CN109062240B - 一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法 - Google Patents
一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法 Download PDFInfo
- Publication number
- CN109062240B CN109062240B CN201811137003.4A CN201811137003A CN109062240B CN 109062240 B CN109062240 B CN 109062240B CN 201811137003 A CN201811137003 A CN 201811137003A CN 109062240 B CN109062240 B CN 109062240B
- Authority
- CN
- China
- Prior art keywords
- fixed time
- rigid aircraft
- neural network
- rigid
- attitude tracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 25
- 239000011159 matrix material Substances 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 12
- 238000009795 derivation Methods 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Feedback Control In General (AREA)
Abstract
一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法,针对具有集中不确定性的刚性飞行器姿态跟踪问题,设计了固定时间滑模面,保证了状态的固定时间收敛;引入神经网络逼近总不确定的函数,设计了固定时间神经网络控制器;本发明在外界干扰和转动惯量不确定的因素下,实现刚性飞行器系统的姿态跟踪误差和角速度误差固定时间一致最终有界的控制。
Description
技术领域
本发明涉及一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法,特别是存在外部干扰和转动惯量矩阵不确定的刚性飞行器姿态跟踪控制方法。
背景技术
刚性飞行器姿态控制系统在刚性飞行器的健康,可靠的运动中扮演着重要的角色。在复杂的航天环境中,刚性飞行器姿态控制系统会受到各种外部干扰以及转动惯量矩阵不确定的影响。为了有效维持系统的性能,需要使其对外部干扰以及转动惯量矩阵不确定具有较强的鲁棒性。滑模变结构控制作为一种典型的非线性控制方法能够有效改善刚性飞行器的稳定性和操纵性,并且具有较强的鲁棒性,从而提高执行任务的能力。因此,研究刚性飞行器姿态控制系统的滑模变结构控制方法具有十分重要的意义。
滑模控制在解决系统不确定性和外部扰动方面被认为是一个有效的鲁棒控制方法。滑模控制方法具有算法简单、响应速度快、对外界噪声干扰和参数摄动鲁棒性强等优点。终端滑模控制是一种可以实现有限时间稳定性的传统滑模控制的改进方案。然而,现存的有限时间技术估计收敛时间需要知道系统的初始信息,这对于设计者是很难知道的。近年来,固定时间技术得到了广泛的应用,固定时间控制方法与现存的有限时间控制方法相比,具有无需知道系统的初始信息,也能保守估计系统的收敛时间的优越性。
神经网络是线性参数化近似方法的中一种,可以被任意的其他近似方法取代,比如RBF神经网络,模糊逻辑系统等等。利用神经网络逼近不确定的性质,有效的结合固定时间滑模控制技术,减少外部干扰及系统参数不确定性对系统控制性能的影响,实现刚性飞行器姿态的固定时间控制。
发明内容
为了克服现有的刚性飞行器姿态控制系统存在的未知非线性问题,本发明提供一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法,并且在系统存在外部干扰和转动惯量不确定的情况下,实现系统姿态跟踪误差和角速度误差的固定时间一致最终有界的控制方法。
为了解决上述技术问题提出的技术方案如下:
一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法,包括以下步骤:
步骤1,建立刚性飞行器的运动学和动力学模型,初始化系统状态以及控制参数,过程如下:
1.1刚性飞行器系统的运动学方程为:
其中qv=[q1,q2,q3]T和q4分别为单位四元数的矢量部分和标量部分且满足分别为映射在空间直角坐标系x,y,z轴上的值;分别是qv和q4的导数;Ω∈R3是刚性飞行器的角速度;I3是R3×3单位矩阵;表示为:
1.2刚性飞行器系统的动力学方程为:
1.3刚性飞行器系统期望的运动学方程为:
1.4由四元数描述的刚性飞行器相对姿态运动:
Ωe=Ω-CΩd (11)
根据式(1)-(11),刚性飞行器姿态跟踪误差动力学和运动学方程为:
1.5转动惯性矩阵J满足J=J0+ΔJ,其中J0和ΔJ分别表示J的标称部分和不确定部分,则式(14)重新写成:
进一步得到:
1.6对式(12)进行微分,得到:
步骤2,针对外部扰动和转动惯量不确定的刚性飞行器系统,设计所需的滑模面,过程如下:
选择固定时间滑模面S=[S1,S2,S3]T∈R3为:
步骤3,设计固定时间神经网络控制器,过程如下:
3.1定义神经网络为:
Gi(Xi)=Wi *TΦ(Xi)+εi (22)
其中Wi∈R4为权值矢量,εi为近似误差,满足|εi|≤εN,i=1,2,3,εN为很小的正常数;arg min{·}为Wi *取其最小值所有的集合;
3.2考虑固定时间控制器被设计为:
其中为3×3对称对角矩阵;为Wi的估计值;Φ(X)=[Φ(X1),Φ(X2),Φ(X3)]T, 0<r3<1,r4>1,i=1,2,3;K1=diag(k11,k12,k13),K2=diag(k21,k22,k23),K3=diag(k31,k32,k33)均为3×3对称对角矩阵; sgn(S1),sgn(S2),sgn(S3)均为符号函数;L定义为:
3.3设计更新律为:
步骤4,固定时间稳定性证明,过程如下:
4.1证明刚性飞行器系统所有信号都是一致最终有界,设计李雅普诺夫函数为如下形式:
对式(28)进行求导,得到:
则判定刚性飞行器系统所有信号都是一致最终有界的;
4.2证明固定时间收敛,设计李雅普诺夫函数为如下形式:
对式(30)进行求导,得到:
基于以上分析,刚性飞行器系统的姿态跟踪误差和角速度误差在固定时间一致最终有界。
本发明在外界干扰和转动惯量不确定的因素下,运用一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法,实现系统稳定跟踪,保证系统状态实现固定时间一致最终有界。本发明的技术构思为:针对含外部干扰和转动惯量不确定的刚性飞行器系统,利用滑模控制方法,再结合神经网络,设计了神经网络固定时间控制器。固定时间滑模面的设计保证了系统状态的固定时间收敛。本发明在系统存在外界干扰和转动惯量不确定的情况下,实现系统姿态跟踪误差和角速度误差的固定时间一致最终有界的控制方法。
本发明的有益效果为:在系统存在外界干扰和转动惯量不确定的情况下,实现系统姿态跟踪误差和角速度误差的固定时间一致最终有界,并且收敛时间与系统的初始状态无关。
附图说明
图1为本发明的刚性飞行器姿态跟踪误差示意图;
图2为本发明的刚性飞行器角速度误差示意图;
图3为本发明的刚性飞行器滑模面示意图;
图4为本发明的刚性飞行器控制力矩示意图;
图5为本发明的刚性飞行器参数估计示意图;
图6为本发明的控制流程示意图。
具体实施方式
下面结合附图对本发明做进一步说明。
参照图1-图6,一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法,所述控制方法包括以下步骤:
步骤1,建立刚性飞行器的运动学和动力学模型,初始化系统状态以及控制参数,过程如下:
1.1刚性飞行器系统的运动学方程为:
其中qv=[q1,q2,q3]T和q4分别为单位四元数的矢量部分和标量部分且满足分别为映射在空间直角坐标系x,y,z轴上的值;分别是qv和q4的导数;Ω∈R3是刚性飞行器的角速度;I3是R3×3单位矩阵;表示为:
1.2刚性飞行器系统的动力学方程为:
1.3刚性飞行器系统期望的运动学方程为:
1.4由四元数描述的刚性飞行器相对姿态运动:
Ωe=Ω-CΩd(11)
根据式(1)-(11),刚性飞行器姿态跟踪误差动力学和运动学方程为:
1.5转动惯性矩阵J满足J=J0+ΔJ,其中J0和ΔJ分别表示J的标称部分和不确定部分,则式(14)重新写成:
进一步得到:
1.6对式(12)进行微分,得到:
步骤2,针对外部扰动和转动惯量不确定的刚性飞行器系统,设计所需的滑模面,过程如下:
选择固定时间滑模面S=[S1,S2,S3]T∈R3为:
步骤3,设计固定时间神经网络控制器,过程如下:
3.1定义神经网络为:
Gi(Xi)=Wi *TΦ(Xi)+εi (22)
其中Wi∈R4为权值矢量,εi为近似误差,满足|εi|≤εN,i=1,2,3,εN为很小的正常数;argmin{·}为Wi *取其最小值所有的集合;
3.2考虑固定时间控制器被设计为:
其中为3×3对称对角矩阵;为Wi的估计值;Φ(X)=[Φ(X1),Φ(X2),Φ(X3)]T, 0<r3<1,r4>1,i=1,2,3;K1=diag(k11,k12,k13),K2=diag(k21,k22,k23),K3=diag(k31,k32,k33)均为3×3对称对角矩阵; sgn(S1),sgn(S2),sgn(S3)均为符号函数;L定义为:
3.3设计更新律为:
步骤4,固定时间稳定性证明,过程如下:
4.1证明刚性飞行器系统所有信号都是一致最终有界,设计李雅普诺夫函数为如下形式:
对式(28)进行求导,得到:
则判定刚性飞行器系统所有信号都是一致最终有界的;
4.2证明固定时间收敛,设计李雅普诺夫函数为如下形式:
对式(30)进行求导,得到:
基于以上分析,刚性飞行器系统的姿态跟踪误差和角速度误差在固定时间一致最终有界。
为验证所提方法的有效性,本方法针对飞行器系统进行仿真验证。系统初始化参数设置如下:
系统的初始值:q(0)=[0.3,-0.2,-0.3,0.8832]T,Ω(0)=[1,0,-1]T弧度/秒qd(0)=[0,0,0,1]T;期望角速度弧度/秒;转动惯性矩阵的标称部分J0=[40,1.2,0.9;1.2,17,1.4;0.9,1.4,15]千克*平方米,惯性矩阵的不确定部ΔJ=diag[sin(0.1t),2sin(0.2t),3sin(0.3t)];外部扰动d(t)=[0.2sin(0.1t),0.3sin(0.2t),0.5sin(0.2t)]T牛*米;滑模面的参数如下:控制器的参数如下:更新律参数如下:sigmoid函数的参数选择如下:l1=2,l2=8,l3=10,l4=-0.5。
刚性飞行器的姿态跟踪误差和角速度误差的响应示意图分别如图1和图2所示,可以看出姿态跟踪误差和角速度误差都能在1.5秒左右收敛到平衡点的一个零域内;刚性飞行器的滑模面响应示意图如图3所示,可以看出滑模面能在1.4秒左右收敛到平衡点的一个零域内;刚性飞行器的控制力矩和参数估计响应示意图分别如图4和图5所示。
因此,在系统存在外界干扰和转动惯量不确定的情况下,实现系统的姿态跟踪误差和角速度误差在固定时间一致最终有界,并且收敛时间与系统的初始状态无关。
以上阐述的是本发明给出的一个实施例表现出的优良优化效果,显然本发明不只是限于上述实施例,在不偏离本发明基本精神及不超出本发明实质内容所涉及范围的前提下对其可作种种变形加以实施。
Claims (1)
1.一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法,其特征在于:所述方法包括以下步骤:
步骤1,建立刚性飞行器的运动学和动力学模型,初始化系统状态以及控制参数,过程如下:
1.1刚性飞行器系统的运动学方程为:
其中qv=[q1,q2,q3]T和q4分别为单位四元数的矢量部分和标量部分且满足q1,q2,q3分别为映射在空间直角坐标系x,y,z轴上的值;分别是qv和q4的导数;Ω∈R3是刚性飞行器的角速度;I3是R3×3单位矩阵;表示为:
1.2刚性飞行器系统的动力学方程为:
1.3刚性飞行器系统期望的运动学方程为:
1.4由四元数描述的刚性飞行器相对姿态运动:
Ωe=Ω-CΩd (11)
根据式(1)-(11),刚性飞行器姿态跟踪误差动力学和运动学方程为:
1.5转动惯性矩阵J满足J=J0+ΔJ,其中J0和ΔJ分别表示J的标称部分和不确定部分,则式(14)重新写成:
进一步得到:
1.6对式(12)进行微分,得到:
步骤2,针对外部扰动和转动惯量不确定的刚性飞行器系统,设计所需的滑模面,过程如下:
选择固定时间滑模面S=[S1,S2,S3]T∈R3为:
步骤3,设计固定时间神经网络控制器,过程如下:
3.1定义神经网络为:
Gi(Xi)=Wi *TΦ(Xi)+εi (22)
3.2考虑固定时间控制器被设计为:
其中为3×3对称对角矩阵;为Wi的估计值;Φ(X)=[Φ(X1),Φ(X2),Φ(X3)]T, K1=diag(k11,k12,k13),K2=diag(k21,k22,k23),K3=diag(k31,k32,k33)均为3×3对称对角矩阵; sgn(S1),sgn(S2),sgn(S3)均为符号函数;L定义为:
3.3设计更新律为:
4.1证明刚性飞行器系统所有信号都是一致最终有界,设计李雅普诺夫函数为如下形式:
对式(28)进行求导,得到:
则判定刚性飞行器系统所有信号都是一致最终有界的;
4.2证明固定时间收敛,设计李雅普诺夫函数为如下形式:
对式(30)进行求导,得到:
基于以上分析,刚性飞行器系统的姿态跟踪误差和角速度误差在固定时间一致最终有界。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811137003.4A CN109062240B (zh) | 2018-09-28 | 2018-09-28 | 一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811137003.4A CN109062240B (zh) | 2018-09-28 | 2018-09-28 | 一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109062240A CN109062240A (zh) | 2018-12-21 |
CN109062240B true CN109062240B (zh) | 2021-08-03 |
Family
ID=64766571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811137003.4A Active CN109062240B (zh) | 2018-09-28 | 2018-09-28 | 一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109062240B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110456641B (zh) * | 2019-07-23 | 2022-03-11 | 西北工业大学 | 一种固定时预定性能循环神经网络机械臂控制方法 |
CN110488852B (zh) * | 2019-08-28 | 2020-12-01 | 北京航空航天大学 | 一种高超声速飞行器全剖面自适应控制方法 |
CN111781827B (zh) * | 2020-06-02 | 2022-05-10 | 南京邮电大学 | 基于神经网络和滑模控制的卫星编队控制方法 |
CN113985732B (zh) * | 2021-10-11 | 2023-06-20 | 广州大学 | 针对飞行器系统的自适应神经网络控制方法及装置 |
CN115857342B (zh) * | 2022-11-28 | 2024-05-24 | 北京理工大学 | 基于自适应神经网络的航天器观测载荷随动机构控制方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7013208B2 (en) * | 2001-12-17 | 2006-03-14 | Hydro-Air, Inc. | Sliding integral proportional (SIP) controller for aircraft skid control |
CN103760906A (zh) * | 2014-01-29 | 2014-04-30 | 天津大学 | 神经网络与非线性连续无人直升机姿态控制方法 |
CN104527994A (zh) * | 2015-01-21 | 2015-04-22 | 哈尔滨工业大学 | 异面交叉快变轨道固定时间稳定姿态指向跟踪控制方法 |
CN107450584A (zh) * | 2017-08-29 | 2017-12-08 | 浙江工业大学 | 一种基于固定时间滑模的飞行器自适应姿态控制方法 |
CN107495962A (zh) * | 2017-09-18 | 2017-12-22 | 北京大学 | 一种单导联脑电的睡眠自动分期方法 |
CN107703952A (zh) * | 2017-08-29 | 2018-02-16 | 浙江工业大学 | 一种刚性飞行器的非奇异固定时间自适应姿态控制方法 |
CN108469730A (zh) * | 2018-01-29 | 2018-08-31 | 浙江工业大学 | 一种基于均值耦合的多电机固定时间自适应滑模控制方法 |
-
2018
- 2018-09-28 CN CN201811137003.4A patent/CN109062240B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7013208B2 (en) * | 2001-12-17 | 2006-03-14 | Hydro-Air, Inc. | Sliding integral proportional (SIP) controller for aircraft skid control |
CN103760906A (zh) * | 2014-01-29 | 2014-04-30 | 天津大学 | 神经网络与非线性连续无人直升机姿态控制方法 |
CN104527994A (zh) * | 2015-01-21 | 2015-04-22 | 哈尔滨工业大学 | 异面交叉快变轨道固定时间稳定姿态指向跟踪控制方法 |
CN107450584A (zh) * | 2017-08-29 | 2017-12-08 | 浙江工业大学 | 一种基于固定时间滑模的飞行器自适应姿态控制方法 |
CN107703952A (zh) * | 2017-08-29 | 2018-02-16 | 浙江工业大学 | 一种刚性飞行器的非奇异固定时间自适应姿态控制方法 |
CN107495962A (zh) * | 2017-09-18 | 2017-12-22 | 北京大学 | 一种单导联脑电的睡眠自动分期方法 |
CN108469730A (zh) * | 2018-01-29 | 2018-08-31 | 浙江工业大学 | 一种基于均值耦合的多电机固定时间自适应滑模控制方法 |
Non-Patent Citations (9)
Title |
---|
A Fixed-time attitude control for rigid spacecraft with actuator saturation and faults;Boyan Jiang 等;《IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY》;20160930;全文 * |
Adaptive fixed‐time fault‐tolerant control for rigid spacecraft using a double power reaching law;Meiling Tao 等;《WILEY》;20190801;全文 * |
Adaptive Nonsingular Fixed-Time Attitude Stabilization of Uncertain Spacecraft;QIANG CHEN 等;《IEEE Transactions on Aerospace and Electronic Systems》;20180510;全文 * |
Adaptive RBFNNs integral sliding mode control for a quadrotor aircraft;Shushuai Li 等;《Neurocomputing》;20161231;全文 * |
Buck型变换器非奇异固定时间滑模控制;钱宁 等;《计算机测量与控制》;20190630;全文 * |
Continuous Fixed-Time Sliding Mode Control for Spacecraft with Flexible Appendages;C. Ton 等;《IFAC PapersOnLine》;20180829;全文 * |
固定时间收敛的再入飞行器全局滑模跟踪制导律;王伯平 等;《宇航学报》;20170331;全文 * |
基于快速终端滑模面的两旋翼飞行器有限时间姿态控制;沈林武 等;《计算机测量与控制》;20200930;全文 * |
基于滑模控制的多机械臂同步控制研究;高苗苗 等;《计算机测量与控制》;20190831;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109062240A (zh) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109062240B (zh) | 一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法 | |
CN110543184B (zh) | 一种刚性飞行器的固定时间神经网络控制方法 | |
CN107703952B (zh) | 一种刚性飞行器的非奇异固定时间自适应姿态控制方法 | |
CN107662208B (zh) | 一种基于神经网络的柔性关节机械臂有限时间自适应反步控制方法 | |
CN109188910B (zh) | 一种刚性飞行器的自适应神经网络容错跟踪控制方法 | |
CN110471438B (zh) | 一种刚性飞行器的固定时间自适应姿态跟踪控制方法 | |
CN110543183B (zh) | 一种考虑执行器受限问题的刚体飞行器固定时间姿态跟踪控制方法 | |
CN107450584B (zh) | 一种基于固定时间滑模的飞行器自适应姿态控制方法 | |
CN110488603B (zh) | 一种考虑执行器受限问题的刚性飞行器自适应神经网络跟踪控制方法 | |
CN105404304B (zh) | 基于归一化神经网络的航天器容错姿态协同跟踪控制方法 | |
CN107577145B (zh) | 编队飞行航天器反步滑模控制方法 | |
CN108490783B (zh) | 基于增强型双幂次趋近律和快速终端滑模面的刚性航天飞行器有限时间自适应容错控制方法 | |
CN110501911A (zh) | 一种考虑执行器受限问题的刚性飞行器自适应固定时间姿态跟踪控制方法 | |
CN109634291B (zh) | 一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法 | |
CN112987567B (zh) | 非线性系统的固定时间自适应神经网络滑模控制方法 | |
CN110488854B (zh) | 一种基于神经网络估计的刚性飞行器固定时间姿态跟踪控制方法 | |
CN108958043B (zh) | 一种刚性飞行器的固定时间自适应姿态容错控制方法 | |
CN110488855B (zh) | 一种基于神经网络估计的刚性飞行器自适应固定时间姿态容错控制方法 | |
CN110515389B (zh) | 一种考虑执行器受限问题的刚性飞行器自适应固定时间姿态镇定方法 | |
CN108762065B (zh) | 基于增强型指数趋近律和快速终端滑模面的刚性航天飞行器有限时间自适应容错控制方法 | |
CN110471439B (zh) | 一种基于神经网络估计的刚性飞行器固定时间姿态镇定方法 | |
CN110471440B (zh) | 一种考虑执行器受限问题的刚体飞行器固定时间姿态镇定方法 | |
CN108549225B (zh) | 基于增强型幂次趋近律和快速终端滑模面的刚性航天飞行器有限时间自适应容错控制方法 | |
CN112327622A (zh) | 一种中性浮力机器人一致性容错控制方法 | |
Jurado et al. | Stochastic feedback controller for a quadrotor UAV with dual modified extended Kalman filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |