微粒以达到弛豫增强效果。T2缩短过程是一种远程效应,通过T2造影剂的局部磁环境的不均匀性干扰T2
超顺磁纳米颗粒因其较高的r2值,生物相容性和在体内的长循环时间而被广泛用作T2MRI造影剂。然而,负对比效应和磁化率伪影的缺点阻碍了他们在临床中的广泛应用。所得的T2加权成像暗信号常常与来自出血,钙化或金属沉积物的信号混淆而造成临床诊断的误导,并且易形成伪影造成背景图像失真。所以,T1造影剂比T2造影剂更适合用于精确的高分辨率成像。
超声成像作为另一种重要的医学影像诊断形式,可以观察心脏及胎儿的活动情况。超声技术是通过超声探头透过人体的表皮,由表及里的对组织进行探测,这样各个组织所反映的阻抗不一样,所反映出来的衰减信号也就不一样,就可以通过图像的不一样来对疾病进行诊断。而超声诊断由于其特有的一些优势特点也得到了很多人的关注,例如价格相对比较便宜,可获得器官的任意面的断层成像图像,并且还可以观察运动器官的实时的活动情况,成像快,诊断及时,无痛苦且危险性低,属于非损伤性检查。因此,在临床上的应用已经十分普及,是医学影像学中的不可磨灭的重要组成部分。
传统的超声成像造影剂通常是由直径为几十微米到几微米不等的有壳的微气泡和微泡内气体组成的,但这类造影剂粒径较大,且大小不均一,不能通过肺循环,使其应用受限。随着超声造影剂的不断发展,超声技术在医学领域上的作用越来越重要,制备粒径小且稳定性强的超声造影剂,使其能够在肺部甚至更深层部位循环且具有较长的循环时间是研究者的重要任务之一。
发明内容
本发明的目的是提供一种纳米级的超顺磁性空心Fe3O4纳米粒子,该纳米粒子可作为超声造影剂及MRI造影剂,粒径均一,形貌可控,重复性好,生物相容性高,在溶液水平和活体水平具有较好的MR T1成像效果,并打破了传统US造影剂粒径上的束缚。
本发明的另一个目的是提供上述纳米级的超顺磁性空心Fe3O4纳米粒子的制备方法。
本发明的目的可以通过以下方案来实现:
一种纳米级的超顺磁性空心Fe3O4纳米粒子,其特征在于:在超顺磁性空心Fe3O4纳米粒子表面偶联单羧基聚乙二醇(mPEG-COOH)和叠氮多巴胺(DA-N3)。
优选的,所述空心Fe3O4纳米粒子的直径为6-8nm,单羧基聚乙二醇的分子量为1800-2200。
进一步优选的,单羧基聚乙二醇的分子量为2000。
一种纳米级的超顺磁性空心Fe3O4纳米粒子的制备方法,其步骤包括:
(1)将叠氮多巴胺与单羧基聚乙二醇溶于去离子水中;加入饱和Na2CO3溶液,超声混匀,形成混合溶液;
(2)在步骤(1)中获得的混合液中加入空心Fe3O4纳米粒子分散液,摇床反应;
(3)在步骤(2)中的反应液加入乙醇离心分离,获得纳米级的超顺磁性空心Fe3O4纳米粒子,并保存在去离子水中。
优选的,所述步骤(1)中,叠氮多巴胺、单羧基聚乙二醇、去离子水与饱和Na2CO3溶液的加入量配比为10-70mg:15-100mg:1-20mL:1mL。
优选的,所述步骤(2)中,叠氮多巴胺、单羧基聚乙二醇与空心Fe3O4纳米粒子的重量比为0.5-4:1-10:1。
进一步优选的,所述叠氮多巴胺、单羧基聚乙二醇与空心Fe3O4纳米粒子的重量比为0.5-1:1-5:1,其水动力学直径在100-300nm之间,超声效果相当好。
所述空心Fe3O4-mPEG-COOH/DA-N3纳米粒子的水动力学直径随着叠氮多巴胺、单羧基聚乙二醇的增加,水动力学直径逐渐增大。优选的,所述空心Fe3O4-mPEG-COOH/DA-N3纳米粒子的水动力学直径在50-300nm,尤其是控制在100-300nm之间,超声效果相当好。
优选的,所述空心Fe3O4纳米粒子为油溶性纳米粒子,分散在氯仿中,浓度为2-5mg/mL。
优选的,所述步骤(2)中,摇床反应的工艺条件为,37℃摇床反应12-16h。
上述纳米级的超顺磁性空心Fe3O4纳米粒子在MR T1成像造影剂中的应用。
上述纳米级的超顺磁性空心Fe3O4纳米粒子在超声造影成像造影剂中的应用。
本发明以高温热解法合成的超顺磁性空心Fe3O4纳米粒子为载体,其表面含有油胺油酸等物质,表现为疏水性。DA-N3与mPEG-COOH分别含有酚羟基和羧基,将他们与空心Fe3O4纳米粒子混合,通过化学键作用使得DA-N3与mPEG-COOH键联到空心Fe3O4纳米粒子表面,即获得纳米级的超顺磁性空心Fe3O4纳米粒子(Fe3O4-mPEG-COOH/DA-N3纳米粒子)。由于mPEG-COOH具有很高的生物相容性,得到的Fe3O4-mPEG-COOH/DA-N3纳米粒子具有优异的生物相容性,可以提高造影剂在血液中的循环时间。由于DA-N3的存在,可进一步接靶向物质用于MR主动靶向成像。
所得Fe3O4-mPEG-COOH/DA-N3纳米粒子粒径均一,形貌可控,重复性好,生物相容性高,具有明显的空心结构。由于该纳米粒子具有较好的顺磁性和较小的粒径,适用于肿瘤T1核磁共振成像,同时,基于该纳米粒子具有空心结构,适用于超声造影成像。
本发明的有益效果:
1、本发明制备得到的超顺磁性空心Fe3O4纳米粒子粒径均一,直径为6-8nm,形貌可控,重复性好,生物相容性高,具有明显的空心结构。
2、所述超顺磁性空心Fe3O4纳米粒子有很好的体内T1加权成像效果,可以用作MRT1成像造影剂。
3、所述超顺磁性空心Fe3O4纳米粒子在用作超声造影剂时,超声造影效果好;信号稳定,至少可维持30min。打破了传统超声造影剂粒径在微米级别上的限制,为超声造影剂的研究与发展开创了新篇。
4、所述超顺磁性空心Fe3O4纳米粒子的水动力学直径随着叠氮多巴胺、单羧基聚乙二醇的增加,水动力学直径逐渐增大,当水动力学直径控制在100-300nm之间,超声效果相当好。
5、本发明的制备过程简单,反应条件温和,原料廉价易得。
附图说明
图1为本发明的超顺磁性空心Fe3O4纳米粒子的XRD图。
图2为实施例1中超顺磁性空心Fe3O4纳米粒子的TEM图及粒径统计图,其中,图2(a)为TEM图,图2(b)为粒径统计图。
图3为实施例2中制得的超顺磁性空心Fe3O4纳米粒子的水动力学直径。
图4为实施例3中制得的超顺磁性空心Fe3O4纳米粒子的水动力学直径。
图5为实施例4中制得的超顺磁性空心Fe3O4纳米粒子的水动力学直径。
图6为实施例2中制得的超顺磁性空心Fe3O4纳米粒子的在0.5T磁场下的MRI成像图。
图7为实施例3中制得的超顺磁性空心Fe3O4纳米粒子的在3T磁场下的MRI成像图。
图8为实施例4中制得的超顺磁性空心Fe3O4纳米粒子在不同浓度条件下溶液中的超声成像图。
图9为实施例4中制得的超顺磁性空心Fe3O4纳米粒子在不同浓度条件下溶液中的超声信号强度对比图。
图10为实施例6中制得的超顺磁性空心Fe3O4纳米粒子在小鼠肝脏中的超声成像图。
具体实施方式
下面结合实施例,对本发明作进一步说明:
实施例中用到的空心Fe3O4纳米粒子及叠氮多巴胺的制备方法如下:
油溶性空心Fe3O4纳米粒子的制备方法:
取20mL 1-十八烯与0.3mL油胺混合,通氮气并磁力搅拌,加至120℃并保持30min以除去体系内水分。加至183-185℃,关闭氮气流换氮气球,用注射器快速加入0.7mL Fe(CO)5,反应温度不能低于180℃,反应30min,冷至室温。弃去上清液,加正己烷与无水乙醇离心,重复2次,将所得Fe/Fe3O4纳米粒子分散到10mL正己烷中,加入0.01mL油胺备用。
取30mg Me3NO分散到20mL十八烯中,磁搅拌通氮气,加至130℃保持1h。注入含80mg上述Fe/Fe3O4正己烷分散液,130℃保持1h以除去正己烷。然后升温至210℃并保持2h,冷却至190℃,加入0.3mL油酸,冷至室温。加异丙醇离心分离1次,再加正己烷与无水乙醇离心2次,最终分散到氯仿中。
图1中的XRD图谱可以看出,所得纳米粒子与与标准卡片77-1545匹配,为Fe3O4
叠氮多巴胺的制备方法为:
将0.42g NaN3(6.43mmol)和1g氯乙酰儿茶酚(5.36mmol)置于100mL圆底烧瓶中,加入15ml二甲亚砜DMSO,磁力搅拌反应12h。然后,加入50mL冰水,用乙醚萃取,用饱和NaCl溶液洗涤,最后用Na2CO3干燥、备用。
实施例1
取10mg叠氮多巴胺与20mg单羧基聚乙二醇于25mL茄形瓶中,加入2.5mL去离子水和0.5mL饱和Na2CO3溶液,超声振荡混匀,取2.5mL 8mg/mL空心Fe3O4纳米粒子分散液加入其中,37℃摇床反应12-16h,加乙醇离心分离,分散到去离子水中备用。
图2(a)为本实施案例中空心Fe3O4-mPEG-COOH/DA-N3纳米粒子的TEM图,图2(b)为粒径统计图,从TEM图可知空心Fe3O4-mPEG-COOH/DA-N3纳米粒子在水中均匀分散,且具有明显的空心结构,经粒径统计纳米粒子的外径为6.8±1.0nm。
实施例2
取20mg叠氮多巴胺与20mg单羧基聚乙二醇于25mL茄形瓶中,加入5mL去离子水和1mL饱和Na2CO3溶液,超声振荡混匀,取5mL4mg/mL空心Fe3O4纳米粒子分散液加入其中,37℃摇床反应12-16h,加乙醇离心分离,分散到去离子水中备用。
图3为本实施案例中制备的空心Fe3O4-mPEG-COOH/DA-N3纳米粒子的水动力学直径。
图6为本实施案例中制备的空心Fe3O4-mPEG-COOH/DA-N3纳米粒子在0.5T磁场下的MR成像,随着纳米粒子浓度的不断增加,成像越来越亮,即信号越来越强,表现出优越的T1成像效果。
实施例3
取20mg叠氮多巴胺与50mg单羧基聚乙二醇于25mL茄形瓶中,加入5mL去离子水和1.2mL饱和Na2CO3溶液,超声振荡混匀,取5mL 4mg/mL空心Fe3O4纳米粒子分散液加入其中,37℃摇床反应12-16h,加乙醇离心分离,分散到去离子水中备用。
图4显示了本实施案例中制备的空心Fe3O4-mPEG-COOH/DA-N3纳米粒子的水动力学直径。
图7显示了本实施案例中制备的空心Fe3O4-mPEG-COOH/DA-N3纳米粒子通过尾静脉注射到4T1种植的BALB/C小鼠肿瘤处,在3T磁场下的MRI成像图,在材料打进小鼠体内后20min即有微弱的信号,肿瘤部位较其他组织具有较高的信号,且肿瘤外围信号比肿瘤内部信号更亮,随着时间的增长,信号强度在肿瘤内的分布逐渐均匀。80min时信号强度达到最大,100min后信号开始下降,120min后信号进一步减弱,肿瘤部位明显变暗。结果表明空心Fe3O4-mPEG-COOH/DA-N3纳米粒子表现出了很好的体内T1加权成像效果。
实施例4
取20mg叠氮多巴胺与100mg单羧基聚乙二醇于25mL茄形瓶中,加入5mL去离子水和0.3mL饱和Na2CO3溶液,超声振荡混匀,取5mL的4mg/mL空心Fe3O4纳米粒子分散液加入其中,37℃摇床反应12-16h,加乙醇离心分离,分散到去离子水中备用。
图5为本实施案例中空心Fe3O4-mPEG-COOH/DA-N3纳米粒子的水动力学直径。
图8为本实施案例中空心Fe3O4-mPEG-COOH/DA-N3纳米粒子在不同浓度条件下溶液中的超声成像图。
图9为本实施案例中空心Fe3O4-mPEG-COOH/DA-N3纳米粒子在不同浓度条件下溶液中的超声信号强度对比图。可以看出该超声造影剂信号稳定,图中截取图片均为录像5min时的图,从信号强度可以明显看出,随着浓度的增大,造影信号强度逐渐增强,到1.5mg/mL时达到最大值,随后随浓度增大而降低。
实施例5
取20mg叠氮多巴胺与40mg单羧基聚乙二醇于25mL茄形瓶中,加入5mL去离子水和0.7mL饱和Na2CO3溶液,超声振荡混匀,取5mL的4mg/mL空心Fe3O4纳米粒子分散液加入其中,37℃摇床反应12-16h,加乙醇离心分离,分散到去离子水中备用。
图10为本实施案例中空心Fe3O4-mPEG-COOH/DA-N3纳米粒子在小鼠肝脏中的超声成像图。通过尾静脉注射200μL 2.2mg/mL的本实施例制备的的空心Fe3O4-mPEG-COOH/DA-N3纳米粒子,并立即持续测定超声造影效果,发现材料注入1min后超声信号开始增强,随着时间的推移,材料逐渐充满整个肝脏,到5min时,材料充满整个肝脏,超声信号强度达到最大值,直至30min信号强度都稳定在这一水平。这一实验结果打破了传统超声造影剂粒径在微米级别上的限制,为超声造影剂的研究与发展开创了新篇。
以上所述为本发明的较佳实施例而已,但本发明不应该局限于该实施例所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (9)

1.一种纳米级的超顺磁性空心Fe3O4纳米粒子,其特征在于:在超顺磁性空心Fe3O4纳米粒子表面偶联单羧基聚乙二醇和叠氮多巴胺。
2.根据权利要求1所述的纳米级的超顺磁性空心Fe3O4纳米粒子,其特征在于:所述空心Fe3O4纳米粒子的直径为6-8nm,单羧基聚乙二醇的分子量为1800-2200。
3.一种纳米级的超顺磁性空心Fe3O4纳米粒子的制备方法,其步骤包括:
(1)将叠氮多巴胺与单羧基聚乙二醇溶于去离子水中;加入饱和Na2CO3溶液,超声混匀,形成混合溶液;
(2)在步骤(1)中获得的混合液中加入空心Fe3O4纳米粒子分散液,摇床反应;
(3)在步骤(2)中的反应液加入乙醇离心分离,获得纳米级的超顺磁性空心Fe3O4纳米粒子,并保存在去离子水中。
4.根据权利要求3所述的纳米级的超顺磁性空心Fe3O4纳米粒子的制备方法,其特征在于:所述步骤(1)中,叠氮多巴胺、单羧基聚乙二醇、去离子水与饱和Na2CO3溶液的加入量配比为10-70mg:15-100mg:1-20mL:1mL。
5.根据权利要求3所述的纳米级的超顺磁性空心Fe3O4纳米粒子的制备方法,其特征在于:所述步骤(2)中,叠氮多巴胺、单羧基聚乙二醇与空心Fe3O4纳米粒子的重量比为0.5-4:1-10:1。
6.根据权利要求3所述的纳米级的超顺磁性空心Fe3O4纳米粒子的制备方法,其特征在于:所述空心Fe3O4纳米粒子为油溶性纳米粒子,分散在氯仿中,浓度为2-5mg/mL。
7.根据权利要求3所述的纳米级的超顺磁性空心Fe3O4纳米粒子的制备方法,其特征在于:所述步骤(2)中,摇床反应的工艺条件为,37℃摇床反应12-16h。
8.权利要求1所述的纳米级的超顺磁性空心Fe3O4纳米粒子在MR T1成像造影剂中的应用。
9.权利要求1所述的纳米级的超顺磁性空心Fe3O4纳米粒子在超声造影成像造影剂中的应用。
CN201710474938.0A 2017-06-21 2017-06-21 一种纳米级的超顺磁性空心Fe3O4纳米粒子及其制备方法和应用 Active CN109095509B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710474938.0A CN109095509B (zh) 2017-06-21 2017-06-21 一种纳米级的超顺磁性空心Fe3O4纳米粒子及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710474938.0A CN109095509B (zh) 2017-06-21 2017-06-21 一种纳米级的超顺磁性空心Fe3O4纳米粒子及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109095509A true CN109095509A (zh) 2018-12-28
CN109095509B CN109095509B (zh) 2020-12-01

Family

ID=64796176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710474938.0A Active CN109095509B (zh) 2017-06-21 2017-06-21 一种纳米级的超顺磁性空心Fe3O4纳米粒子及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109095509B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102218150A (zh) * 2010-08-17 2011-10-19 扬州大学 新型肝靶向纳米Fe3O4MRI造影剂及制备方法
CN102380109A (zh) * 2011-10-26 2012-03-21 四川大学 一种两亲性多糖包裹超顺磁纳米粒子构建的磁共振造影剂及其制备方法
EP2808036A1 (en) * 2012-01-27 2014-12-03 Soluciones Nanotecnológicas S.L. Superparamagnetic nanoparticles as a contrast agent for magnetic resonance imaging (mri) of magnetic susceptibility (t2*)
CN104258425A (zh) * 2014-09-17 2015-01-07 东南大学 一种rgd修饰的超小磁性氧化铁纳米颗粒的制备方法及其应用
CN105741993A (zh) * 2016-02-03 2016-07-06 上海师范大学 叠氮多巴胺和羧基聚乙二醇修饰的Fe/Fe3O4纳米粒子及制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102218150A (zh) * 2010-08-17 2011-10-19 扬州大学 新型肝靶向纳米Fe3O4MRI造影剂及制备方法
CN102380109A (zh) * 2011-10-26 2012-03-21 四川大学 一种两亲性多糖包裹超顺磁纳米粒子构建的磁共振造影剂及其制备方法
EP2808036A1 (en) * 2012-01-27 2014-12-03 Soluciones Nanotecnológicas S.L. Superparamagnetic nanoparticles as a contrast agent for magnetic resonance imaging (mri) of magnetic susceptibility (t2*)
CN104258425A (zh) * 2014-09-17 2015-01-07 东南大学 一种rgd修饰的超小磁性氧化铁纳米颗粒的制备方法及其应用
CN105741993A (zh) * 2016-02-03 2016-07-06 上海师范大学 叠氮多巴胺和羧基聚乙二醇修饰的Fe/Fe3O4纳米粒子及制备和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ALI HOSSEIN REZAYAN ET AL.: "Monodisperse magnetite(Fe3O4) nanoparticlesmodified withwater soluble polymers for the diagnosis of breast cancer by MRI method", 《JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS》 *
FENGQIN HU ET AL.: "Preparation of magnetite nanocrystals with surface reactive moieties by one-pot reaction", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
JINCHAO SHEN ET AL.: "Detection of melamine by a magnetic relaxation switch assay with functionalized Fe/Fe3O4 nanoparticles", 《SENSORS AND ACTUATORS B: CHEMICAL》 *
KAI YAN ET AL.: "Recent advances in multifunctional magnetic nanoparticles and applications to biomedical diagnosis and treatment", 《RSC ADV》 *
RUIRUI QIAO ET AL.: "Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications", 《J. MATER. CHEM》 *
ZHEN LI ET AL.: "one pot reaction of synthesize biocompatible magnetic nanoparticles", 《ADV.MATER》 *

Also Published As

Publication number Publication date
CN109095509B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
Hao et al. Stem cell-mediated delivery of nanogels loaded with ultrasmall iron oxide nanoparticles for enhanced tumor MR imaging
CN108888767B (zh) 一种纳米复合材料、其制备方法及应用
JP6174603B2 (ja) T2*強調磁気共鳴イメージング(mri)のための造影剤
Yang et al. Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents
CN103143043B (zh) 一种Fe3O4/Au复合纳米颗粒的制备方法
Yang et al. Glucose and magnetic-responsive approach toward in situ nitric oxide bubbles controlled generation for hyperglycemia theranostics
CN104906600B (zh) 一种超顺磁性纳米颗粒及其制备方法和应用
Lin et al. Magnetic nanoparticles applied in targeted therapy and magnetic resonance imaging: crucial preparation parameters, indispensable pre-treatments, updated research advancements and future perspectives
CN104689346B (zh) 用于肿瘤mri/ct成像和光热治疗的多功能纳米探针及应用
CN103463648A (zh) 一种表面修饰的氧化铁核-氧化钆壳复合纳米粒子及其制法和用途
CN109395101A (zh) 靶向血脑屏障和脑胶质瘤的磁共振对比剂的制备方法
Maghsoudinia et al. Folic acid-functionalized gadolinium-loaded phase transition nanodroplets for dual-modal ultrasound/magnetic resonance imaging of hepatocellular carcinoma
CN106668878B (zh) 一种集t1、t2双模式为一体的多功能介孔碳小球及其制备方法
CN111450269A (zh) 一种多功能超声造影剂及其制备方法
CN113398286B (zh) 一种靶向载铁氧体多功能纳米粒及其制备方法和应用
CN105903038B (zh) 一种掺杂钆的空心囊泡结构纳米复合材料及其制备与应用
CN109481700A (zh) 一种用于肝癌早期诊断的分子探针及其制备方法
CN110559453B (zh) 一种用于显像指导的磁性纳米颗粒及其制备方法
CN107693803A (zh) 一种负载氧化锰的杂化海藻酸钠纳米凝胶的制备方法
CN109095509A (zh) 一种纳米级的超顺磁性空心Fe3O4纳米粒子及其制备方法和应用
CN110237272A (zh) 适用于mri/nir-ii的双模态肿瘤成像纳米探针、制备方法及应用
CN106398681A (zh) 基于二氧化硅的pH敏感的荧光纳米材料、其制备方法及其应用
CN111558052B (zh) 双特异性PSMA/GRPr靶向双模态显像纳米造影剂及其制备方法和应用
Hartanto et al. Nanoparticles for ultrasound-guided imaging of cell implantation
CN107349435A (zh) 一种精氨酸稳定的中空泡状硅酸锰纳米粒的制备方法、产品及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant