CN109092304B - 一种Pt基催化剂及其制备方法和应用 - Google Patents

一种Pt基催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN109092304B
CN109092304B CN201810890336.8A CN201810890336A CN109092304B CN 109092304 B CN109092304 B CN 109092304B CN 201810890336 A CN201810890336 A CN 201810890336A CN 109092304 B CN109092304 B CN 109092304B
Authority
CN
China
Prior art keywords
catalyst
based catalyst
prepared
ceo
microwave heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810890336.8A
Other languages
English (en)
Other versions
CN109092304A (zh
Inventor
熊坤
路星雯
郭家宏
梁艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201810890336.8A priority Critical patent/CN109092304B/zh
Publication of CN109092304A publication Critical patent/CN109092304A/zh
Application granted granted Critical
Publication of CN109092304B publication Critical patent/CN109092304B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Pt基催化剂的制备方法和应用,所述制备方法包括如下步骤:S1.将镧修饰的三氧化二铝载体La/Al2O3负载Pt前驱体,然后通过微波加热进行低温煅烧,得到过渡催化剂Pt/La‑Al2O3;S2.将步骤S1.制得的过渡催化剂Pt/La‑Al2O3和棒状体CeO2混合均匀,然后通过微波加热进行高温煅烧,得到Pt基催化剂。本发明提供的制备方法通过结合微波加热和原子捕捉,制备得到含有Pt/CeO2的Pt基催化剂,制得的Pt基催化剂能够用于CO催化氧化,稳定性好,在高温环境下贵金属Pt不容易团聚失活,且催化活性明显优于通过普通加热方式或普通浸渍法制得的Pt基催化剂。

Description

一种Pt基催化剂及其制备方法和应用
技术领域
本发明涉及贵金属催化剂的技术领域,更具体地,涉及一种Pt基催化剂及其制备方法和应用。
背景技术
CO作为煤、石油等含碳物质或烃类物质不完全燃烧的产物,也是温室气体之一,过多的排放不但会给人类身体健康带来严重威胁,同时也对生态环境带来极大的危害。对CO的处理中催化氧化技术是CO无害化处理中应范围最广泛,最经济有效的方法。CO催化氧化反应是CO与O2在催化剂表面的双分子反应,是很多工业过程中的重要反应,按照种类不同可分为贵金属催化剂、非贵金属催化剂、分子筛催化剂以及合金催化剂等,不同催化剂体系的催化氧化反应机理不同。
在CO催化氧化反应中,贵金属催化剂中贵金属主要包括金、银和铂族金属(铂、铑、钯、铱),贵金属催化剂价格较高。对于CO催化氧化应用中的Pt、Au、Pd等贵金属催化剂催化活性好、反应温度低,所需活性相量少,是比较常用的催化剂。催化剂制备方法不同,会影响催化剂活性组分的分散、催化剂颗粒的大小和结构等。浸渍法制备负载型贵金属催化剂的方法虽然简单,但催化剂表面活性组分分布不均,制得的负载型贵金属催化剂稳定性较差。
现有的贵金属Pt催化剂在高温环境下贵金属Pt容易团聚失活,活性长效性差,寿命短,对贵金属Pt催化剂来说并不能达到经济环保的效果。因此,需要开发出稳定性更好的用于CO催化氧化的贵金属Pt催化剂。
发明内容
本发明为克服上述现有技术所述的稳定性差、在高温环境下贵金属Pt容易团聚失活的缺陷,提供一种Pt基催化剂的制备方法,制得的Pt基催化剂能够用于CO催化氧化,稳定性好,在高温环境下贵金属Pt不容易团聚失活。
本发明的另一目的在于提供上述制备方法制得的Pt基催化剂。
本发明的还一目的在于提供上述Pt基催化剂在CO催化氧化中的应用。
为解决上述技术问题,本发明采用的技术方案是:
一种Pt基催化剂的制备方法,包括如下步骤:
S1.将镧修饰的三氧化二铝载体La/Al2O3负载Pt前驱体,然后通过微波加热进行低温煅烧,得到过渡催化剂Pt/La-Al2O3
S2.将步骤S1.制得的过渡催化剂Pt/La-Al2O3和棒状体CeO2混合均匀,然后通过微波加热进行高温煅烧,得到Pt基催化剂。
发明人研究发现,负载Pt前驱体的La/Al2O3通过微波加热进行低温煅烧得到负载Pt的过渡催化剂Pt/La-Al2O3;Pt/La-Al2O3与棒状体CeO2混合均匀后,通过微波加热进行高温煅烧,Pt/La-Al2O3上的Pt被CeO2俘获,即结合微波加热和原子捕捉,成功实现Pt从过渡催化剂Pt/La-Al2O3转移到CeO2上,形成Pt/CeO2,得到Pt基催化剂;并且,需要煅烧足够的时间,才能将Pt/La-Al2O3上的Pt绝大部分转移到CeO2上。相对于Pt基催化剂的传统制备方法,此时催化剂的成核方式发生改变并达到更佳稳定的状态。制得的Pt基催化剂能够用于CO催化氧化,稳定性好,在高温环境下贵金属Pt不容易团聚失活,且催化活性明显优于通过普通加热方式或普通浸渍法制得的Pt基催化剂。
所述镧修饰的三氧化二铝载体La/Al2O3可市售得到,也可由本领域技术人员根据现有技术制备得到。镧修饰的三氧化二铝载体La/Al2O3中La的质量含量一般为3%~6%,可以选择La的质量含量为4%的La/Al2O3。其中的三氧化二铝载体为本领域中常用的三氧化二铝载体。棒状体CeO2可由本领域技术人员根据现有技术制备得到。该棒状体CeO2的尺寸为(9.6±1.2)×(50~200)nm。
优选地,所述Pt前驱体为氯铂酸或氯铂酸铵。
优选地,所述Pt前驱体为氯铂酸。
优选地,La/Al2O3通过浸渍法负载氯铂酸。
优选地,La/Al2O3负载氯铂酸的方法为,将La/Al2O3与氯铂酸溶液混合,然后去除溶剂。
La/Al2O3负载氯铂酸的具体操作:将计算量氯铂酸溶液逐滴滴加到载体La/Al2O3,60℃下超声搅拌1h;浸渍2h后去除溶剂。
优选地,所述低温煅烧的条件为330~370℃温度下煅烧1.0~2.0h。
优选地,所述高温煅烧的条件为780~820℃温度下煅烧10~16h。
负载氯铂酸的La/Al2O3在较低温度330~370℃条件下煅烧1.0~2.0h得到负载Pt的过渡催化剂Pt/La-Al2O3。Pt/La-Al2O3与棒状体CeO2混合均匀后,在较高温度780~820℃条件下煅烧时,Pt/La-Al2O3上的Pt被CeO2俘获,使得Pt/La-Al2O3上的Pt转移到CeO2上;并且需要煅烧足够的时间10~16h,才能将Pt/La-Al2O3上的Pt绝大部分转移到CeO2上,形成Pt/CeO2
优选地,步骤S2.中微波加热的功率为800~1100W。
更优选地,步骤S2.中微波加热的功率为900~1000W。
进一步优选地,步骤S2.中微波加热的功率为1000W。
发明人研究发现,900W和1000W制得的Pt基催化剂的催化活性优于800W和1100W制得的Pt基催化剂,而且,其中,1000W制得的Pt基催化剂的催化活性最佳。
在不同的微波加热功率下,单位时间内微波源产生的微波能不同,相同的催化剂含量条件下所吸收到的微波能也有所差异。微波数值过小,加热速率慢,物质分子在微波电磁场中转动速度不够快速,会引起少量粒子的团聚现象。若功率过大,升温速率快,若升温到预设值微波煅烧炉会停止做功而导致部分微波能没被吸收。因此,选择最佳的微波功率才能达到物质内大量晶核均匀的生成以及减少粒子团聚的目的。
优选地,步骤S2.中微波加热的时间为10~16h。
更优选地,步骤S2.中微波加热的时间为12~16h。
进一步优选地,步骤S2.中微波加热的时间为14h。
发明人研究发现,CO催化氧化的反应温度为90℃时,微波煅烧12h、14h和16h制得的Pt基催化剂的催化活性优于微波煅烧10h制得的Pt基催化剂;当CO催化氧化的反应温度升至120℃时,微波煅烧14h制得的Pt基催化剂的催化活性最佳。
在最后一步的原子捕捉过程原理在于维持在高温环境下,将在过渡载体上以PtO形式存在的Pt物种气态化而被终端载体CeO2成功捕捉,因此需要较长时间高温环境的维持以保证Pt颗粒的完全转移。
优选地,步骤S2.中过渡催化剂Pt/La-Al2O3和棒状体CeO2的质量比为1.9~2.1︰1,过渡催化剂Pt/La-Al2O3和棒状体CeO2的混合物中Pt的质量百分数为0.2%~2%。
更优选地,步骤S2.中过渡催化剂Pt/La-Al2O3和棒状体CeO2的混合物中Pt的质量百分数为1%~2%。
进一步优选地,步骤S2.中过渡催化剂Pt/La-Al2O3和棒状体CeO2的质量比为2︰1,过渡催化剂Pt/La-Al2O3和棒状体CeO2的混合物中Pt的质量百分数为1%。
发明人研究发现,Pt负载量为1%和2%的Pt基催化剂的催化活性优于Pt负载量为0.2%和0.6%的Pt基催化剂,而且,其中,Pt负载量为1%的Pt基催化剂的催化活性最佳。
过小的含量无法表现活性成分,含量过大又会堵塞载体的孔径而造成催化剂性能的下降。通过比表面积的测试分析可发现,当负载量为1%Pt时,催化剂的比表面积及孔体积达到最大值,说明此时的含量使得活性相Pt在载体CeO2上分散性最好,负载效果最佳,为最适宜的活性含量负载量。
本发明同时保护上述制备方法制得的Pt基催化剂。
上述Pt基催化剂能够用于CO催化氧化,稳定性好,在高温环境下贵金属Pt不容易团聚失活。
本发明还保护上述Pt基催化剂在一氧化碳催化氧化中的应用。
优选地,进行一氧化碳催化氧化时通入的气体含有一氧化碳和氧气,所述
一氧化碳的体积浓度为750~850ppm,所述氧气的体积浓度为6%~9%。
进行一氧化碳催化氧化时通入的气体一般含有一氧化碳和氧气,另外通入氮气作为平衡气体。
O2的存在使得O2吸附在催化剂表面形成吸附态氧,从而与进料成分中CO反应,同时造成氧空位的形成,此时CeO2中的晶格氧便与CO进行反应,如此循环。适宜O2的浓度促进与CO的反应,但浓度过高,表明了其在催化剂表面达到饱和吸附,再增加O2浓度也不能提高催化剂的转化效率。
与现有技术相比,本发明的有益效果是:
本发明提供的制备方法通过结合微波加热和原子捕捉,制得含有Pt/CeO2的Pt基催化剂,制得的Pt基催化剂能够用于CO催化氧化,稳定性好,在高温环境下贵金属Pt不容易团聚失活,且催化活性明显优于通过普通加热方式或普通浸渍法制得的Pt基催化剂。
附图说明
图1为实验室模拟CO催化氧化的实验室装置示意图。
图中,1-钢瓶;2-质量流量控制器;3-气体缓冲瓶;4-催化剂固定床反应器;5-温度回馈控制器;6-烟道气体分析器;7-电脑-数据分析处理器。
图2为实施例1制得的Pt基催化剂的TEM图。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
实施例中的原料均可可通过市售得到;
除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。微波加热的设备为微波马弗炉(CY-MU1200C-S,湖南长仪微波科技有限公司)。
1.镧修饰的三氧化二铝载体La/Al2O3的制备
将计算量的活性氧化铝Al2O3倒入装有一定量镧的硝酸盐溶液的烧杯中,60℃下超声搅拌1h;浸渍2h后,去除溶剂,然后在微波煅烧炉中550W、500℃煅烧30min,得到镧修饰的三氧化二铝载体La/Al2O3,其中La质量百分数为4%。本发明的实施例中使用的La/Al2O3中La质量百分数均为4%。
2.棒状体CeO2的制备
将计算量铈的硝酸溶液(Ce(NO3)2·6H2O)溶于适量去离子水,均匀搅拌;
将计算量氢氧化钠(NaOH)溶于适量去离子水,在通风橱内进行搅拌;
将上述两个溶液进行混合,并在60℃下超声搅拌1h,并将混合溶液倒入特氟龙罐,放入烘箱100℃下水热处理24h;
取出特氟龙罐,待其降至室温后将混合液转移至烧杯,并用水和乙醇清洗数次,直至溶液呈中性为止,制备得到淡黄色棒状体CeO2
实施例1
一种Pt基催化剂的制备方法,包括如下步骤:
S1.称取一定量制备好的被修饰载体4%La/Al2O3装入50mL烧杯,将计算量H2PtCl6逐滴滴加其中,并于超声机中60℃下反应1h,浸渍2h后,去除溶剂,转移至石英舟并于微波煅烧炉中450W、350℃下煅烧2h,得到过渡催化剂Pt/La-Al2O3
S2.将步骤S1.中Pt/La-Al2O3与制备好的淡黄色棒状体CeO2按2:1的质量比进行物理混合,在研钵中均匀研磨15min,其中,保证Pt的质量分数为1%;将研磨好的样品于微波煅烧炉中1000W下煅烧14h,制得Pt基催化剂。
实施例2~4
与实施例1不同的是,实施例2~4中步骤S2.的煅烧功率分别为800W、900W和1100W,如表1所示;其他原料使用量和操作步骤与实施例1相同。
实施例5~7
与实施例1不同的是,实施例5~7中步骤S2.的煅烧时间分别为10h、12h和16h,如表1所示;其他原料使用量和操作步骤与实施例1相同。
实施例8~10
与实施例1不同的是,实施例8~10中步骤S2.的混合物中Pt负载量分别为0.2%、0.6%和2%,如表1所示;其他原料使用量和操作步骤与实施例1相同。
表1实施例2~10的Pt基催化剂的制备条件
Figure BDA0001756777400000061
对比例1
与实施例1不同的是,本对比例中步骤S1.和S2.的煅烧均采用普通马弗炉煅烧;其他原料使用量和操作步骤与实施例1相同。
性能测试
1.透射电镜测试
透射电子显微镜(Transmission Electron Microscope(TEM),OXFORD INCAENERGY400);
高分辨率下获取全貌图,选择不同载体CeO2、La-Al2O3进行能谱的扫描(EDS);以验证Pt的转移成功性。
2.催化剂的CO催化氧化活性测试
(1)催化剂的CO催化氧化过程:
催化剂在含氧状态下与CO反应方程式如下:
O2+CO*→CO2+O*
O*+CO→CO2
CO优先与吸附态的O2反应生成CO2,此后催化剂上的晶格氧能迅速补充此过程产生的氧缺位继续反应,如此循环。
(2)实验室装置:
实验室装置图如图1所示;实验室模拟CO催化氧化反应操作表示为:先由气体系统调配所需的反应气体,根据计算所需进料成分,钢瓶出来后的气体通过质量流量计调节浓度和流量。配制好的气体在气体混合瓶混合后均匀进入配有温度调节系统的催化剂反应装置进行活性测试,连接烟气分析仪进行反应前后的气体浓度分析,随后经过如下方程式③,计算出CO转化率,比较催化剂的活性。
Figure BDA0001756777400000071
方程式③中,CCO,in表示CO的进口浓度;CCO,out表示CO的出口浓度。
(3)测试方法:
首先先称取0.03g石英棉花于直径为10mm、管长为80cm的石英反应管中心十子形支架上,作为支撑催化剂粉末的隔热挡板;
取催化剂0.22g放入该石英反应管中,反应前先通入含有5%H2的混合气体在800℃下处理1h,空气中500℃反应30min,后冷却至室温再通入反应气体800ppmCO+9%O2+N2(N2为平衡气体),总流速为500mL/min,空间速度GHSV=100ⅹ10^3h-1,反应温度为60~300℃,程序升温,并依次在60℃、90℃、120℃、150℃、180℃、210℃、240℃、270℃和300℃时稳定一段时间,记录该温度下CO转化率。烟气分析仪(PG-350)在线实时监测,电脑处理数据。
3.催化剂的CO催化氧化稳定性测试
取催化剂0.22g于石英反应管中进行上述活性测试的步骤。
进行一次程序升温活性测试后关闭气瓶,等加热电炉冷却至室温,并通入N2除去表面杂质。
随后,再次通入反应气体进行下一次程序升温活性测试,方法同上。
总共进行5次活性测试,依次记作第1次、第2次、第3次、第4次及第5次。
反应完毕后,计算催化剂进行的5次测试下CO转化率,以此比较不同催化剂的稳定性。
本发明的实施方式中,比较了实施例1与对比例1制得的Pt基催化剂的稳定性。
测试结果
TEM测试结果如图2所示,呈块状的为过渡载体La/Al2O3,棒条状的为载体CeO2,从图中可观察到一些Pt颗粒附着在棒状CeO2载体上。进一步结合能谱的扫描,分别选取图上La/Al2O3及CeO2部分进行能谱扫描,能谱扫描结果如表2所示,可见绝大部分Pt金属已从过渡载体La/Al2O3上移动并被棒状体CeO2载体成功捕捉,验证了Pt基催化剂中Pt/CeO2的成功制备。
表2实施例1制得Pt基催化剂的TEM能谱扫描结果(归一化质量百分比/%)
La Al O Ce Pt
La/Al<sub>2</sub>O<sub>3</sub> 3.29 47.22 43.36 6.03 0.1
CeO<sub>2</sub> 0 0.04 38.56 58.20 3.20
表3实施例1制得的Pt基催化剂的稳定性测试结果
Figure BDA0001756777400000081
表4对比例1制得的Pt基催化剂的稳定性测试结果
Figure BDA0001756777400000082
Figure BDA0001756777400000091
根据表3和表4可知,CO催化氧化的反应温度为120℃时,测试五次后,实施例1制得的Pt基催化剂的CO转化率从95%仅仅下降至88%,CO转化率变化较小,能够保持良好的催化活性;而对比例1制得的Pt基催化剂的CO转化率则从48%大幅下降至5%,CO转化率变化巨大。可见,实施例1制得的Pt基催化剂不仅催化活性显著优于对比例1制得的Pt基催化剂,而且稳定性也显著优于对比例1制得的Pt基催化剂。相对于普通加热方式制得的Pt基催化剂,实施例1中采用微波加热结合原子捕捉的方法制得的Pt基催化剂能够保持良好的催化活性,在高温环境下贵金属Pt不容易团聚失活。
另外,发明人通过改变微波功率、微波煅烧时间和Pt负载量,研究不同制备参数对Pt基催化剂的催化活性的影响。
发明人研究发现,将实施例1~4中采用不同功率制得的Pt基催化剂用于CO催化氧化,CO催化氧化的反应温度为90℃时,900W和1000W制得的Pt基催化剂的CO转化率分别为29%和28%,优于800W和1100W制得的Pt基催化剂,800W和1100W制得的Pt基催化剂的CO转化率分别为20%和6%。反应温度为120℃时,800W、900W、1000W和1100W制得的Pt基催化剂的CO转化率分别为66%、65%、90%和61%,可见1000W制得的Pt基催化剂催化活性最佳。
将实施例1及实施例5~7制得的Pt基催化剂用于CO催化氧化,CO催化氧化的反应温度为90℃时,微波煅烧10h制得的Pt基催化剂的CO转化率仅仅为12%,而微波煅烧12h、14h和16h制得的Pt基催化剂的CO转化率分别为30%、28%和31%,可见实施例1及实施例6~7制得的Pt基催化剂的催化活性优于实施例5。CO催化氧化的反应温度为120℃时,微波煅烧14h制得的Pt基催化剂的CO转化率能够达到90%,而微波煅烧12h和16h制得的Pt基催化剂的CO转化率分别为67%和66%,可见微波煅烧14h制得的Pt基催化剂的活性最佳。
将实施例1及实施例8~10制得的Pt基催化剂用于CO催化氧化,CO催化氧化的反应温度为90℃时,Pt负载量为1%和2%的Pt基催化剂的CO转化率分别为28%和30%,而Pt负载量为0.2%和0.6%的Pt基催化剂的CO转化率仅仅分别为1%和18%,可见实施例1和实施例10制得的Pt基催化剂的催化活性优于实施例8~9。CO催化氧化的反应温度为120℃时,Pt负载量为1%和2%的Pt基催化剂的CO转化率分别为90%和63%,而Pt负载量为0.2%和0.6%的Pt基催化剂的CO转化率仅仅分别为9%和46%,所以,Pt负载量为1%的Pt基催化剂的催化活性最佳。
此外,发明人还研究了不同氧气浓度对本发明的Pt基催化剂催化氧化CO的影响。
设置氧气浓度分别为0、3%、6%、9%和12%,其他测试条件不变,测试实施例1制得的Pt基催化剂的CO转化率。CO催化氧化的反应温度为90℃时,氧气浓度9%时Pt基催化剂催化CO的转化率为90%,无氧条件下的CO转化率为0,而氧气浓度分别为3%、6%和12%时Pt基催化剂催化CO的转化率分别为16%、55%和39%。可见,进料气体成分中9%O2浓度是促进CO与催化剂上晶格氧接触反应的最佳浓度。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (7)

1.一种Pt基催化剂的制备方法,其特征在于,包括如下步骤:
S1.将镧修饰的三氧化二铝载体La/Al2O3负载Pt前驱体,然后通过微波加热进行低温煅烧,得到过渡催化剂Pt/La-Al2O3
S2.将步骤S1.制得的过渡催化剂Pt/La-Al2O3和棒状体CeO2混合均匀,然后通过微波加热进行高温煅烧,形成Pt/CeO2,得到Pt基催化剂;
步骤S2.中过渡催化剂Pt/La-Al2O3和棒状体CeO2的质量比为1.9~2.1︰1,过渡催化剂Pt/La-Al2O3和棒状体CeO2的混合物中Pt的质量百分数为0.2%~2%;
步骤S2.中微波加热的功率为800~1100W,微波加热的时间为10~16h。
2.根据权利要求1所述的制备方法,其特征在于,步骤S2.中微波加热的功率为900~1000W。
3.根据权利要求1所述的制备方法,其特征在于,步骤S2.中微波加热的时间为12~16h。
4.根据权利要求1所述的制备方法,其特征在于,步骤S2.中过渡催化剂Pt/La-Al2O3和棒状体CeO2的混合物中Pt的质量百分数为1%~2%。
5.权利要求1~4任一项所述制备方法制得的Pt基催化剂。
6.权利要求5所述Pt基催化剂在一氧化碳催化氧化中的应用。
7.根据权利要求6所述的应用,其特征在于,进行一氧化碳催化氧化时通入的气体含有一氧化碳和氧气,所述一氧化碳的体积浓度为750~850ppm,所述氧气的体积浓度为6%~9%。
CN201810890336.8A 2018-08-07 2018-08-07 一种Pt基催化剂及其制备方法和应用 Active CN109092304B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810890336.8A CN109092304B (zh) 2018-08-07 2018-08-07 一种Pt基催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810890336.8A CN109092304B (zh) 2018-08-07 2018-08-07 一种Pt基催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109092304A CN109092304A (zh) 2018-12-28
CN109092304B true CN109092304B (zh) 2021-11-26

Family

ID=64848627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810890336.8A Active CN109092304B (zh) 2018-08-07 2018-08-07 一种Pt基催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109092304B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1281943A (en) * 1968-10-21 1972-07-19 Du Pont Carrying out reactions in the presence of metal catalysts
CN101069849A (zh) * 2006-05-12 2007-11-14 崔建光 一氧化碳和挥发性有机化合物氧化分解催化剂
CN101108346A (zh) * 2007-07-17 2008-01-23 浙江大学 一步法微波合成Pt-CeO2/C电催化剂的方法
CN105636673A (zh) * 2013-10-22 2016-06-01 优美科股份公司及两合公司 Co和hc低温氧化催化剂
CN105688657A (zh) * 2009-04-21 2016-06-22 约翰逊马西有限公司 氧化一氧化碳和挥发性有机化合物的含铜和锰的普通金属催化剂
CN105772019A (zh) * 2016-03-22 2016-07-20 广东工业大学 一种用于co催化氧化的钙钛矿型镧锰铜催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1281943A (en) * 1968-10-21 1972-07-19 Du Pont Carrying out reactions in the presence of metal catalysts
CN101069849A (zh) * 2006-05-12 2007-11-14 崔建光 一氧化碳和挥发性有机化合物氧化分解催化剂
CN101108346A (zh) * 2007-07-17 2008-01-23 浙江大学 一步法微波合成Pt-CeO2/C电催化剂的方法
CN105688657A (zh) * 2009-04-21 2016-06-22 约翰逊马西有限公司 氧化一氧化碳和挥发性有机化合物的含铜和锰的普通金属催化剂
CN105636673A (zh) * 2013-10-22 2016-06-01 优美科股份公司及两合公司 Co和hc低温氧化催化剂
CN105772019A (zh) * 2016-03-22 2016-07-20 广东工业大学 一种用于co催化氧化的钙钛矿型镧锰铜催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ce改性的Pt/Al2O3催化剂用于富氢气氛下CO选择氧化;刘焕玲等;《催化学报》;20071231;第28卷(第12期);摘要、第1078页1.1催化剂制备、第1081页3结论 *
Preparation of gold clusters on metal oxides by deposition-precipitation with microwave drying and their catalytic performance for CO and sulfide oxidation;Ayako Taketoshi et al.;《Chinese Journal of Catalysis》;20171105;第38卷(第11期);摘要、第1889页2.2将金团簇沉积到金属氧化物上、第1896页4结论 *

Also Published As

Publication number Publication date
CN109092304A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
Wang et al. MOF-derived CeO2 supported Ag catalysts for toluene oxidation: The effect of synthesis method
CN106964348B (zh) 一种甲醛污染物室温催化氧化催化剂及其制备方法和应用
CN109647399A (zh) 常温催化氧化芳香类VOCs的单原子催化剂的制备方法
CN110694666B (zh) 一种C3N4@CeO2负载低含量金催化剂及其制备方法和应用
CN110026246B (zh) 可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法
CN109967076B (zh) 负载型催化剂及其制备方法
CN111974410A (zh) 高性能钙钛矿催化剂原位还原Pt纳米颗粒的制备方法及应用
CN110075837A (zh) 金属-钛酸复合氧化物的制备方法及应用
CN109092304B (zh) 一种Pt基催化剂及其制备方法和应用
CN110327918A (zh) 一种同时去除nh3逃逸和co的催化剂及制备
CN108786896A (zh) 一种贵金属催化剂的制备方法
CN108514881A (zh) 一种用于NH3催化氧化的纳米棒状结构的Cu-Ce催化剂、制备方法以及应用
CN108993533A (zh) 一种甲苯低温燃烧催化剂的制备方法及甲苯低温燃烧催化剂
CN106582638B (zh) 一种应用于NO+CO反应的(Au,Rh)-Cex/Al2O3的制备方法
CN114768827A (zh) 一种处理工业含水有机废气的催化剂及其制备方法和应用
TWI593457B (zh) 金屬疏水性碳材蜂巢式載體觸媒低溫焚燒技術消除油煙廢氣
CN114192180A (zh) 一种改性氮化硼负载的镍基甲烷干重整催化剂、其制备方法及其应用
CN109647385B (zh) 一种脱除烟气中一氧化碳用催化剂及其制备方法
CN114345333A (zh) 一种可控贵金属含量的汽车尾气净化催化剂的制备方法及所得产品
CN103599777B (zh) 用于室温一氧化碳脱除的金基催化剂及其制备方法
CN107930624B (zh) 一种催化燃烧醋酸乙酯用复合型催化剂及其制备方法和应用
JP2011230087A (ja) 有機化合物の分解触媒および分解方法
CN115608400B (zh) 催化剂、其制备方法及其应用
RU2621350C1 (ru) Катализатор для процессов высокотемпературного окисления СО
CN115155580A (zh) 一种用于有机废气催化燃烧的高抗氯性及抗热老化性催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant