CN107845700B - 一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法 - Google Patents

一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法 Download PDF

Info

Publication number
CN107845700B
CN107845700B CN201711122070.4A CN201711122070A CN107845700B CN 107845700 B CN107845700 B CN 107845700B CN 201711122070 A CN201711122070 A CN 201711122070A CN 107845700 B CN107845700 B CN 107845700B
Authority
CN
China
Prior art keywords
zno
aln
ultraviolet light
core sheath
light detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711122070.4A
Other languages
English (en)
Other versions
CN107845700A (zh
Inventor
徐春祥
游道通
石增良
秦飞飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201711122070.4A priority Critical patent/CN107845700B/zh
Publication of CN107845700A publication Critical patent/CN107845700A/zh
Application granted granted Critical
Publication of CN107845700B publication Critical patent/CN107845700B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法,包括如下步骤:在蓝宝石衬底上生长ZnO纳米棒阵列;采用磁控溅射法在ZnO纳米棒上溅射不同厚度的AlN鞘层薄膜;采用溅射法或者电子束蒸镀分别在ZnO/AlN核鞘纳米棒阵列两端制备具有欧姆接触的金属电极,构成完整的器件。本发明通过简单的磁控溅射方法,控制溅射时间,在ZnO纳米棒上生长不同厚度、表面光滑均一的AlN鞘层薄膜,制备的ZnO/AlN核鞘光探测器件不仅具有更好的紫外光响应,在360nm紫外光照射下,电压为5V时,明暗电流比为5.5×103,提高了一个数量级,同时具有更快速的响应和恢复时间,分别是0.883和0.956s。

Description

一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备 方法
技术领域
本发明涉及半导体光电子技术领域,尤其是一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法。
背景技术
紫外光电探测器的应用广泛,在光开光、空间科学、生物医学、水净化处理、火焰探测和光电器件等领域都有极好的前景。目前主要使用的紫外探测器以紫外真空管、光电倍增管等为主,但这类器件普遍存在结构复杂、体积庞大和高功耗等缺点。基于宽禁带半导体材料的紫外光电探测器,因其体积小巧、工艺简单、对可见光不响应和室温可工作等优势而逐渐受到关注。氧化锌(ZnO)材料是直接宽带隙的II-IV族化合物,室温下能带宽度3.37eV,因其材料稳定性好、抗辐射能力强,对人体生物无毒害,原材料丰富且便宜等优点,被认为是制备紫外探测器的优良候选材料之一。
一维纳米材料的可控合成带动了基于一维纳米材料的众多功能器件的开发,其中一个很重要的应用就是基于纳米材料的光电探测器。一维纳米材料由于小尺寸的量子限制效应、巨大的比表面积等优势,在光电探测器中具有非常高的灵敏度,同时器件的功耗非常小。非常多的研究表明ZnO纳米棒具有高灵敏度、高响应速率和低功耗等优点。但由于ZnO纳米材料中往往存在较多的表面态和缺陷,易形成陷阱中心从而捕获光生载流子,对于大多数紫外光电探测器在测试时,氧化锌纳米棒都要暴露在空气中,所以纳米棒表面不可避免的会有水氧吸附,进而影响了探测器的性能。这大大限制了光响应速度、降低了探测灵敏度。
发明内容
本发明所要解决的技术问题在于,提供一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法,能够降低表面态和缺陷,提高ZnO纳米线基紫外探测器的性能。
为解决上述技术问题,本发明提供一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器,包括:蓝宝石衬底、ZnO纳米棒阵列、AlN鞘层薄膜和金属电极;首先在蓝宝石衬底上生长ZnO纳米棒阵列,其次在ZnO纳米棒溅射一层AlN鞘层薄膜,在ZnO/AlN核鞘的两面制备金属电极,最终构成紫外光探测器件。
优选的,ZnO纳米棒阵列,直径为100~200nm,长度为200~1200nm。
优选的,AlN鞘层薄膜厚度为2~40nm。
优选的,ZnO/AlN核鞘的两面的电极是铟电极。
一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法,包括如下步骤:
(1)将纯度均为99.97~99.99%的ZnO末和碳粉末按照质量比1:1~1:3混合研磨,填入陶瓷舟内;将蓝宝石衬底切成1.5cm×1cm,依次进行丙酮、无水乙醇、去离子水超声清洗,并用氮气吹干,作为生长基底,将清洗好的蓝宝石衬底放置距管口5cm位置处的石英管内;将石英管整体水平推入管式炉中高温反应,封闭管式炉,抽真空,并通入氩气和氧气,经过反应后,关闭气阀及真空泵,通入空气,当炉内气压为大气压时,开启管式炉,取出样品;
(2)将蓝宝石衬底上生长好的ZnO纳米棒阵列,放入磁控溅射仪中,溅射一层AlN鞘层薄膜;
(3)在ZnO/AlN核鞘的两端溅射铟电极;
(4)将步骤(3)最后形成ZnO/AlN核鞘紫外光探测器进行光电学性质测量,光照条件为紫外灯,电学性质测试采用半导体参数仪。
优选的,步骤(1)中,所述高温反应的温度为1000~1200℃,所述的氩气流量为130~180sccm和氧气流量为13~18sccm,所述的反应时间为10~60min。
优选的,步骤(2)中,所述的溅射靶材是AlN靶材,规格为60×3mm,腔体气压为1~4Pa,氩气流量为30~50sccm,氮气流量为5~10sccm,溅射功率为80~150W,溅射时间为5~60min。
优选的,步骤(3)中,溅射铟电极的方法为磁控溅射或者电子束蒸镀方法,厚度为20~40nm。
本发明的有益效果:
(1)本发明在传统的ZnO纳米棒阵列光电探测器件基础上,在ZnO纳米棒溅射一层AlN鞘层薄膜,提高结晶度,提高电学性能,从而有效消除在ZnO纳米棒表面的缺陷,导致暗电流大的问题;
(2)本发明制备的ZnO/AlN核鞘光探测器件不仅具有更好的紫外光响应,在325nm紫外光照射下,电压为2V时,明暗电流比为5.5×103,较纯ZnO提高了一个数量级,同时具有更快速的响应和恢复时间,分别是0.883和0.956s。
附图说明
图1为本发明实施例1中合成的ZnO/AlN核鞘纳米棒透射电子显微镜示意图。
图2为本发明的ZnO/AlN核鞘紫外光探测器的合成示意图。
图3为本发明实施例1中的ZnO/AlN核鞘紫外光探测器的i-v和i-t曲线示意图。
具体实施方式
一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器,包括:蓝宝石衬底、ZnO纳米棒阵列、AlN鞘层薄膜和金属电极;首先蓝宝石衬底上生长ZnO纳米棒阵列,其次在ZnO纳米棒溅射一层鞘层薄膜,在ZnO/AlN核鞘的两端制备金属电极,最终构成紫外光探测器件。
ZnO为纳米棒阵列,直径为100~200nm,长度为200~1200nm。AlN鞘层薄膜厚度为2~40nm。ZnO/AlN核鞘的两端的电极是铟电极。
相应的,一种高灵敏和快速响应的ZnO/AlN核鞘紫外光探测器的制备方法,其特征在于,包括如下步骤:
(1)将纯度均为99.97~99.99%的ZnO末和碳粉末按照质量比1:1~1:3混合研磨,填入陶瓷舟内;将蓝宝石衬底切成1.5cm×1cm,依次进行丙酮、无水乙醇、去离子水超声清洗,并用氮气吹干,作为生长基底,将清洗好的蓝宝石衬底放置距管口5cm位置处的石英管内;将石英管整体水平推入管式炉中高温反应,封闭管式炉,抽真空,并通入氩气和氧气,经过反应时间后,关闭气阀及真空泵,通入空气,当炉内气压为大气压时,开启管式炉,取出样品;
(2)将蓝宝石衬底上生长好的ZnO纳米棒阵列,放入磁控溅射仪中,溅射一层AlN鞘层薄膜;
(3)在ZnO/AlN核鞘的两面溅射铟电极;
(4)将步骤(3)最后形成ZnO/AlN核鞘紫外光探测器进行光电学性质测量。
步骤(1)所述高温反应的温度为1000~1200℃,所述的氩气流量为130~180sccm和氧气流量为13~18sccm,所述的反应时间为10~60min。步骤(2)中所述的溅射靶材是AlN靶材,规格为60×3mm,腔体气压为1~4Pa,氩气流量为30~50sccm,氮气流量为5~10sccm,溅射功率为80~150W,溅射时间为5~60min。步骤(3)中,溅射铟电极的方法为磁控溅射或者电子束蒸镀方法,厚度为20~40nm。
实施例1:
第一步:将纯度均为99.99%的ZnO末和碳粉末按照质量比1:1混合研磨,填入陶瓷舟内;将蓝宝石(Sapphire)衬底切成1.5cm×1cm,依次进行丙酮、无水乙醇、去离子水超声清洗,并用氮气吹干,作为生长基底,将清洗好的Sapphire衬底放置距管口5cm位置处的石英管内。将石英管整体推入设置温度为1050℃的水平管式炉中,封闭管式炉,抽真空,并通入氩气流量150sccm和氧气流量15sccm。经过10分钟反应反应后,关闭气阀及真空泵,通入空气,当炉内气压为大气压时,开启管式炉,取出样品;
第二步:利用磁控溅射仪在氧化锌纳米阵列表面溅射一层AlN薄膜,以AlN靶材为溅射源,规格为60×3mm,腔体气压为2Pa,氩气流量为50sccm,氮气流量为10sccm,溅射功率为100W,溅射时间为15min,如图1所示,合成的AlN薄膜厚度约为15nm;
第三步:利用电子束蒸镀在ZnO/AlN核鞘两端上镀上一层电极,形成30纳米厚度的铟电极;最后形成ZnO/AlN核鞘紫外光探测器,合成示意图如图2所示;
第四步:将第三步最后形成ZnO/AlN核鞘紫外光探测器进行光响应电学性质测量,如图3所示在325nm紫外光照射下,电压为2V时,明暗电流比为5.5×103,相较于纯氧化锌纳米阵列探测器,提高了一个数量级,同时具有更快速的响应和恢复时间,分别是0.883和0.956s。
实施例2:
第一步:将纯度均为99.99%的ZnO末和碳粉末按照质量比1:1混合研磨,填入陶瓷舟内;将蓝宝石(Sapphire)衬底切成1.5cm×1cm,依次进行丙酮、无水乙醇、去离子水超声清洗,并用氮气吹干,作为生长基底,将清洗好的Sapphire衬底放置距管口5cm位置处的石英管内。将石英管整体推入设置温度为1000℃的水平管式炉中,封闭管式炉,抽真空,并通入氩气流量150sccm和氧气流量15sccm。经过30分钟反应反应后,关闭气阀及真空泵,通入空气,当炉内气压为大气压时,开启管式炉,取出样品;
第二步:利用磁控溅射仪在氧化锌纳米阵列表面溅射一层AlN薄膜,以AlN靶材为溅射源,规格为60×3mm,腔体气压为2Pa,氩气流量为50sccm,氮气流量为10sccm,溅射功率为100W,溅射时间为15min;
第三步:利用电子束蒸镀在ZnO/AlN核鞘两端上镀上一层电极,形成30纳米厚度的铟电极;最后形成ZnO/AlN核鞘紫外光探测器;
第四步:将第三步最后形成ZnO/AlN核鞘紫外光探测器进行光响应电学性质测量。
实施例3:
第一步:将纯度均为99.99%的ZnO末和碳粉末按照质量比1:1混合研磨,填入陶瓷舟内;将蓝宝石(Sapphire)衬底切成1.5cm×1cm,依次进行丙酮、无水乙醇、去离子水超声清洗,并用氮气吹干,作为生长基底,将清洗好的Sapphire衬底放置距管口5cm位置处的石英管内。将石英管整体推入设置温度为1050℃的水平管式炉中,封闭管式炉,抽真空,并通入氩气流量150sccm和氧气流量15sccm。经过20分钟反应反应后,关闭气阀及真空泵,通入空气,当炉内气压为大气压时,开启管式炉,取出样品;
第二步:利用磁控溅射仪在氧化锌纳米阵列表面溅射一层AlN薄膜,以AlN靶材为溅射源,规格为60×3mm,腔体气压为2Pa,氩气流量为50sccm,氮气流量为10sccm,溅射功率为100W,溅射时间为20min;
第三步:利用电子束蒸镀在ZnO/AlN核鞘两端上镀上一层电极,形成30纳米厚度的铟电极;最后形成ZnO/AlN核鞘紫外光探测器;
第四步:将第三步最后形成ZnO/AlN核鞘紫外光探测器进行光响应电学性质测量。
实施例4:
第一步:将纯度均为99.99%的ZnO末和碳粉末按照质量比1:1混合研磨,填入陶瓷舟内;将蓝宝石(Sapphire)衬底切成1.5cm×1cm,依次进行丙酮、无水乙醇、去离子水超声清洗,并用氮气吹干,将清洗好的Sapphire衬底放置距管口5cm位置处的石英管内。将石英管整体推入设置温度为1050℃的水平管式炉中,封闭管式炉,抽真空,并通入氩气流量150sccm和氧气流量15sccm。经过60分钟反应反应后,关闭气阀及真空泵,通入空气,当炉内气压为大气压时,开启管式炉,取出样品;
第二步:利用磁控溅射仪在氧化锌纳米阵列表面溅射一层AlN薄膜,以AlN靶材为溅射源,规格为60×3mm,腔体气压为2Pa,氩气流量为50sccm,氮气流量为10sccm,溅射功率为100W,溅射时间为10min;
第三步:利用电子束蒸镀在ZnO/AlN核鞘两端上镀上一层电极,形成30纳米厚度的铟电极;最后形成ZnO/AlN核鞘紫外光探测器;
第四步:将第三步最后形成ZnO/AlN核鞘紫外光探测器进行光响应电学性质测量。
尽管本发明就优选实施方式进行了示意和描述,但本领域的技术人员应当理解,只要不超出本发明的权利要求所限定的范围,可以对本发明进行各种变化和修改。

Claims (4)

1.一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法,其特征在于,包括如下步骤:
(1)将纯度均为99.97~99.99%的ZnO末和碳粉末按照质量比1:1~1:3混合研磨,填入陶瓷舟内;将蓝宝石衬底切成1.5cm×1cm,依次进行丙酮、无水乙醇、去离子水超声清洗,并用氮气吹干,作为生长基底,将清洗好的蓝宝石衬底放置距管口5cm位置处的石英管内;将石英管整体水平推入管式炉中高温反应,封闭管式炉,抽真空,并通入氩气和氧气,经过反应后,关闭气阀及真空泵,通入空气,当炉内气压为大气压时,开启管式炉,取出样品;
(2)将蓝宝石衬底上生长好的ZnO纳米棒阵列,放入磁控溅射仪中,溅射一层AlN鞘层薄膜;
(3)在ZnO/AlN核鞘的两端溅射铟电极;
(4)将步骤(3)最后形成ZnO/AlN核鞘紫外光探测器进行光电学性质测量,光照条件为紫外灯,电学性质测试采用半导体参数仪。
2.如权利要求1所述的高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法,其特征在于,步骤(1)中,所述高温反应的温度为1000~1200℃,所述的氩气流量为130~180sccm和氧气流量为13~18sccm,所述的反应时间为10~60min。
3.如权利要求1所述的高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法,其特征在于,步骤(2)中,所述的溅射靶材是AlN靶材,规格为60×3mm,腔体气压为1~4Pa,氩气流量为30~50sccm,氮气流量为5~10sccm,溅射功率为80~150W,溅射时间为5~60min。
4.如权利要求1所述的高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法,其特征在于,步骤(3)中,溅射铟电极的方法为磁控溅射或者电子束蒸镀方法,厚度为20~40nm。
CN201711122070.4A 2017-11-14 2017-11-14 一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法 Active CN107845700B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711122070.4A CN107845700B (zh) 2017-11-14 2017-11-14 一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711122070.4A CN107845700B (zh) 2017-11-14 2017-11-14 一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法

Publications (2)

Publication Number Publication Date
CN107845700A CN107845700A (zh) 2018-03-27
CN107845700B true CN107845700B (zh) 2019-05-28

Family

ID=61678809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711122070.4A Active CN107845700B (zh) 2017-11-14 2017-11-14 一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法

Country Status (1)

Country Link
CN (1) CN107845700B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109289875B (zh) * 2018-09-11 2021-08-24 东南大学 高效产氢的ZnO核壳纳米棒阵列光催化剂、制备方法及应用
CN111564561B (zh) * 2020-05-07 2022-03-29 东北师范大学 一种PPy/SnO2异质结、其应用、其制备方法及光电探测器
CN112563881B (zh) * 2020-11-27 2022-02-11 东南大学 基于ZnO/Al核壳纳米线的等离激元激光器及其制备方法
CN112582486B (zh) * 2020-12-15 2023-09-26 广西大学 一种NiO紫外光电探测器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800747A (zh) * 2012-07-11 2012-11-28 上海大学 一种ZnS包覆的ZnO纳米阵列核壳结构的制备方法
CN205542846U (zh) * 2016-01-14 2016-08-31 中国石油大学(华东) 基于二氧化钛纳米棒阵列/硅异质结的紫外光探测器
CN106910751A (zh) * 2017-03-07 2017-06-30 吉林大学 一种基于自耗尽效应的TiO2/NPB异质一维纳米棒阵列紫外探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800747A (zh) * 2012-07-11 2012-11-28 上海大学 一种ZnS包覆的ZnO纳米阵列核壳结构的制备方法
CN205542846U (zh) * 2016-01-14 2016-08-31 中国石油大学(华东) 基于二氧化钛纳米棒阵列/硅异质结的紫外光探测器
CN106910751A (zh) * 2017-03-07 2017-06-30 吉林大学 一种基于自耗尽效应的TiO2/NPB异质一维纳米棒阵列紫外探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/shell Nanowire Array》;Satish.Rai,et al.;《ACS Nano》;20150603;第9卷(第6期);正文第6420页至6421页以及图2

Also Published As

Publication number Publication date
CN107845700A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
CN107845700B (zh) 一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器的制备方法
Ke et al. Low temperature annealed ZnO film UV photodetector with fast photoresponse
Ekem et al. Some physical properties of ZnO thin films prepared by RF sputtering technique
CN110137315A (zh) 单根ZnO:Ga微米线异质结基点光源器件及制备方法
CN101533867B (zh) 氧化锌纳米紫外光敏传感器的制备方法
CN100428502C (zh) 一种a-b取向ZnO纳米线阵列的制备方法
CN110444618A (zh) 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法
CN111293181B (zh) 一种MSM型α-Ga2O3基日盲紫外光探测器
CN105334245A (zh) 一种氧化钼纳米纤维纸氢气传感器的制备方法
CN107425098B (zh) 可实现纯紫外发光的ZnO基异质结发光二极管的制备方法
CN109360862A (zh) 一种基于ZnO纳米棒/Si异质结的自驱动光电探测器及其制备方法
CN109256438A (zh) 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
CN109037386A (zh) 基于氧化镁衬底的氧化镓薄膜光电探测器及其制造方法
CN111564509A (zh) 一种全氧化物柔性光电探测器及其制备方法与应用
Pei et al. Substrate-bias-aided preparation and properties of amorphous gallium oxide films and their deep-ultraviolet photodetectors
Park et al. Growth of transparent conducting nano-structured In doped ZnO thin films by pulsed DC magnetron sputtering
CN110112233A (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
Mahdi et al. Growth and characterization of tin sulphide nanostructured thin film by chemical bath deposition for near-infrared photodetector application
CN108376724A (zh) 一种紫外光探测器及制备方法
CN111024775B (zh) 用于臭氧气体传感器的气敏传感器件以及制备方法
Bhatia et al. Effect of deposition time on sputtered ZnO thin films and their gas sensing application
Ling et al. Comprehensive enhancement of ZnGa2O4-based solar blind photodetector performance by suppressing defects in oxygen-rich atmosphere
CN102650044B (zh) 一种SGZO-Au-SGZO透明导电膜的制备方法
Yang et al. Bandgap engineered ultraviolet photodetectors with gallium-zinc-oxide via co-sputtering method
CN109449239B (zh) 镓酸镧薄膜及其制造方法及相应的镓酸镧薄膜光电探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant