CN109033021B - 一种基于变参收敛神经网络的线性方程求解器设计方法 - Google Patents

一种基于变参收敛神经网络的线性方程求解器设计方法 Download PDF

Info

Publication number
CN109033021B
CN109033021B CN201810800016.9A CN201810800016A CN109033021B CN 109033021 B CN109033021 B CN 109033021B CN 201810800016 A CN201810800016 A CN 201810800016A CN 109033021 B CN109033021 B CN 109033021B
Authority
CN
China
Prior art keywords
time
varying
matrix
equation
real number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810800016.9A
Other languages
English (en)
Other versions
CN109033021A (zh
Inventor
张智军
付正
郑陆楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810800016.9A priority Critical patent/CN109033021B/zh
Publication of CN109033021A publication Critical patent/CN109033021A/zh
Application granted granted Critical
Publication of CN109033021B publication Critical patent/CN109033021B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/065Analogue means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Neurology (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于变参收敛神经网络的线性方程求解器设计方法,包括以下步骤:1)建立具有实数域光滑时变线性矩阵方程形式的实际物理系统或数值求解系统的数学模型;2)通过步骤1)所述系统的传感器获取数学模型的时变参数矩阵,并通过微分器求解其时间导数;3)设计所述系统的误差函数方程;4)通过实数域变参收敛神经网络方法以及所获得的时变参数矩阵及其导数,利用单调递增奇激励函数,设计实数域光滑时变线性矩阵方程求解器,得到系统的实数域光滑时变线性矩阵方程的唯一最优解,系统的执行端接受该最优解指令并执行。所述方法克服了传统定参收敛神经网络方法在求解时变问题时易受干扰的缺点,具有超指数收敛性能和强鲁棒性。

Description

一种基于变参收敛神经网络的线性方程求解器设计方法
技术领域
本发明涉及人工神经网络领域,具体涉及一种基于变参收敛神经网络的线性方程求解器设计方法。
背景技术
人工神经网络,作为模拟动物神经系统的一种并行分布式信号处理的数学模型方法,在过去的几十年间引起了众多研究人员和工程师的注意。在科学、工程以及经济等领域及其相关领域中,大规模实时数学问题频繁出现,如何求解时变矩阵/矢量/代数方程运算、自动控制、最优化计算、信号处理、机器人逆运动学求解等相关问题已成为了解决实际应用的关键所在。随着近代神经网络的发展与深入,各领域研究者已设计出众多具有不同特性的神经网络结构模型。
在收敛神经网络方面,基于梯度法的神经网络模型被应用于众多的领域和学科之中。特别是应用于静态定常数学问题求解或变化缓慢的时变问题求解中,且已在模拟硬件电路上获得了实现,但实践证明其并不适用于求解时变问题。
方程AXB-C=0在线性代数和控制理论中是一种重要的线性矩阵方程,在模型降阶与图像处理中起到了重要的作用,例如图像融合、聚类、线性最小二次回归、系统能控能观性分析和最优化等。而基于固定参数的张零化神经网络在面对复杂的时变系统时,经常会受到外界噪声的干扰,导致系统求解出现不可预知的误差,不能很好地满足人们对于控制系统稳定性的要求。
由于固定参数收敛神经网络方法要求收敛参数需要被设定得尽可能的大以得到更快的收敛性能。当神经网络应用在实际的系统中时,或是制成相应神经网络电路甚至芯片,这是不实用的以及难以满足的。除此之外,在实际系统中,特别是大型的电力电子系统、交流电机控制系统、电力网络电容投切等,电感参数值和电容参数值的倒数通常是时变的,系统参数被设定为固定值是不合理的。
发明内容
本发明的目的是针对现有技术的不足,提供了一种基于变参收敛神经网络的线性方程求解器设计方法,所述方法在求解实数域光滑时变线性矩阵问题中使用了时变参数矩阵,具有超指数收敛性能和强鲁棒性。
本发明的目的可以通过如下技术方案实现:
一种基于变参收敛神经网络的线性方程求解器设计方法,所述方法包括以下步骤:
1)建立具有实数域光滑时变线性矩阵方程形式的实际物理系统或数值求解系统的数学模型;
2)通过步骤1)所述系统的传感器获取数学模型的时变参数矩阵,并通过微分器求解其时间导数;
3)设计所述系统的误差函数方程;
4)通过实数域变参收敛神经网络方法以及所获得的时变参数矩阵及其导数,利用单调递增奇激励函数,设计实数域光滑时变线性矩阵方程求解器,通过方程求解器得到系统的实数域光滑时变线性矩阵方程的唯一最优解,系统的执行端接受该最优解指令并执行。
进一步地,步骤1)中,所述实际物理系统或数值求解系统的实数域光滑时变线性矩阵方程形式为线性或者近似线性,将所述系统利用数学建模方法进行模型公式化后,得到如下的实数域光滑时变线性矩阵方程:
Figure BDA0001736874260000021
其中,t表示时间;在实数域中,定义
Figure BDA0001736874260000022
以及
Figure BDA0001736874260000023
是时变参数矩阵;假设未知的矩阵
Figure BDA0001736874260000024
存在,以及它们各自的时间导数
Figure BDA0001736874260000025
被认为是已知、时变且光滑的,通过设计一种变参收敛神经网络模型,能够寻找到满足矩阵方程(1)的唯一最优解
Figure BDA0001736874260000026
为使上述实数域光滑时变线性矩阵方程(1)的求解过程更为简单,首先需要将实数域光滑时变线性矩阵方程从矩阵形式转换为矢量形式;矩阵形式的实数域光滑时变线性矩阵方程(1)等价于如下的矢量形式方程:
Figure BDA0001736874260000027
其中,符号
Figure BDA0001736874260000028
表示克罗内克积,这意味着
Figure BDA0001736874260000029
是一个通过替换矩阵A中的第(i,j)单元的元素aij为aijB的大维度矩阵;算子
Figure BDA00017368742600000210
是一个将矩阵
Figure BDA00017368742600000211
的所有列向量重组为一个1维的长列向量的重构列向量算子;
此外,为了保证能够得到唯一解,实数域矩阵方程需要满足唯一解存在条件;实数域光滑时变线性矩阵方程(1)有唯一最优理论解当且仅当其满足其系数矩阵A(t),B(t),C(t)为非奇异矩阵,即矩阵A(t),B(t),C(t)的所有特征值均不为零。
进一步地,步骤2)中,实数域光滑时变线性矩阵方程(1)中的时变参数矩阵A(t),B(t),C(t)由实际系统传感器获取的信号与系统预期运行状态信号组合构成;时变参数矩阵A(t),B(t),C(t),以及它们的时间导数矩阵
Figure BDA0001736874260000031
和C(t)=dC(t)/dt是可知的或者能够通过系统的微分器被精确地估计出来。
进一步地,步骤3)中,所述误差函数为矩阵形式,方程具体如下:
E(t)=A(t)X(t)B(t)-C(t) (3)
当误差函数E(t)达到0时,即E(t)所有的元素eij,i=1,...,m;j=1,...n均达到0时,实数域光滑时变线性矩阵方程(1)的唯一最优解X*(t)能够被获得。
进一步地,步骤4)中,在利用实数域变参收敛神经网络方法设计实数域光滑时变线性矩阵方程求解器的过程中,引入时变参数Φ(t),将变参收敛神经网络模型中误差函数的时间导数设计如下:
Figure BDA0001736874260000032
其中,
Figure BDA0001736874260000033
表示矩阵形式的实数值激励函数阵列,
Figure BDA0001736874260000034
根据不同的映射函数关系具有不同的形式;Φ(t)为一个正定的用于衡量该求解过程的收敛率的时变参数,为幂型或者指数型,并能够根据实际硬件系统需要,及时调整以获得更好的收敛效果;此处采用指数型时变参数,即Φ(t)=(ψ+ψt)t∈[0,+∞),将变参收敛神经网络模型中误差函数的时间导数设计如下:
Figure BDA0001736874260000035
从而实数域变参收敛神经网络用如下的隐式网络方程表达:
Figure BDA0001736874260000036
其中,
Figure BDA0001736874260000037
Figure BDA0001736874260000038
为偏导数信息,X(t)具有初始值
Figure BDA0001736874260000039
根据矢量形式方程(2),实数域变参收敛神经网络的隐式网络方程(6)转化为如下的矢量形式实数域光滑时变线性矩阵方程求解器:
Figure BDA00017368742600000310
其中矩阵
Figure BDA00017368742600000311
矢量x(t):=vec(X(t)),c(t):=vec(C(t));根据方程(7)得到实数域变参收敛神经网络的系统框图以及网络实现,网络的输出结果即为实数域光滑时变线性矩阵方程(1)的唯一最优解。
进一步地,所述矩阵形式的实数值激励函数阵列
Figure BDA00017368742600000312
个单调递增奇激励函数f(·)组成;能够使用的实数值激励函数如下列所示:
(1)线性型激励函数:f1(eij)=eij,其中标量参数
Figure BDA0001736874260000041
(2)双极S函数型激励函数:
Figure BDA0001736874260000042
其中标量参数ξ≥2并且
Figure BDA0001736874260000043
(3)幂函数型激励函数:f3(eij)=(eij)k,其中k≥3并且
Figure BDA0001736874260000044
(4)幂函数-双极S型激活函数:
Figure BDA0001736874260000045
其中标量参数ξ≥2,k≥3,且
Figure BDA0001736874260000046
本发明与现有技术相比,具有如下优点和有益效果:
本发明提供的基于变参收敛神经网络的线性方程求解器设计方法,在求解实数域光滑时变线性矩阵问题中使用了时变参数矩阵,具有超指数收敛性能和强鲁棒性,它的设计方法从方法和系统层面上充分利用了误差的导数信息,具有一定的预测指导能力,因此采用变参收敛神经网络方法所得的解可以快速收敛到实时“运动”的理论解上去,可以很好地解决矩阵、向量、代数以及优化等多种时变问题,克服了传统定参收敛神经网络方法在求解时变问题时易受干扰的缺点。
附图说明
图1为本发明实施例基于变参收敛神经网络的线性方程求解器设计方法流程图。
图2为本发明实施例实际系统求解器的实现框架。
图3为本发明实施例基于变参收敛神经网络方法的线性矩阵方程求解网络框图。
图4(a)为本发明实施例状态解矩阵的第(1,1)个元素仿真结果,图4(b)为状态解矩阵的第(1,2)个元素仿真结果,图4(c)为状态解矩阵的第(1,3)个元素仿真结果,图4(d)为状态解矩阵的第(2,1)个元素仿真结果,图4(e)为状态解矩阵的第(2,2)个元素仿真结果,图4(f)为状态解矩阵的第(2,3)个元素仿真结果。
图5(a)为本发明实施例求解器在线性激励函数下的求解效果图,图5(b)为求解器在双极S函数型激励函数下的求解效果图,图5(c)为求解器在幂函数型激励函数下的求解效果图,图5(d)求解器在幂函数-双极S型激励函数下的求解效果图。
图6(a)为本发明实施例求解器在脉冲型干扰下的求解效果图,图6(b)为求解器在三角波型干扰下的求解效果图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例:
本实施例提供了一种基于变参收敛神经网络的线性方程求解器设计方法,所述方法流程如图1所示,包括以下步骤:
1)建立具有实数域光滑时变线性矩阵方程形式的实际物理系统或数值求解系统的数学模型;
2)通过步骤1)所述系统的传感器获取数学模型的时变参数矩阵,并通过微分器求解其时间导数;
3)设计所述系统的误差函数方程;
4)通过实数域变参收敛神经网络方法以及所获得的时变参数矩阵及其导数,利用单调递增奇激励函数,设计实数域光滑时变线性矩阵方程求解器,通过方程求解器得到系统的实数域光滑时变线性矩阵方程的唯一最优解,系统的执行端接受该最优解指令并执行。
图2所示为本实施例实际系统求解器的实现框架,包括如下模块:数据采集部分,包括外部传感器对外界环境进行传感器获取以及预期实现的目标状态数据,这两部分为构成时变参数矩阵的基础内容;输入接口电路为外部设定数据以及处理器间的接口通道,根据传感器的不同由不同接口电路与协议实现;处理器部分包括时变参数矩阵以及基于变参收敛神经网络方法的实数域时变光滑线性矩阵方程求解器,其中时变参数矩阵部分完成对外部输入数据的矩阵或矢量化,为线性矩阵方程求解器为系统核心部分;线性矩阵方程求解器通过预先对系统的建模、公式化、分析以及设计构成,包括数学建模得到系统模型、设计误差方程,利用变参收敛神经网络方法构造神经网络求解器;输出接口为求解器求解数据同系统最优理论解请求端的接口,其中该接口可以是电路接口也可以是程序的返回值,根据设计系统的不同而不同;最优理论解请求端为需要获得实际物理系统或数值求解系统的实数域光滑时变线性矩阵方程最优理论解的请求端,该端口在需要得到求解参数时像求解系统发出指令请求,并接受求解结果。
图3为本实施例基于变参收敛神经网络方法的线性矩阵方程求解网络框图,根据实数域光滑时变线性矩阵方程的隐式网络方程,实数域变参收敛神经网络的框图实现如图3所设计。图3不仅仅是等式的隐式网络方程的展示,同时也是所提出的实数域变参收敛神经网络的实现。值得一提的是实数域便参数收敛神经网络能够通过使用电子元件实现,以实现神经网络电路甚至是芯片,并且框图能够促进并指导神经网络的物理实现的设计过程。在图3中,∑表示累加器而∫表示积分器,左乘和右乘代表着矩阵的两种不同乘法运算。
根据设计流程图的相关步骤,针对本发明进行详细的算法解析:
步骤1)中,所述实际物理系统或数值求解系统的实数域光滑时变线性矩阵方程形式为线性或者近似线性,将所述系统利用数学建模方法进行模型公式化后,得到如下的实数域光滑时变线性矩阵方程:
Figure BDA0001736874260000061
其中,t表示时间;在实数域中,定义
Figure BDA0001736874260000062
以及
Figure BDA0001736874260000063
是时变参数矩阵;假设未知的矩阵
Figure BDA0001736874260000064
存在,以及它们各自的时间导数
Figure BDA0001736874260000065
被认为是已知、时变且光滑的,通过设计一种变参收敛神经网络模型,能够寻找到满足矩阵方程(1)的唯一最优解
Figure BDA0001736874260000066
为使上述实数域光滑时变线性矩阵方程(1)的求解过程更为简单,首先需要将实数域光滑时变线性矩阵方程从矩阵形式转换为矢量形式;矩阵形式的实数域光滑时变线性矩阵方程(1)等价于如下的矢量形式方程:
Figure BDA0001736874260000067
其中,符号
Figure BDA0001736874260000068
表示克罗内克积,这意味着
Figure BDA0001736874260000069
是一个通过替换矩阵A中的第(i,j)单元的元素aij为aijB的大维度矩阵;算子
Figure BDA00017368742600000610
是一个将矩阵
Figure BDA00017368742600000611
的所有列向量重组为一个1维的长列向量的重构列向量算子;
此外,为了保证能够得到唯一解,实数域矩阵方程需要满足唯一解存在条件;实数域光滑时变线性矩阵方程(1)有唯一最优理论解当且仅当其满足其系数矩阵A(t),B(t),C(t)为非奇异矩阵,即矩阵A(t),B(t),C(t)的所有特征值均不为零。
步骤2)中,实数域光滑时变线性矩阵方程(1)中的时变参数矩阵A(t),B(t),C(t)由实际系统传感器获取的信号与系统预期运行状态信号组合构成;时变参数矩阵A(t),B(t),C(t),以及它们的时间导数矩阵
Figure BDA00017368742600000612
Figure BDA00017368742600000613
和C(t)=dC(t)/dt是可知的或者能够通过系统的微分器被精确地估计出来。
步骤3)中,所述误差函数为矩阵形式,方程具体如下:
E(t)=A(t)X(t)B(t)-C(t) (3)
当误差函数E(t)达到0时,即E(t)所有的元素eij,,i=1,...,m;j=1,...n均达到0时,实数域光滑时变线性矩阵方程(1)的唯一最优解X*(t)能够被获得。
步骤4)中,在利用实数域变参收敛神经网络方法设计实数域光滑时变线性矩阵方程求解器的过程中,引入时变参数Φ(t),将变参收敛神经网络模型中误差函数的时间导数设计如下:
Figure BDA0001736874260000071
其中,
Figure BDA0001736874260000072
表示矩阵形式的实数值激励函数阵列,
Figure BDA0001736874260000073
根据不同的映射函数关系具有不同的形式;Φ(t)为一个正定的用于衡量该求解过程的收敛率的时变参数,为幂型或者指数型,并能够根据实际硬件系统需要,及时调整以获得更好的收敛效果;此处采用指数型时变参数,即Φ(t)=(ψ+ψt)t∈[0,+∞),将变参收敛神经网络模型中误差函数的时间导数设计如下:
Figure BDA0001736874260000074
从而实数域变参收敛神经网络用如下的隐式网络方程表达:
Figure BDA0001736874260000075
其中,
Figure BDA0001736874260000076
Figure BDA0001736874260000077
Figure BDA0001736874260000078
为偏导数信息,X(t)具有初始值
Figure BDA0001736874260000079
根据矢量形式方程(2),实数域变参收敛神经网络的隐式网络方程(6)转化为如下的矢量形式实数域光滑时变线性矩阵方程求解器:
Figure BDA00017368742600000710
其中矩阵
Figure BDA00017368742600000711
矢量x(t):=vec(X(t)),c(t):=vec(C(t));根据方程(7)得到实数域变参收敛神经网络的系统框图以及网络实现,网络的输出结果即为实数域光滑时变线性矩阵方程(1)的唯一最优解。
此处,为了展示实际的系统设计过程,利用一个实际例子对问题进行说明,假设系统的时变参数矩阵已被得到,并考虑假定具有如下时变矩阵的一个实数域时变AXB-C=0方程(1),其中
Figure BDA00017368742600000712
Figure BDA00017368742600000713
为了更好比较算法设计结果,将上述的矩阵代入方程(1),以下的AXB-C=0方程的理论解X*(t)能够被计算出来:
Figure BDA00017368742600000714
对于实数域变参收敛神经网络,可以得到神经网络的状态解X(t)为:
Figure BDA0001736874260000081
其中xij表示X(t)的第(i,j)个元素,考虑以下的初始值:
Figure BDA0001736874260000082
其中x0a,x0b,…,x0f是通过随机函数在区域[-2,+2]上生成的。假设当计算误差||X(t)-X*(t)||F小于0.06,线性矩阵方程的求解过程认为已经完成。此外,我们假定在随机重复试验中,所有的计算误差||X(t)-X*(t)||F都小于0.06时的时间为花费时间。对于激励函数,在双极S型激励函数中设定参数ξ=4以及在幂函数型激励函数中设定指数k=3。实例仿真结果如图4(a)-4(f),图5(a)-5(d)和图6(a)-6(b)所示。
图4为AXB-C=0方程求解器实例求解收敛效果,仿真实例使用时变参数Φ(2)在2×3维度的线性矩阵方程上进行了6次重复试验,理论解由虚线表示;图4(a)为状态解矩阵的第(1,1)个元素仿真结果,图4(b)为状态解矩阵的第(1,2)个元素仿真结果,图4(c)为状态解矩阵的第(1,3)个元素仿真结果,图4(d)为状态解矩阵的第(2,1)个元素仿真结果,图4(e)为状态解矩阵的第(2,2)个元素仿真结果,图4(f)为状态解矩阵的第(2,3)个元素仿真结果。
图5为AXB-C=0方程求解器不同激励函数下实例求解效果。图5(a)为求解器在线性激励函数下的求解效果图,图5(b)为求解器在双极S函数型激励函数下的求解效果图,图5(c)为求解器在幂函数型激励函数下的求解效果图,图5(d)求解器在幂函数-双极S型激励函数下的求解效果图。
图6为AXB-C=0方程求解器实例求解鲁棒效果,其中虚线代表张零化神经网络而实线代表本发明中提出的变参收敛神经网络。图6(a)为求解器在脉冲型干扰下的求解效果图,图6(b)为求解器在三角波型干扰下的求解效果图。
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明专利构思加以等同替换或改变,都属于本发明专利的保护范围。

Claims (4)

1.一种用于实现基于变参收敛神经网络的线性方程求解器设计方法的系统,其特征在于,包括以下模块:
数据采集部分,包括外部传感器,对外界环境进行传感器获取以及预期实现的目标状态数据;
输入接口电路,为外部设定数据以及处理器间的接口通道;
处理器,包括时变参数矩阵以及基于变参收敛神经网络方法的实数域时变光滑线性矩阵方程求解器,其中时变参数矩阵部分完成对外部输入数据的矩阵或矢量化;线性矩阵方程求解器通过预先对系统的建模、公式化、分析以及设计构成,包括数学建模得到系统模型、设计误差方程,利用变参收敛神经网络方法构造神经网络求解器;
输出接口电路,为求解器求解数据同系统最优理论解请求端的接口;以及
最优解请求端,为需要获得实际物理系统或数值求解系统的实数域光滑时变线性矩阵方程最优理论解的请求端,该请求端在需要得到求解参数时向求解系统发出指令请求,并接受求解结果;
所述基于变参收敛神经网络的线性方程求解器设计方法包括以下步骤:
1)建立具有实数域光滑时变线性矩阵方程形式的实际物理系统或数值求解系统的数学模型;
2)通过步骤1)所述系统的传感器获取数学模型的时变参数矩阵,并通过微分器求解其时间导数;
3)设计所述系统的误差函数方程;
4)通过实数域变参收敛神经网络方法以及所获得的时变参数矩阵及其导数,利用单调递增奇激励函数,设计实数域光滑时变线性矩阵方程求解器,通过方程求解器得到系统的实数域光滑时变线性矩阵方程的唯一最优解,系统的执行端接受该最优解指令并执行;
步骤1)中,所述实际物理系统或数值求解系统的实数域光滑时变线性矩阵方程形式为线性或者近似线性,将所述系统利用数学建模方法进行模型公式化后,得到如下的实数域光滑时变线性矩阵方程:
Figure FDA0003003611070000011
其中,t表示时间;在实数域中,定义
Figure FDA0003003611070000021
以及
Figure FDA0003003611070000022
是时变参数矩阵;假设未知的矩阵
Figure FDA0003003611070000023
存在,以及它们各自的时间导数
Figure FDA0003003611070000024
被认为是已知、时变且光滑的,通过设计一种变参收敛神经网络模型,能够寻找到满足矩阵方程(1)的唯一最优解
Figure FDA0003003611070000025
为使上述实数域光滑时变线性矩阵方程(1)的求解过程更为简单,首先需要将实数域光滑时变线性矩阵方程从矩阵形式转换为矢量形式;矩阵形式的实数域光滑时变线性矩阵方程(1)等价于如下的矢量形式方程:
Figure FDA0003003611070000026
其中,符号
Figure FDA0003003611070000027
表示克罗内克积,这意味着
Figure FDA0003003611070000028
是一个通过替换矩阵A中的第(i,j)单元的元素aij为aijB的大维度矩阵;算子
Figure FDA0003003611070000029
是一个将矩阵
Figure FDA00030036110700000210
的所有列向量重组为一个1维的长列向量的重构列向量算子;
此外,为了保证能够得到唯一解,实数域矩阵方程需要满足唯一解存在条件;实数域光滑时变线性矩阵方程(1)有唯一最优理论解当且仅当其满足其系数矩阵A(t),B(t),C(t)为非奇异矩阵,即矩阵A(t),B(t),C(t)的所有特征值均不为零。
2.根据权利要求1所述的系统,其特征在于:步骤2)中,实数域光滑时变线性矩阵方程(1)中的时变参数矩阵A(t),B(t),C(t)由实际系统传感器获取的信号与系统预期运行状态信号组合构成;时变参数矩阵A(t),B(t),C(t),以及它们的时间导数矩阵
Figure FDA00030036110700000211
和C(t)=dC(t)/dt是可知的或者能够通过系统的微分器被精确地估计出来。
3.根据权利要求1所述的系统,其特征在于:步骤3)中,所述误差函数为矩阵形式,方程具体如下:
E(t)=A(t)X(t)B(t)-C(t) (3)
当误差函数E(t)达到0时,即E(t)所有的元素eij,i=1,...,m;j=1,...n均达到0时,实数域光滑时变线性矩阵方程(1)的唯一最优解X*(t)能够被获得。
4.根据权利要求3所述的系统,其特征在于:步骤4)中,在利用实数域变参收敛神经网络方法设计实数域光滑时变线性矩阵方程求解器的过程中,引入时变参数Φ(t),将变参收敛神经网络模型中误差函数的时间导数设计如下:
Figure FDA00030036110700000212
其中,
Figure FDA00030036110700000213
表示矩阵形式的实数值激励函数阵列,
Figure FDA00030036110700000214
根据不同的映射函数关系具有不同的形式;Φ(t)为一个正定的用于衡量该求解过程的收敛率的时变参数,为幂型或者指数型,并能够根据实际硬件系统需要,及时调整以获得更好的收敛效果;此处采用指数型时变参数,即Φ(t)=(ψ+ψt)t∈[0,+∞),将变参收敛神经网络模型中误差函数的时间导数设计如下:
Figure FDA0003003611070000031
从而实数域变参收敛神经网络用如下的隐式网络方程表达:
Figure FDA0003003611070000032
其中,
Figure FDA0003003611070000033
为偏导数信息,X(t)具有初始值
Figure FDA0003003611070000034
根据矢量形式方程(2),实数域变参收敛神经网络的隐式网络方程(6)转化为如下的矢量形式实数域光滑时变线性矩阵方程求解器:
Figure FDA0003003611070000035
其中矩阵
Figure FDA0003003611070000036
矢量x(t):=vec(X(t)),c(t):=vec(C(t));根据方程(7)得到实数域变参收敛神经网络的系统框图以及网络实现,网络的输出结果即为实数域光滑时变线性矩阵方程(1)的唯一最优解。
CN201810800016.9A 2018-07-20 2018-07-20 一种基于变参收敛神经网络的线性方程求解器设计方法 Active CN109033021B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810800016.9A CN109033021B (zh) 2018-07-20 2018-07-20 一种基于变参收敛神经网络的线性方程求解器设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810800016.9A CN109033021B (zh) 2018-07-20 2018-07-20 一种基于变参收敛神经网络的线性方程求解器设计方法

Publications (2)

Publication Number Publication Date
CN109033021A CN109033021A (zh) 2018-12-18
CN109033021B true CN109033021B (zh) 2021-07-20

Family

ID=64644555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810800016.9A Active CN109033021B (zh) 2018-07-20 2018-07-20 一种基于变参收敛神经网络的线性方程求解器设计方法

Country Status (1)

Country Link
CN (1) CN109033021B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111037550B (zh) * 2019-12-03 2023-02-10 华南理工大学 一种冗余度机械臂运动控制的解决方法
CN111975771A (zh) * 2020-07-30 2020-11-24 华南理工大学 一种基于偏差重定义神经网络的机械臂运动规划方法
CN113282873A (zh) * 2021-04-27 2021-08-20 广东海洋大学 一种基于零化神经网络求解时变连续代数Riccati方程的方法
CN113297813B (zh) * 2021-05-21 2022-07-05 华南理工大学 基于改进三阶牛顿迭代法的电-气能源系统潮流计算方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1091604A (ja) * 1996-09-10 1998-04-10 Toshiba Corp 関数学習装置
CN102667755A (zh) * 2009-09-03 2012-09-12 华莱士·E.·拉里莫尔 通过迭代线性子空间计算对时变、变参数和非线性系统进行实验建模的方法和系统
CN102662916A (zh) * 2012-03-28 2012-09-12 高俊文 基于Lagrange函数的最小二乘准则多目标优化方法
CN106056141A (zh) * 2016-05-27 2016-10-26 哈尔滨工程大学 一种使用空间稀疏编码的目标识别与角度粗估计算法
CN106156847A (zh) * 2015-04-16 2016-11-23 吉首大学 一种有限时间收敛的梯度递归神经网络方法
CN106649203A (zh) * 2016-12-28 2017-05-10 华中科技大学 一种提高大数据处理质量的方法
CN106945041A (zh) * 2017-03-27 2017-07-14 华南理工大学 一种冗余度机械臂重复运动规划方法
CN106951393A (zh) * 2017-03-14 2017-07-14 合肥工业大学 一种基于微分求积法的时变状态方程解法
CN107346299A (zh) * 2017-07-13 2017-11-14 华南理工大学 一种实数域光滑时变Sylvester方程求解器的设计方法
CN107784180A (zh) * 2017-11-13 2018-03-09 华南理工大学 一种时变凸二次规划求解器设计方法
CN107957685A (zh) * 2017-11-17 2018-04-24 华南理工大学 一种求解含噪声时变问题的神经动力学方法
CN108015763A (zh) * 2017-11-17 2018-05-11 华南理工大学 一种抗噪声干扰的冗余度机械臂路径规划方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7010482B2 (en) * 2000-03-17 2006-03-07 The Regents Of The University Of California REW parametric vector quantization and dual-predictive SEW vector quantization for waveform interpolative coding
US7376562B2 (en) * 2004-06-22 2008-05-20 Florida Atlantic University Method and apparatus for nonlinear frequency analysis of structured signals
WO2006016408A1 (ja) * 2004-08-12 2006-02-16 Fujitsu Limited 電波到来方向の適応推定追尾方法および装置
US20070168328A1 (en) * 2006-01-05 2007-07-19 Utah State University Intelligent space tube optimizer

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1091604A (ja) * 1996-09-10 1998-04-10 Toshiba Corp 関数学習装置
CN102667755A (zh) * 2009-09-03 2012-09-12 华莱士·E.·拉里莫尔 通过迭代线性子空间计算对时变、变参数和非线性系统进行实验建模的方法和系统
CN102662916A (zh) * 2012-03-28 2012-09-12 高俊文 基于Lagrange函数的最小二乘准则多目标优化方法
CN106156847A (zh) * 2015-04-16 2016-11-23 吉首大学 一种有限时间收敛的梯度递归神经网络方法
CN106056141A (zh) * 2016-05-27 2016-10-26 哈尔滨工程大学 一种使用空间稀疏编码的目标识别与角度粗估计算法
CN106649203A (zh) * 2016-12-28 2017-05-10 华中科技大学 一种提高大数据处理质量的方法
CN106951393A (zh) * 2017-03-14 2017-07-14 合肥工业大学 一种基于微分求积法的时变状态方程解法
CN106945041A (zh) * 2017-03-27 2017-07-14 华南理工大学 一种冗余度机械臂重复运动规划方法
CN107346299A (zh) * 2017-07-13 2017-11-14 华南理工大学 一种实数域光滑时变Sylvester方程求解器的设计方法
CN107784180A (zh) * 2017-11-13 2018-03-09 华南理工大学 一种时变凸二次规划求解器设计方法
CN107957685A (zh) * 2017-11-17 2018-04-24 华南理工大学 一种求解含噪声时变问题的神经动力学方法
CN108015763A (zh) * 2017-11-17 2018-05-11 华南理工大学 一种抗噪声干扰的冗余度机械臂路径规划方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Design and analysis of a general recurrent neural network model for time-varying matrix inversion;Zhang Yunong 等;《IEEE Transactions on Neural Networks》;20051107;第16卷(第6期);1477-1490 *
Recurrent neural network for solving linear matrix equation;Madankan Ali;《2010 International Conference on Electronics and Information Engineering》;20100831;第2卷;52-70 *
SIMO傅里叶三角基神经网络的权值直接确定法和结构自确定算法;张雨浓 等;《信息与控制》;20110815;第40卷(第04期);507-513 *
基于李雅普诺夫方法的分数阶神经网络动力学分析及控制;张硕;《中国博士学位论文全文数据库 基础科学辑》;20170915(第09期);A002-20 *
大型风力发电机组的智能滑模变结构控制研究;贾增周;《中国博士学位论文全文数据库 工程科技Ⅱ辑》;20081115(第11期);C042-15 *
线性系统中的Lyapunov矩阵微分方程解的特征值估计;李全兵;《中国优秀硕士学位论文全文数据库 基础科学辑》;20150315(第03期);A002-9 *

Also Published As

Publication number Publication date
CN109033021A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
CN109033021B (zh) 一种基于变参收敛神经网络的线性方程求解器设计方法
CN107784180B (zh) 一种时变凸二次规划求解器设计方法
WO2021000556A1 (zh) 一种工业设备剩余有效寿命预测方法、系统及电子设备
Yi et al. Convergence analysis of a deterministic discrete time system of Oja's PCA learning algorithm
Ding et al. Parameter identification and intersample output estimation for dual-rate systems
Moreo et al. Experiences on developing computer vision hardware algorithms using Xilinx system generator
CN110377942A (zh) 一种基于有限高斯混合模型的多模型时空建模方法
CN107368649A (zh) 一种基于增量Kriging的序列优化试验设计方法
CN111679903A (zh) 一种面向深度学习的边云协同装置
Feng et al. A novel unified and self-stabilizing algorithm for generalized eigenpairs extraction
CN113032988A (zh) 基于最大相关熵的高阶扩展卡尔曼滤波器设计方法
CN112949944A (zh) 一种基于时空特征的地下水位智能预测方法及系统
CN107957685B (zh) 一种求解含噪声时变问题的神经动力学方法
CN116108735A (zh) 边界和初始条件未知的流体数据时空高分辨率重建方法
CN115392068A (zh) 一种基于恢复型后验误差估计的网格自适应方法
Lo et al. Empirical frequency-domain optimal parameter estimate for black-box processes
CN105608237B (zh) 一种电路版图后仿真阶段的快速波形预测方法
Liu et al. Autoregressive moving average graph filter design
CN107967395A (zh) 一种基于beta小波基函数展开的时变非线性系统快速辨识方法
Pavlenko et al. Methods For Black–Box Diagnostics Using Volterra Kernels
Zhang et al. An improved ELM algorithm based on PCA technique
Oshman et al. Square-root state estimation for second-order large space structuresmodels
CN109190085B (zh) 一种实数域光滑时变矩阵pxq=w系统的求解设计方法
CN107305348B (zh) 基于相依性度量的动态系统迟延计算方法
Meng et al. Camera motion estimation and optimization approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant