CN109075710B - 开关电源控制电路及开关电源装置 - Google Patents
开关电源控制电路及开关电源装置 Download PDFInfo
- Publication number
- CN109075710B CN109075710B CN201680084862.4A CN201680084862A CN109075710B CN 109075710 B CN109075710 B CN 109075710B CN 201680084862 A CN201680084862 A CN 201680084862A CN 109075710 B CN109075710 B CN 109075710B
- Authority
- CN
- China
- Prior art keywords
- circuit
- power supply
- signal
- voltage
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4225—Arrangements for improving power factor of AC input using a non-isolated boost converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4258—Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0016—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
- H02M1/0022—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
在开关电源装置中抑制谐波的产生。在将交流电源电压转换为直流电压的开关电源装置(1)所包含的开关元件(Q1)关断时,如果施加到开关电源控制电路(10)的比较电路(11a)的非反相输入端子的电压值高于电压值(ref_zcd),则比较电路(11a)的输出信号的电位成为H电平。如果从延迟电路(11b)检测到该H电平起经过预定的延迟时间,则从延迟电路(11b)输出脉冲信号,其成为检测到开关元件(Q1)的漏极电压(Vds)的谷底的信号。由于延迟电路(11b)的输出直接连接到触发器(13e)的置位端子(S),所以如果检测到开关元件(Q1)的漏极电压(Vds)的谷底,则不进行谷底跳过,而必定使开关元件(Q1)导通。
Description
技术领域
本发明涉及开关电源控制电路及开关电源装置。
背景技术
在将交流电源电压转换为直流电压的开关电源装置中,存在包括为了抑制谐波的产生而进行功率因数改善的开关电源控制电路的开关电源装置(例如,专利文献1)。
开关电源控制电路是通过使开关电源装置的输入电流波形与经整流电路整流而得到的交流输入电压波形为同相,从而使功率因数接近于1的电路,也被称为功率因数改善电路。
此外,在现有的开关电源控制电路中,存在具有抑制在轻负载时开关频率变高的功能的开关电源控制电路。
现有技术文献
专利文献
专利文献1:日本特开2014-131455号公报
发明内容
技术问题
然而,在现有的开关电源控制电路中,如果抑制开关频率变高的功能变得有效,则存在输入电流波形偏离sin波形,功率因数下降,谐波增大的可能性。
鉴于上述情况,本发明的目的在于,提供能够抑制谐波的产生的开关电源控制电路及开关电源装置。
技术方案
根据本发明的一个观点,提供一种开关电源控制电路,是开关电源装置的开关电源控制电路,所述开关电源装置具有第一转换器和第二转换器,所述第一转换器接收交流电源电压,进行功率因数改善,并将所述交流电源电压转换为第一直流电压,所述第二转换器接收所述第一直流电压,并将所述第一直流电压转换为第二直流电压,所述开关电源控制电路具有:谷底检测电路,检测所述第一转换器所包含的开关元件的端子间电压的谷底;以及控制信号生成电路,输出针对所述开关元件的控制信号,如果从所述谷底检测电路输出表示检测到所述谷底的输出信号,则必定输出使所述开关元件导通的所述控制信号。
此外,根据本发明的一个观点,提供一种开关电源装置,其具有第一转换器和第二转换器,所述第一转换器接收交流电源电压,进行功率因数改善,并将所述交流电源电压转换为第一直流电压,所述第二转换器接收所述第一直流电压,并将所述第一直流电压转换为第二直流电压,所述开关电源装置具有:谷底检测电路,检测所述第一转换器所包含的开关元件的端子间电压的谷底;以及控制信号生成电路,输出针对所述开关元件的控制信号,如果从所述谷底检测电路输出表示检测到所述谷底的输出信号,则必定输出使所述开关元件导通的所述控制信号。
技术效果
根据公开的开关电源控制电路及开关电源装置,能够抑制谐波的产生。
本发明的上述及其他目的、特征和优点,通过表示作为本发明的例子而优选的实施方式的附图和相关的下述说明来变得清楚。
附图说明
图1是示出本实施方式的开关电源装置的一例的图。
图2是示出本实施方式的开关电源装置的动作的一例的时序图。
图3是示出输入电流与电感电流的关系的一例的图。
图4是示出具有最大频率限制功能的开关电源控制电路及开关电源装置的一例的图。
图5是示出比较例1的开关电源装置的动作的一例的时序图。
图6是示出具有谷底跳过(Bottom skip)功能的开关电源控制电路及开关电源装置的一例的图。
图7是示出比较例2的开关电源装置的动作的一例的时序图。
图8是示出比较例的开关电源装置中的输入电流波形的一例的图。
图9是示出双转换器方式的开关电源装置的一例的图。
符号说明
1:开关电源装置
2:全波整流器
3、4:节点
10:开关电源控制电路
11:谷底检测电路
11a、13a、13c:比较电路
11b:延迟电路
12:振荡电路
13:控制信号生成电路
13b:误差放大器
13d:或门电路
13e:触发器
13f:缓冲电路
13g:计时器电路
C1~C5、Cx1、Cx2:电容器
D1:二极管
L1、Lx1、Lx2:电感器
Q1:开关元件
R1~R6:电阻
具体实施方式
以下,参照附图说明用于实施发明的方式。
图1是示出本实施方式的开关电源装置的一例的图。
本实施方式的开关电源装置1例如应用于谐波控制严格的领域的电源(例如,LED(Light Emitting Diode:发光二极管)照明用的电源)等。
应予说明,在图1中图示了PFC(Power Factor Control:功率因数控制)升压转换器,该PFC升压转换器是双转换器方式的开关电源装置1的前级部分。关于作为双转换器方式的开关电源装置1的后级部分的DC(Direct Current:直流)-DC转换器,省略图示。
开关电源装置1具有:由电感器Lx1、Lx2和电容器Cx1、Cx2构成的输入滤波器;全波整流器2;电容器C1、C2、C3、C4、C5;电感器L1;电阻R1、R2、R3、R4、R5、R6;二极管D1;开关元件Q1;开关电源控制电路10。
全波整流器2对从交流电源AC提供的交流输入电压进行全波整流。输入滤波器具有使从交流电源AC提供的电流成为连续的电流而不是伴随着开关动作而在电感器L1流通的锯齿波电流的功能。
电容器C1去除因开关动作产生的高频成分。电容器C1的一端连接于全波整流器2和电感器L1的一端。电容器C1的另一端经由电阻R1接地。
电感器L1的一端连接于电容器C1的一端,电感器L1的另一端连接于开关元件Q1和二极管D1的阳极。
电感器L1、二极管D1、开关元件Q1和电容器C2作为升压电路而发挥功能。
二极管D1的阳极连接于电感器L1和开关元件Q1,阴极连接于电容器C2的一端和电阻R4。
开关元件Q1例如如图1所示是n沟道型的MOSFET(Metal-Oxide SemiconductorField Effect Transistor:金属氧化物半导体场效应晶体管)。开关元件Q1的漏极连接于电感器L1和二极管D1的阳极。开关元件Q1的栅极经由电阻R3而连接于开关电源控制电路10的端子OUT。开关元件Q1的源极和电容器C2的另一端接地,并且经由电阻R1、R2而连接于开关电源控制电路10的端子CS。此外,电容器Cp表示存在于开关元件Q1的源极-漏极间的寄生电容器。
电容器C2的端子间电压作为输出电压Vb而提供给未图示的DC-DC转换器。
应予说明,在电阻R2与端子CS之间的节点3,连接着电容器C3的一端。电容器C3的另一端接地。
电阻R4、R5串联连接。电阻R4与电阻R5之间的节点4连接于开关电源控制电路10的端子FB,输出电压Vb被电阻R4、R5分压而提供给开关电源控制电路10。
电容器C4、C5、电阻R6作为相位补偿电路而发挥功能。电容器C4的一端连接于开关电源控制电路10的端子COMP。电容器C5的一端经由电阻R6而连接于端子COMP。电容器C4、C5的另一端接地。
开关电源控制电路10例如由一封装的IC(Integrated Circuit:集成电路)来实现。开关电源控制电路10具有谷底检测电路11、振荡电路12、控制信号生成电路13。应予说明,开关电源控制电路10是作为双转换器方式的开关电源装置1的前级部分的PFC升压转换器的控制电路,但作为双转换器方式的开关电源装置1的后级部分的DC-DC转换器的控制电路也同样地以IC来实现并安装于相同的封装中(未图示)。通过将它们安装于同一封装中,从而能够实现易于使用的双转换器方式的开关电源装置1的控制装置。
谷底检测电路11具有比较电路11a和延迟电路11b。比较电路11a将通过电阻R1使在电感器L1流通的电感电流IL1转换为电压而得到的电压值与电压值ref_zcd进行比较,从而检测出电感电流IL1成为0的时刻。这里,电压值ref_zcd的绝对值设为尽可能小的值。后述的图2示出电压值ref_zcd=0的情况下的波形。
如果开关元件Q1导通,则电感电流IL1增加而在电感器L1储存能量。如果开关元件Q1关断,则二极管D1导通而使储存在电感器L1的能量放出到输出侧,电感电流IL1减小。二极管D1导通期间的开关元件Q1的漏极电压Vds成为电容器C2的端子间电压+二极管D1的正向电压。如果电感电流IL1成为0(储存在电感器L1的能量为0),则二极管D1不导通,由电感器L1和寄生电容器Cp构成的谐振电路的谐振动作开始,漏极电压Vds逐渐减小。应予说明,寄生电容器Cp的电容值小,因此进行该谐振动作时的电感电流IL1小。
延迟电路11b是预先估计从开始谐振动作到漏极电压Vds变得极小为止的时间而将该时间设定为延迟时间的电路,并且,如果从比较电路11a检测出在电感器L1流通的电感电流IL1=0起经过所设定的延迟时间,则延迟电路11b产生脉冲信号。该脉冲信号成为表示检测到漏极电压Vds的谷底(极小状态)的信号。在图1的例子中,比较电路11a的非反相输入端子连接于端子CS。在比较电路11a的反相输入端子施加有电压值ref_zcd。电压值ref_zcd例如是使用从开关电源控制电路10的外部提供的电源电压,由开关电源控制电路10内的未图示的电压值生成电路而生成的。应予说明,后述的电压值ref_ocp、Vfb也同样由未图示的电压值生成电路生成。
输入到端子CS的电压值是电感电流IL1越大则绝对值变得越大的负的值,电感电流IL1越小则越接近于0。在图1的例子中,比较电路11a在施加到非反相输入端子的电压值高于电压值ref_zcd时,输出表示检测到漏极电压Vds的谷底的、电位为H(High:高)电平的输出信号。
振荡电路12连接于延迟电路11b的输出端子,且输出振荡信号(斜坡信号),该振荡信号在从延迟电路11b接收到表示检测到漏极电压Vds的谷底的输出信号时电位上升并通过因未图示的接线而使触发器13e复位的时刻返回到0。
应予说明,对振荡电路12,从后述的计时器电路13g提供信号Restart。如果信号Restart被激活(例如,如果电位成为H电平),则无论其他输入信号如何,都使振荡信号的电位升高。
控制信号生成电路13在与从振荡电路12输出的振荡信号的电位上升的时刻相同的时刻,输出使开关元件Q1导通的控制信号(栅极信号)。
控制信号生成电路13具有比较电路13a、误差放大器13b、比较电路13c、或门电路13d、触发器13e、缓冲电路13f、计时器电路13g。
比较电路13a是为了过电流保护(OCP:Over Current Protection)而设置。比较电路13a的反相输入端子连接于端子CS,在比较电路13a的非反相输入端子施加有用于检测过电流的电压值ref_ocp。在施加于端子CS的电压值低于电压值ref_ocp时,比较电路13a输出表示产生过电流的、电位为H电平的信号以使开关元件Q1关断。
误差放大器13b将施加到端子FB的电压值与确定输出电压的基准的电压值Vfb之差进行放大而输出。误差放大器13b的反相输入端子连接于端子FB,在误差放大器13b的非反相输入端子施加有电压值Vfb。
比较电路13c是为了进行脉冲宽度调制(PWM:Pulse Width Modulation)而设置。比较电路13c的反相输入端子连接于端子COMP和误差放大器13b的输出端子,比较电路13c的非反相输入端子被提供从振荡电路12输出的振荡信号。比较电路13c在施加到非反相输入端子的电压值低于施加到反相输入端子的电压值时,输出电位为L(Low:低)电平的信号。比较电路13c在施加到非反相输入端子的电压值高于施加到反相输入端子的电压值时,输出电位为H电平的信号以使开关元件Q1关断。
或门电路13d接收比较电路13a、13c的输出信号、信号SP、OVP、UVLO,并在这些信号中的任意一个信号的电位为H电平时,输出H电平的输出信号以使开关元件Q1关断。
信号SP是这样的信号,即在基于未图示的比较电路中的、端子FB的电压值与预定的电压值的比较结果而检测到短路时,该信号成为H电平。
信号OVP是这样的信号,即在基于未图示的比较电路中的、端子FB的电压值与预定的电压值的比较结果而检测到过电压时,该信号成为H电平。
信号UVLO是这样的信号,即在基于未图示的比较电路中的、开关电源控制电路10的电源电压与预定的电压值的比较结果而检测到开关电源控制电路10处于低电压状态时,该信号成为H电平。
触发器13e具有复位端子R、置位端子S、输出端子Q。在复位端子R连接着或门电路13d的输出端子。置位端子S被提供从延迟电路11b输出的脉冲信号。输出端子Q经由缓冲电路13f连接到端子OUT。触发器13e在置位端子S的电位为H电平、复位端子R的电位为L电平时被置位,从输出端子Q输出H电平的输出信号。此外,触发器13e为复位优先,在复位端子R的电位为H电平时,无论置位端子S的电位的电平如何,都从输出端子Q输出L电平的输出信号。
计时器电路13g监视触发器13e的置位端子S的电位,并当置位端子S的电位在预定期间内没有成为H电平时,使信号Restart的电位为H电平。此外,如果触发器13e的输出端子Q的电位成为H电平,则计时器电路13g使计时器值复位。
在这样的开关电源装置1中,比较电路11a检测在电感器L1流通的电感电流IL1成为0的时刻,然后延迟电路11b延迟预定的延迟时间,由此能够检测出漏极电压Vds的谷底,使开关元件Q1导通。即,能够进行电流临界型的PFC控制。
以下,对进行电流临界型的PFC控制的本实施方式的开关电源装置1的动作例进行说明。
图2是示出本实施方式的开关电源装置的动作的一例的时序图。在图2中示出了开关元件Q1的漏极电压Vds、在电感器L1流通的电感电流IL1、端子CS的电压Vcs、比较电路11a的输出信号、延迟电路11b的输出信号和端子OUT的电位的情况。
如果在开关元件Q1关断时施加到比较电路11a的非反相输入端子的电压值高于电压值ref_zcd,则比较电路11a的输出信号的电位成为H电平(时刻t0)。如果从延迟电路11b检测到该向H电平的上升起经过预定的延迟时间(时刻t1),则从延迟电路11b输出脉冲信号。由此,振荡电路12输出的振荡信号的电位以预定的倾斜度上升,端子OUT的电位在预定期间成为H电平。因此,开关元件Q1在预定期间成为导通状态,开关元件Q1的漏极电压Vds基本成为0V。在该期间向电感器L1储存能量。
如果端子OUT的电位成为L电平(时刻t2),开关元件Q1关断,则漏极电压Vds上升。并且,如前所述,电感器L1的能量开始经由二极管D1向输出侧放出。如果电感器L1的能量成为0,则成为下一个周期的时刻t0。之后,重复同样的处理。
应予说明,输入电流Iin与在电感器L1流通的电感电流IL1的关系如下。
图3是示出输入电流与电感电流的关系的一例的图。横轴表示时间,纵轴表示电感电流IL1(上图)、输入电流Iin(下图)的大小。
电感电流IL1通过开关元件Q1的开关动作而成为图3的上图所示那样的三角波。
应予说明,各三角波的从谷到峰的时间与从峰到谷的时间根据开关元件Q1的导通宽度和关断宽度而变化。在导通宽度恒定的情况下,各三角波的从谷到峰的时间恒定。因此,由于此时的电感电流IL1的微分值与交流输入电压成比例,所以电感电流IL1的峰与sin波形的交流输入电压成比例。在交流输入电压的绝对值小时(电感电流IL1的峰的绝对值小时),电感电流IL1的峰小,电感器L1的两端电压(输出电压Vb-交流输入电压)大,因此,关断宽度变小,从峰到谷的时间变短。
通过利用由电感器Lx1、Lx2和电容器Cx1、Cx2构成的输入滤波器来对图3所示那样的电感电流IL1进行平均化,输入电流Iin的波形也成为sin波形。应予说明,输入电流Iin的峰(Iin(峰))的2倍成为电感电流IL1的峰。
这样,开关电源控制电路10通过使输入电流Iin为sin波,从而改善功率因数,抑制谐波的产生。
以下,作为比较例,对具有抑制在轻负载时开关频率变高的功能的开关电源控制电路进行说明。应予说明,作为抑制开关频率变高的功能,有最大频率限制功能和谷底跳过功能。
(比较例1)
图4是示出具有最大频率限制功能的开关电源控制电路及开关电源装置的一例的图。在图4中,对于与图1所示的开关电源装置1相同的要素,标记相同的符号。
开关电源装置1a的开关电源控制电路10a具有与门电路20和最大频率限制电路21。
与门电路20的一个输入端子连接于比较电路11a的输出端子,在与门电路20的另一个输入端子输入最大频率限制电路21的输出信号。在与门电路20的输出端子经由延迟电路11b连接着振荡电路12。
最大频率限制电路21在从开关元件Q1上一次导通起到经过根据预先设定的最大频率的周期确定的时间为止,输出L电平的信号。
在这样的开关电源控制电路10a中,即使比较电路11a中检测到电感电流IL1为0,在最大频率限制电路21的输出信号为L电平的期间,也不从延迟电路11b输出脉冲信号,振荡电路12所输出的振荡信号的电位不上升。由此,禁止以比最大频率高的频率进行的快速开关动作。
图5是示出比较例1的开关电源装置的动作的一例的时序图。在图5中示出了开关元件Q1的漏极电压Vds、在电感器L1流通的电感电流IL1、端子CS的电压Vcs、比较电路11a的输出信号、延迟电路11b的输出信号和端子OUT的电位的情况。
如果在开关元件Q1关断时电感电流IL1变化,比较电路11a检测到电感电流IL1成为0,则比较电路11a的输出信号的电位成为H电平(时刻t10、t11、t12)。可是,如时刻t11那样,在到电感电流IL1再次成为0为止的时间(t11-t10)比设定于最大频率限制电路21的最大频率fmax的倒数(1/fmax)短的情况下,与门电路20的输出信号成为L电平。因此,不从延迟电路11b输出脉冲信号,振荡信号的电位不上升,端子OUT的电位保持L电平。即,在开关频率比最大频率fmax高的情况下,开关动作被停止。
比较例1的开关电源控制电路10a这样地抑制开关频率变高。
(比较例2)
图6是示出具有谷底跳过功能的开关电源控制电路及开关电源装置的一例的图。在图6中,对于与图1所示的开关电源装置1相同的要素,标记相同的符号。
开关电源装置1b的开关电源控制电路10b在延迟电路11b的输出端子与振荡电路12之间具有谷底跳过电路22。
谷底跳过电路22即使在由延迟电路11b检测到漏极电压Vds的谷底的情况下,在不满足与负载对应的规定的谷底跳过数时,也输出L电平的信号。由此,振荡电路12所输出的振荡信号的电位不上升。由此,开关动作被停止。应予说明,在达到规定的谷底跳过数时,谷底跳过电路22使延迟电路11b的输出脉冲直接通过。
图7是示出比较例2的开关电源装置的动作的一例的时序图。在图7中示出了开关元件Q1的漏极电压Vds、延迟电路11b的输出信号、端子OUT的电位的情况。在图7中示出了被设定为谷底跳过数n=2的例子。应予说明,谷底跳过数以误差放大器13b的输出信号为基础来确定。
如果在开关元件Q1关断时电感电流IL1变化,比较电路11a检测到电感电流IL1成为0,则比较电路11a的输出信号的电位成为H电平。并且,如果从延迟电路11b检测到该H电平起经过预定的延迟时间,则从延迟电路11b输出脉冲信号(时刻t20、t21、t22)。可是,在时刻t21,由于谷底的检测次数不足谷底跳过数,所以触发器13e不被置位,因此,端子OUT的电位保持L电平。即,在谷底检测次数不足n=2时,开关动作被停止。
比较例2的开关电源控制电路10b这样地抑制开关频率变高。
可是,在上述那样的两个比较例的开关电源控制电路10a、10b中,存在如果抑制开关频率变高,则功率因数下降的可能性。其理由说明如下。
在开关元件Q1的导通宽度恒定且交流输入电压的绝对值小且电感电流IL1的峰电流也低时,如果通过谷底跳过等来抑制开关频率变高,则每一个周期的电感电流IL1变小,输入电流Iin也变小。由此,会导致输入电流Iin的波形偏离sin波形。
图8是示出比较例的开关电源装置中的输入电流波形的一例的图。
图8的波形30是开关电源装置1a、1b的输入电流Iin的波形的半个周期。此外,波形31是sin波形的半个周期。如图8所示,波形30偏离sin波形。因此,功率因数下降。此外,由于波形30变形,所以导致谐波增加。
对此,在如图1所示的开关电源装置1中,由于延迟电路11b的输出端子与振荡电路12直接连接,所以如果延迟电路11b产生脉冲信号,即如果从谷底检测电路11输出表示检测到所述谷底的输出信号,则开关元件Q1必定被导通。即,开关元件Q1在每次漏极电压Vds成为谷底时不进行谷底跳过而总是被导通。由此,能够抑制输入电流Iin的波形偏离sin波形。
在图1的上侧示出了输入电流Iin的半个周期的波形15的例子。还示出了比较例的开关电源装置1a、1b中的输入电流Iin的半个周期的波形16。由于波形15成为sin波形,所以开关电源装置1中的功率因数比开关电源装置1a、1b中的功率因数高,能够抑制谐波的产生。
以下,示出将上述开关电源控制电路10应用于具有准谐振型的DC-DC转换器的双转换器方式的开关电源装置的应用例。
(双转换器方式的开关电源装置的例子)
图9是示出双转换器方式的开关电源装置的一例的图。在图9中,对于与图1所示的开关电源装置1相同的要素,标记相同的符号。
开关电源装置40具有PFC升压转换器41和准谐振型的DC-DC转换器42。
PFC升压转换器41包括图1所示的各要素,并将通过前述的动作而生成的输出电压Vb提供给DC-DC转换器42。
DC-DC转换器42具有:绝缘变压器T1;开关元件Q2;电容器C6、C7;电阻R7、R8、R9;二极管D2;开关电源控制电路43;反馈电路44。
在绝缘变压器T1的初级绕组P1,施加从PFC升压转换器41输出的输出电压Vb。绝缘变压器T1的辅助绕组P2的一端连接于开关电源控制电路43的端子ZCD,另一端接地。绝缘变压器T1的次级绕组S1的一端连接于二极管D2的阳极,另一端接地。
开关元件Q2例如如图9所示是n沟道型的MOSFET。开关元件Q2的漏极连接于初级绕组P1的一端和电容器C6的一端。应予说明,电容器C6的另一端接地。开关元件Q2的源极连接于开关电源控制电路43的端子CS,并且经由电阻R7接地。开关元件Q2的栅极连接于开关电源控制电路43的端子OUT。应予说明,电阻R7是用于检测在开关元件Q2流通的电流的分流电阻(电流检测电阻)。
二极管D2的阴极连接于电阻R8和电容器C7的一端。
电容器C7的两端电压作为输出电压Vo而从开关电源装置40输出,提供给未图示的负载。
电阻R8、R9串联连接。电阻R8与电阻R9之间的节点45经由反馈电路44而连接到开关电源控制电路43的端子FB。
反馈电路44将由电阻R8、R9对输出电压Vo进行分压而得到的电压与未图示的基准电压之差放大,提供给开关电源控制电路43。
开关电源控制电路43通过基于在端子ZCD、FB、CS上的检测结果而控制开关元件Q2的导通关断,从而产生基于绝缘变压器T1的漏电感与电容器C6的电容的准谐振作用。由此,生成预定的输出电压Vo。
在这样的开关电源装置40的PFC升压转换器41中,通过使用图1所示那样的开关电源控制电路10,从而能够提高开关电源装置40的功率因数(能够接近于1),并能够抑制谐波的产生。
应予说明,开关电源控制电路10、43可以作为不同的半导体装置构成于两个半导体芯片,也可以一起集成于同一芯片内。此外,在构成于不同的两个半导体芯片的情况下,可以将该两个半导体芯片收纳于不同的封装中,也可以收纳于同一个封装中。
应予说明,在上述中示出了将开关电源控制电路10应用于双转换器方式的开关电源装置40的例子,但并不限于此。可以针对具有进行PFC控制的功能和控制DC-DC转换的功能的一个封装的IC,应用上述开关电源控制电路10以实现前者的功能。
上述内容仅示出本发明的原理。对本领域技术人员来说,还能够进行多种变形、变更,本发明并不限于上述所示并说明的准确的结构和应用例,对应的所有的变形例及等价物可看作为基于所附的权利要求及其等价物的本发明的范围。
Claims (4)
1.一种开关电源控制电路,其特征在于,是开关电源装置的开关电源控制电路,所述开关电源装置具有第一转换器和第二转换器,所述第一转换器接收交流电源电压,进行功率因数改善,并将所述交流电源电压转换为第一直流电压,所述第二转换器接收所述第一直流电压,并将所述第一直流电压转换为第二直流电压,所述开关电源控制电路具有:
谷底检测电路,检测所述第一转换器所包含的开关元件的端子间电压的谷底,并输出表示检测到所述谷底的输出信号;
振荡电路,连接于所述谷底检测电路的输出端子,并基于所述谷底检测电路所输出的所述输出信号而输出振荡信号;以及
控制信号生成电路,接收所述输出信号和所述振荡信号,输出针对所述开关元件的控制信号,如果从所述谷底检测电路输出表示检测到所述谷底的输出信号,则必定输出使所述开关元件导通的所述控制信号,
所述控制信号生成电路还具有:
触发器,具有置位端子、复位端子和输出端子;以及
计时器电路,
所述振荡电路接收所述输出信号而输出作为使电位上升,并在所述触发器的复位时刻所述电位返回到原来状态的斜坡信号的所述振荡信号,
所述计时器电路不依赖于所述输出信号地,使重新启动信号激活而使所述斜坡信号的电位上升,
在所述触发器的所述置位端子在预定时间内没有成为输出将所述开关元件导通的所述控制信号那样的活跃状态时,所述计时器电路使所述重新启动信号激活,
如果触发器的所述输出端子输出将所述开关元件导通的所述控制信号,则所述计时器电路被复位。
2.根据权利要求1所述的开关电源控制电路,其特征在于,
所述谷底检测电路具有比较电路和延迟电路,
所述比较电路检测第一电压值变得比第二电压值低的时刻,所述第一电压值是基于在所述第一转换器所包含的电感器中流通的电流的电压值,所述第二电压值是恒定电压源的输出电压,
所述延迟电路使所述比较电路的输出延迟。
3.根据权利要求1所述的开关电源控制电路,其特征在于,
所述第一转换器和所述第二转换器是彼此不同的半导体集成电路,作为所述第一转换器发挥功能的第一半导体集成电路和作为所述第二转换器发挥功能的第二半导体集成电路安装于同一封装。
4.一种开关电源装置,其特征在于,具有第一转换器和第二转换器,所述第一转换器接收交流电源电压,进行功率因数改善,并将所述交流电源电压转换为第一直流电压,所述第二转换器接收所述第一直流电压,并将所述第一直流电压转换为第二直流电压,所述开关电源装置具有:
谷底检测电路,检测所述第一转换器所包括的开关元件的端子间电压的谷底,并输出表示检测到所述谷底的输出信号;
振荡电路,连接于所述谷底检测电路的输出端子,并基于所述谷底检测电路所输出的所述输出信号而输出振荡信号;以及
控制信号生成电路,接收所述输出信号和所述振荡信号,输出针对所述开关元件的控制信号,如果从所述谷底检测电路输出表示检测到所述谷底的输出信号,则必定输出使所述开关元件导通的所述控制信号,
所述控制信号生成电路还具有:
触发器,具有置位端子、复位端子和输出端子;以及
计时器电路,
所述振荡电路接收所述输出信号而输出作为使电位上升,并在所述触发器的复位时刻所述电位返回到原来状态的斜坡信号的所述振荡信号,
所述计时器电路不依赖于所述输出信号地,使重新启动信号激活而使所述斜坡信号的电位上升,
在所述触发器的所述置位端子在预定时间内没有成为输出将所述开关元件导通的所述控制信号那样的活跃状态时,所述计时器电路使所述重新启动信号激活,
如果触发器的所述输出端子输出将所述开关元件导通的所述控制信号,则所述计时器电路被复位。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/065718 WO2017203687A1 (ja) | 2016-05-27 | 2016-05-27 | スイッチング電源制御回路及びスイッチング電源装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109075710A CN109075710A (zh) | 2018-12-21 |
CN109075710B true CN109075710B (zh) | 2020-10-30 |
Family
ID=60412704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680084862.4A Active CN109075710B (zh) | 2016-05-27 | 2016-05-27 | 开关电源控制电路及开关电源装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11005373B2 (zh) |
CN (1) | CN109075710B (zh) |
WO (1) | WO2017203687A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017220991B4 (de) * | 2017-11-23 | 2022-10-06 | Siemens Healthcare Gmbh | Transformatoreinheit sowie Verfahren zum Betrieb einer Transformatoreinheit |
JP2022096152A (ja) * | 2020-12-17 | 2022-06-29 | 富士電機株式会社 | スイッチング制御回路、力率改善回路 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101989810A (zh) * | 2009-07-31 | 2011-03-23 | 电力集成公司 | 用于实现功率转换器输入端电压放电电路的方法和装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000197347A (ja) * | 1998-12-25 | 2000-07-14 | Hitachi Ltd | 電源装置 |
JP2000287442A (ja) * | 1999-03-30 | 2000-10-13 | Sony Corp | 電源装置 |
JP2003125585A (ja) * | 2001-10-15 | 2003-04-25 | Sanken Electric Co Ltd | 電源装置 |
JP2007244121A (ja) * | 2006-03-09 | 2007-09-20 | Omron Corp | 部分共振型スイッチング電源 |
JP5966606B2 (ja) * | 2012-05-17 | 2016-08-10 | 富士電機株式会社 | スイッチング電源装置 |
JP6024201B2 (ja) * | 2012-05-21 | 2016-11-09 | 富士電機株式会社 | スイッチング電源装置 |
JP6070189B2 (ja) | 2012-12-30 | 2017-02-01 | 富士電機株式会社 | スイッチング電源装置 |
JP2015019558A (ja) | 2013-07-15 | 2015-01-29 | グローバルマイクロニクス株式会社 | スイッチング電源装置 |
JP6213183B2 (ja) | 2013-11-21 | 2017-10-18 | 富士電機株式会社 | スイッチング電源回路 |
CN106655751B (zh) * | 2015-11-03 | 2019-06-04 | 三垦电气株式会社 | 功率因数校正电路及其控制方法、以及开关电源 |
-
2016
- 2016-05-27 WO PCT/JP2016/065718 patent/WO2017203687A1/ja active Application Filing
- 2016-05-27 CN CN201680084862.4A patent/CN109075710B/zh active Active
-
2018
- 2018-10-30 US US16/175,193 patent/US11005373B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101989810A (zh) * | 2009-07-31 | 2011-03-23 | 电力集成公司 | 用于实现功率转换器输入端电压放电电路的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
US11005373B2 (en) | 2021-05-11 |
WO2017203687A1 (ja) | 2017-11-30 |
CN109075710A (zh) | 2018-12-21 |
US20190068064A1 (en) | 2019-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10158282B1 (en) | Switching power supply device | |
US8130520B2 (en) | Power supply apparatus and semiconductor integrated circuit device | |
US9716426B2 (en) | Switching power supply circuit | |
JP5230181B2 (ja) | エネルギー伝達装置およびエネルギー伝達制御用半導体装置 | |
JP4210868B2 (ja) | スイッチング電源装置 | |
US8320139B2 (en) | Switching regulator with frequency limitation and method thereof | |
US10128762B2 (en) | Semiconductor device for controlling power source | |
JP6069957B2 (ja) | スイッチング電源装置 | |
US10630187B2 (en) | Switching power supply device and semiconductor device | |
KR101812703B1 (ko) | 과전압 반복 방지 회로 및 그 방법, 그리고 이를 이용한 역률 보상 회로 | |
US9985527B2 (en) | Switching power supply with short circuit detection | |
EP2672620B1 (en) | Power factor improvement circuit | |
US10651759B2 (en) | Switching power supply device and semiconductor device | |
JP5195849B2 (ja) | Dc−dcコンバータ | |
US20210199728A1 (en) | Resonance voltage attenuation detection circuit, semiconductor device for switching power, and switching power supply | |
JP2010041832A (ja) | スイッチング電源制御装置及びそれに用いる半導体装置 | |
JP7404666B2 (ja) | 集積回路、電源回路 | |
US10432081B2 (en) | Waveform shaping circuit, semiconductor device, and switching power supply device | |
JP2012143133A (ja) | スイッチング電源装置 | |
JP2012143134A (ja) | スイッチング電源装置 | |
CN109075710B (zh) | 开关电源控制电路及开关电源装置 | |
JP2017204921A (ja) | スイッチング電源装置 | |
JP6640036B2 (ja) | 電源制御装置、半導体集積回路、および共振型コンバータ | |
JP2012130143A (ja) | スイッチング電源装置 | |
US10630186B2 (en) | Switching power supply device and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |