CN109037372A - 一种基于氧化钼微米带/p型Si的多波段光响应器件及其制备方法 - Google Patents

一种基于氧化钼微米带/p型Si的多波段光响应器件及其制备方法 Download PDF

Info

Publication number
CN109037372A
CN109037372A CN201810804323.4A CN201810804323A CN109037372A CN 109037372 A CN109037372 A CN 109037372A CN 201810804323 A CN201810804323 A CN 201810804323A CN 109037372 A CN109037372 A CN 109037372A
Authority
CN
China
Prior art keywords
type
sio
substrate
film
micro belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810804323.4A
Other languages
English (en)
Other versions
CN109037372B (zh
Inventor
于乃森
陈向丰
齐岩
赵海燕
苑青
董斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Minzu University
Original Assignee
Dalian Nationalities University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Nationalities University filed Critical Dalian Nationalities University
Priority to CN201810804323.4A priority Critical patent/CN109037372B/zh
Publication of CN109037372A publication Critical patent/CN109037372A/zh
Application granted granted Critical
Publication of CN109037372B publication Critical patent/CN109037372B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种基于氧化钼微米带/p型Si的多波段光响应器件及其制备方法,属于光电探测技术领域。该器件为多层结构,自下而上依次为p型Si衬底、SiO2绝缘薄层、Au薄膜层和单根MoO3微米带,其中,SiO2绝缘薄层部分覆盖在p型Si衬底上,SiO2绝缘薄层和Au薄膜层形成Au/SiO2薄膜,所述单根MoO3微米带能同时与p型Si衬底和Au/SiO2结构接触。本发明的产品对紫外/可见光有着非常好的光响应,响应时间迅速。本发明提供的制备方法不需要催化剂,重复性好,工艺操作简单,制造成本低。

Description

一种基于氧化钼微米带/p型Si的多波段光响应器件及其制备 方法
技术领域
本发明涉及一种基于氧化钼微米带/p型Si的多波段光响应器件,属于光电探测技术领域。
背景技术
光电探测在医疗诊断、生化分析、环境保护等领域有着重要作用,具有非常广泛的应用前景。提高探测器的响应度、信噪比、响应速度以及可实用化是研究人员一直努力追求的目标,传统的薄膜型半导体探测器存在较强的表面反射,降低了对入射光的吸收,进而影响了光电探测器的灵敏度。一维纳米材料由于大的比表面积和良好的载流子传输通道,具有远大于体材料的光电导增益,是构建纳米光电探测器的基本单元。如何提高一维纳米材料光电探测器对入射光的吸收效率,对纳米材料光电探测器的研究具有重要意义。不同于常规的三维体材料半导体和半导体薄膜,半导体纳米线因其维度受限而展现出优异的光电特性,此外,单根纳米线因其极小的探测面积在未来小型化、高度集成化器件研发中有着良好的应用前景。然而受诸多因素影响,目前的纳米线探测器性能还不能满足现实需求。同时光导型纳米线探测器背景载流子浓度高,使得本身弱光吸收的电流信号难以提取。
发明内容
本发明的目的在于提供一种制备工艺简单,成本低,性能稳定且优异的基于氧化钼微米带/p型Si的多波段光响应器件。
本发明首要目的是提供一种基于氧化钼微米带/p型Si的多波段光响应器件,该器件为多层结构,自下而上依次为p型Si衬底、SiO2绝缘薄层、Au薄膜层和单根MoO3微米带,其中,SiO2绝缘薄层部分覆盖在p型Si衬底上,SiO2绝缘薄层和Au薄膜层形成Au/SiO2薄膜,所述单根MoO3微米带能同时与p型Si衬底和Au/SiO2结构接触。
本发明同时请求保护上述基于氧化钼微米带/p型Si的多波段光响应器件的制备方法,具体包括如下步骤:
①以p型Si为衬底,在衬底上分成镀膜区和非镀膜区,首先对非镀膜区采用绝缘胶带进行遮挡,然后采用磁控溅射生长SiO2薄膜,其厚度为10-20nm;
②将镀膜区生长得到SiO2薄膜置于离子溅射仪进行表面镀Au薄膜,其厚度为10-20nm;
③去除非镀膜区表面绝缘胶带后,将步骤②所得样品置于退火炉中于100-200℃快速退火15分钟后自然冷却至室温。
④然后采用气相输运法生长MoO3微米带,其长度为100-200μm。
⑤将步骤④得到的MoO3微米带置于显微镜下,用镊子提取单根MoO3微米棒,置于步骤③镀膜区形成的Au/SiO2薄膜和p型Si衬底表面上,使得MoO3微米棒同时与p型Si衬底表面及Au/SiO2薄膜接触。
本发明所采用的氧化钼微米带是采用气相输运法生长,称取10克钼酸铵(NH4)6MO7O24·4H2O放在氧化铝坩埚,置于加热炉中加热,以60℃/分钟升温至1250℃,并保温1小时。生长中保持炉门有3-4毫米的自由空间,便于气流输运,最后在低温区域收集MoO3微米带,其长度为100-200μm。
进一步的,所述步骤②中,离子溅射的条件为:生长条件为真空度1pa,溅射电流为15mA,溅射时间为120s。
进一步的,上述步骤①中,还包括对p型Si衬底进行超声清洗、烘干处理。
本发明与现有技术相比具有如下优点:
1、本发明的产品对紫外/可见光有着非常好的光响应,响应时间迅速。
2、本发明的制备方法不需要催化剂,重复性好,工艺操作简单,制造成本低。
附图说明
图1为本发明实施实例中基于氧化钼微米带/p型Si的多波段光响应器件结构示意图;其中,1、p型Si衬底,2、SiO2绝缘薄层,3、Au薄膜层,4、MoO3微米棒。
图2为本发明实施例中基于氧化钼微米带/p型Si的多波段光响应器件结构光学显微镜图;
图3为本发明实施例中基于氧化钼微米带/p型Si的多波段光响应器件暗态以及紫外、蓝光、绿光、红光照射下的电流-电压曲线图;
图4为本发明实施例中基于氧化钼微米带/p型Si的多波段光响应器件在紫外、蓝光、绿光、红光周期开关条件下电流随时间变化图,其中光源开关的周期为1秒;
图5为本发明实施例中基于氧化钼微米带/p型Si的多波段光响应器件电流紫外、蓝光、绿光、红光光功率变化图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
实施例
以p型Si为衬底,首先分别采用丙酮、乙醇及去离子水进行超声清洗,然后烘干。随后对p型Si部分局域采用绝缘胶带进行遮挡,然后遮挡部分区域的Si衬底采用磁控溅射生长SiO2薄膜,其厚度为10-20nm。然后将部分区域生长的得到SiO2薄膜的Si衬底置于离子溅射仪,并对其其表面镀Au薄膜,其厚度为10-20nm。然后去除Si片表面的绝缘胶带,将样品置于退火炉中于200℃快速退火15分钟后自然冷却。同时采用气相输运法生长氧化钼微米带,称取10克钼酸铵放在氧化铝坩埚,置于加热炉中加热,以60℃/分钟升温至1250℃,并保温1小时。生长中保持炉门有3-4毫米的自由空间,便于气流输运,最后在低温区域收集MoO3微米带,其长度为100-200μm。将制备的MoO3置于显微镜下,用镊子提取单根MoO3,置于部分区镀有Au/SiO2薄膜的Si衬底表面,并使得MoO3微米棒分别与Si衬底表面以及镀有Au/SiO2薄膜接触。然后用玻璃片贴合固定。得到基于氧化钼微米带/p型Si的接触型多波段光响应器件。
如图1所示,本发明提供的基于氧化钼微米带/p型Si的接触型多波段光响应器件结构简单,在p型Si衬底1镀膜区域表面蒸镀有SiO2绝缘薄层2及Au薄膜层3,其中Au薄膜层用于接触电极。另外使得MoO3微米棒同时能与p型Si衬底表面及Au/SiO2薄膜接触。从图2可以看出,本发明氧化钼微米带的两端分别与p型Si衬底以及镀有Au/SiO2薄膜区域相接触。
测试过程中用银胶分别与Au薄膜层3及p型Si衬底1固定,外接3V偏压并与电流表相联进行光响应测试。其中紫外、蓝光、绿光、红光光源分别为365nm、450nm、530nm及660nm的LED光源。测试结果如图3-5所示。
从图3可以看出,本发明实施例所制得的氧化钼微米带/p型Si探测器对紫外、蓝光、绿光、红光具有非常好的光响应,在不同波段光源照射下,其光电流有显著提高。
从图4可以看出,本发明实施例所制得的氧化钼微米带/p型Si探测器具有很好的稳定性,光电流随着紫外、蓝光、绿光、红光光源的周期开关呈现周期性响应,光源开关周期为1秒。
从图5可以看出,本发明实施实例所制得的氧化钼微米带/p型Si探测器随着紫外、蓝光、绿光、红光光功率增加,光电流呈线性增加。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (4)

1.一种基于氧化钼微米带/p型Si的多波段光响应器件,其特征在于,该器件为多层结构,自下而上依次为p型Si衬底、SiO2绝缘薄层、Au薄膜层和单根MoO3微米带,其中,SiO2绝缘薄层部分覆盖在p型Si衬底上,SiO2绝缘薄层和Au薄膜层形成Au/SiO2薄膜,所述单根MoO3微米带能同时与p型Si衬底和Au/SiO2结构接触。
2.一种如权利要求1所述基于氧化钼微米带/p型Si的多波段光响应器件的制备方法,其特征在于,具体包括如下步骤:
①以p型Si为衬底,在衬底上分成镀膜区和非镀膜区,首先对非镀膜区采用绝缘胶带进行遮挡,然后采用磁控溅射生长SiO2薄膜,其厚度为10-20nm;
②将镀膜区生长得到SiO2薄膜置于离子溅射仪进行表面镀Au薄膜,其厚度为10-20nm;
③去除非镀膜区表面绝缘胶带后,将步骤②所得样品置于退火炉中于100-200℃快速退火,自然冷却至室温;
④然后采用气相输运法生长MoO3微米带,其长度为100-200μm;
⑤将步骤④得到的MoO3微米带置于显微镜下,用镊子提取单根MoO3微米棒,置于步骤③镀膜区形成的Au/SiO2薄膜和p型Si衬底表面上,使得MoO3微米棒同时与p型Si衬底表面及Au/SiO2薄膜接触。
3.根据权利要求2所述的制备方法,其特征在于,所述步骤②中,离子溅射的条件为:生长条件为真空度1pa,溅射电流为15mA,溅射时间为120s。
4.根据权利要求2所述的制备方法,其特征在于,所述步骤①中,还包括对p型Si衬底进行超声清洗、烘干处理。
CN201810804323.4A 2018-07-20 2018-07-20 一种基于氧化钼微米带/p型Si的多波段光响应器件及其制备方法 Active CN109037372B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810804323.4A CN109037372B (zh) 2018-07-20 2018-07-20 一种基于氧化钼微米带/p型Si的多波段光响应器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810804323.4A CN109037372B (zh) 2018-07-20 2018-07-20 一种基于氧化钼微米带/p型Si的多波段光响应器件及其制备方法

Publications (2)

Publication Number Publication Date
CN109037372A true CN109037372A (zh) 2018-12-18
CN109037372B CN109037372B (zh) 2019-12-24

Family

ID=64644744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810804323.4A Active CN109037372B (zh) 2018-07-20 2018-07-20 一种基于氧化钼微米带/p型Si的多波段光响应器件及其制备方法

Country Status (1)

Country Link
CN (1) CN109037372B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569516A (zh) * 2012-01-10 2012-07-11 合肥工业大学 通过三氧化锰表面掺杂制备p-CdS纳米线及p-CdS/n-Si纳米p-n结的方法
US20140217284A1 (en) * 2011-06-30 2014-08-07 Nanoholdings, Llc Method and apparatus for detecting infrared radiation with gain
CN105336816A (zh) * 2015-11-02 2016-02-17 河南师范大学 溶液法制备MoO3/硅纳米线阵列异质结太阳能电池的方法
CN106024971A (zh) * 2016-05-28 2016-10-12 复旦大学 单根硒微米管光电探测器及其制备方法和响应度增强方法
CN107210326A (zh) * 2015-01-28 2017-09-26 三菱电机株式会社 电磁波检测器以及电磁波检测器阵列

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140217284A1 (en) * 2011-06-30 2014-08-07 Nanoholdings, Llc Method and apparatus for detecting infrared radiation with gain
CN102569516A (zh) * 2012-01-10 2012-07-11 合肥工业大学 通过三氧化锰表面掺杂制备p-CdS纳米线及p-CdS/n-Si纳米p-n结的方法
CN107210326A (zh) * 2015-01-28 2017-09-26 三菱电机株式会社 电磁波检测器以及电磁波检测器阵列
CN105336816A (zh) * 2015-11-02 2016-02-17 河南师范大学 溶液法制备MoO3/硅纳米线阵列异质结太阳能电池的方法
CN106024971A (zh) * 2016-05-28 2016-10-12 复旦大学 单根硒微米管光电探测器及其制备方法和响应度增强方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG-HEE PARK,JOONDONG KIM,IN-HYUK CHOI: "MoO3/p-Si Heterojunction for Infrared Photodetectors", 《J.KOREAN INST.ELECTR.ELECTRON.MATER.ENG.》 *

Also Published As

Publication number Publication date
CN109037372B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
Ke et al. Low temperature annealed ZnO film UV photodetector with fast photoresponse
Gu et al. Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films
CN105870225B (zh) 一种单片集成的多功能紫外/日盲紫外双色探测器及其制备方法
CN105762281A (zh) 一种铁电局域场增强型二维半导体光电探测器及制备方法
CN105679874B (zh) 一种高光谱选择性和高灵敏度紫外探测器及其制备方法
CN108470675A (zh) 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN107507876A (zh) 一种β‑Ga2O3基日盲紫外光电探测器阵列及其制备方法
CN106549079A (zh) 一种紫外光探测器及其制备方法
WO2021077838A1 (zh) 基于黑磷/石墨烯/二硫化钼异质结的光电探测器及其制备方法
CN110289335A (zh) 基于In2Se3/Si垂直结构异质结的自驱动近红外长波光电探测器及其制作方法
CN110459548B (zh) 一种基于范德瓦尔斯异质结的光电探测器及其制备方法
CN103837517B (zh) 金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN109916516A (zh) 一种二维二硒化钯纳米薄膜在宽波段偏振光信号检测中的应用
CN108767028A (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
CN109119511A (zh) 一种氧化锡-氧化锌纳米棒阵列异质结结构紫外光探测器的制备方法
CN109411562A (zh) 二硒化铂薄膜/n-型锗异质结近红外光探测器及其制备方法
CN107845700B (zh) 一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法
CN109360862A (zh) 一种基于ZnO纳米棒/Si异质结的自驱动光电探测器及其制备方法
CN105301055B (zh) 一种有机场效应管二氧化氮传感器
CN107968135B (zh) 非制冷型红外光探测器及其制备方法
CN109231154A (zh) 一种硅-玻璃密封的黑硅表面红外光源芯片及制备方法
CN109037372A (zh) 一种基于氧化钼微米带/p型Si的多波段光响应器件及其制备方法
CN106206829A (zh) 一种基于锰掺杂氮化铜薄膜的可见光探测器
Ling et al. Comprehensive enhancement of ZnGa2O4-based solar blind photodetector performance by suppressing defects in oxygen-rich atmosphere

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant