CN109030469B - 三维石墨烯泡沫框架复合ZnO@ZnFe2O4纳米复合材料及其制备方法 - Google Patents

三维石墨烯泡沫框架复合ZnO@ZnFe2O4纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN109030469B
CN109030469B CN201810498563.6A CN201810498563A CN109030469B CN 109030469 B CN109030469 B CN 109030469B CN 201810498563 A CN201810498563 A CN 201810498563A CN 109030469 B CN109030469 B CN 109030469B
Authority
CN
China
Prior art keywords
znfe
zno
hours
dimensional
fecl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810498563.6A
Other languages
English (en)
Other versions
CN109030469A (zh
Inventor
陈守刚
王兴涛
陈博扬
陈灏
赵明岗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN201810498563.6A priority Critical patent/CN109030469B/zh
Publication of CN109030469A publication Critical patent/CN109030469A/zh
Application granted granted Critical
Publication of CN109030469B publication Critical patent/CN109030469B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)

Abstract

本发明公布了一种三维石墨烯框架复合的ZnO@ZnFe2O4纳米复合材料的制备方法。其结构包括三维微孔石墨烯泡沫(3D‑GF)框架,均匀分布在其表面的ZnO@ZnFe2O4纳米异质结颗粒。其制备方法是,采用模板法,以泡沫镍为软模板,通过水浴加热以及刻蚀的方法制备3D‑GF框架;采用一步水热及煅烧的方法,在3D‑GF框架上原位生长ZnO@ZnFe2O4纳米颗粒。该方法操作简单,制备成本低,重复性好。制备的材料充分发挥异质结与光催化协同效应,提高了催化效率,表现出对苯二酚检测良好的选择性和特异性,提升了对苯二酚环境特异性可视检测方面的应用前景。

Description

三维石墨烯泡沫框架复合ZnO@ZnFe2O4纳米复合材料及其制备 方法
技术领域
本发明涉及一种三维石墨烯泡沫框架复合ZnO@ZnFe2O4纳米复合材料及其制备方法,属于新型复合材料及分析检测技术领域。
背景技术
对苯二酚(Hydroquinone,HQ),又称氢醌,属于酚类化合物,是应用广泛的化工原料,对苯二酚难以降解,给环境造成了严重的污染,且毒性很大,成人误服1g便会出现头痛、头晕、恶心、呕吐等中毒症状,且具有致癌和致诱变性,因此是一类会对人体和环境造成较大危害的有机污染物。从其应用和防止污染两方面考虑,建立快速、方便的方法十分必要。现有的检测方法有高效液相色谱法、同步荧光光谱法、分光光度法、气相色谱法和电化学方法,但存在线性范围窄,最低检测限偏高的问题。而比色检测存在方法响应快、成本低、检测范围宽和选择性优良,之前文献很少报道对苯二酚的可视化比色的检测,尤其如何消除邻苯二酚和间苯二酚的干扰问题更是主要瓶颈,所以探索比色特异性检测对苯二酚探针是材料科学和分析科学领域的重要研究课题之一。
ZnFe2O4是一种尖晶石型化合物,由于其化学稳定性和对可见光的敏感性,在化学传感器,能量储存,催化等领域中引起了研究人员极大的兴趣。此外ZnFe2O4被报道具有仿酶活性,它可以将3,3',5,5'-四甲基联苯胺(TMB)氧化使其产生颜色变化。尽管ZnFe2O4具有一定的优势,但是单纯的ZnFe2O4纳米粒子的仿酶活性仍然低于天然的辣根过氧化氢酶(HRP)。纳米粒子的仿酶活性随着粒径的减小而增强,但是颗粒越小,越容易团聚,严重的团聚现象就会导致其仿酶活性的下降。为了解决纳米粒子的团聚问题,寻找合适的支撑材料是十分有必要的。3D多孔结构石墨烯可以提供更多的修饰位点,更大的比色底物接触面积和更多的电子传递路径。因此,具有3D多孔石墨烯的结构将是防止纳米粒子在比色传感中团聚的理想支撑材料。同时,通过构建p-n异质结可以有效抑制光生电子空穴对的复合,并且能够充分发挥ZnFe2O4纳米粒子的光催化效应。通过在3D-GF上生长ZnO@ZnFe2O4异质结,既保证了光生电子空穴对的分离效率,又提高了催化活性。所以,通过一种操作简单的方法,制备三维ZnO@ZnFe2O4@GF纳米复合材料是十分有必要的。在此基础上利用制备的三维ZnO@ZnFe2O4@GF纳米复合材料实现了对对苯二酚的特异性可视化检测。
发明内容
针对上述问题,本发明的目的是提供一种具有快速高效的用于对苯二酚检测的三维ZnO@ZnFe2O4@GF纳米复合材料。
本发明的纳米复合材料是通过模板法、水热法和煅烧的方式所制备的。先通过水浴加热的方式在泡沫镍模板上覆盖一层还原氧化石墨稀,在将泡沫镍模板刻蚀掉,通过水热法以及煅烧一步生长ZnO@ZnFe2O4纳米粒子。本发明以3D-GF为支撑材料,复合ZnO@ZnFe2O4纳米粒子。既避免了ZnO@ZnFe2O4纳米粒子的团聚,又结合了光催化效应和异质结效应,另外3D-GF也有利于电子的传递和反应物的吸附。三者效应共同发挥作用,提高催化效率。
本发明的具体技术方案如下:
一种三维ZnO@ZnFe2O4@GF纳米复合材料,包括3D-GF框架,均匀分布在其表面的ZnO@ZnFe2O4纳米颗粒。
所述3D-GF框架为多孔骨架结构,其表面为褶皱状石墨烯。
所述ZnO@ZnFe2O4纳米颗粒直径为10-20纳米。
一种上述三维ZnO@ZnFe2O4@GF纳米复合材料的制备方法,包括以下步骤:
步骤①:将大小2*3cm2的泡沫镍超声清洗15分钟,吹干。将洗好的泡沫镍浸入含有抗坏血酸的氧化石墨烯分散液中,85℃水浴保温3-5小时,干燥。
步骤②:将步骤①得到的样品在0.2M FeCl3和1M HCl混合溶液中80℃下刻蚀3-5小时,清洗,得到3D-GF。
步骤③:采用水热法,将步骤②得到的3D-GF浸入到含有尿素的Zn(NO3)2和FeCl3的混合溶液中,160℃水热18小时。随后将产物冻干,最后使用管式炉在450℃,氮气气氛中煅烧3小时。最终得到三维ZnO@ZnFe2O4@GF纳米复合材料。
进一步地,上述步骤①中,所述超声清洗为分别采用丙酮、乙醇和去离子水清洗。
进一步地,上述步骤①中,所述吹干为用氮气吹干泡沫镍。
进一步地,上述步骤①中,所述干燥为用烘箱60℃干燥3小时。
进一步地,上述步骤①中,所述抗坏血酸的质量为0.02g。
进一步地,上述步骤①中,所述氧化石墨烯分散液体积为10ml,浓度为1.0mg/mL。
进一步地,上述步骤②中,所述清洗为用去离子水清洗5遍。
进一步地,上述步骤③中,所述尿素浓度为0.04M,Zn(NO3)2和FeCl3的浓度分别为0.004 M和0.008 M。
进一步地,上述步骤③中,所述冻干指用冻干机在-53℃冻干24小时。
本发明先通过水浴加热的方式在泡沫镍模板上覆盖一层还原氧化石墨稀,在将泡沫镍模板刻蚀掉,通过水热法以及煅烧一步生长ZnO@ZnFe2O4纳米粒子。该方法操作简单。在制备的三维纳米复合材料中,ZnFe2O4既具有仿酶活性,又能在可见光条件下激发产生光生电子空穴对催化H2O2;ZnO作为n型半导体,与p型半导体ZnFe2O4形成p-n异质结,在异质结内建电场的作用下,光生电子由ZnFe2O4流向ZnO,使催化反应同时在半导体表面发生,避免了电子的积聚,抑制了光生载流子的复合。3D-GF作为框架,有效的避免了ZnO@ZnFe2O4纳米粒子的团聚,石墨烯本身良好的导电性又有利于电子传递。以上三个优点协同作用,增强了对比色底物的催化效率,可以有效运用于比色传感器中。以3,3',5,5'-四甲基联苯胺(TMB)为显色底物,HQ为检测物质,可以测试其传感性能。
附图说明
图1是本发明的制备流程图。
图2是本发明实施例1所制备材料的扫描电镜图和透射电镜图。
其中,a.3D-GF框架扫描电镜图,b.3D-GF框架扫描电镜放大图,c.三维ZnO@ZnFe2O4@GF纳米复合材料扫描电镜图,d、e.三维ZnO@ZnFe2O4@GF纳米复合材料扫描电镜放大图,f.三维ZnO@ZnFe2O4@GF纳米复合材料透射电镜图。
图3是本发明实施例1所制备的ZnO@ZnFe2O4纳米复合材料的XRD表征图。
图4是本发明实施例1所制备的三维ZnO@ZnFe2O4@GF纳米复合材料XPS表征图。
其中,a.C 1sXPS图谱,b.Fe 2p XPS图谱,c.Zn 2p XPS图谱,d.O 1s XPS图谱。
图5是本发明实施例1所制备的三维ZnO@ZnFe2O4@GF纳米复合材料在TMB-H2O2存在下Na2HPO4-CA缓冲液中(0.2M,pH=3.0)加入不同浓度HQ后的紫外吸收图谱。
图6是本发明实施例1所制备的三维ZnO@ZnFe2O4@GF纳米复合材料在TMB-H2O2存在下Na2HPO4-CA缓冲液中(0.2M,pH=3.0)吸收度-HQ浓度曲线。
图7是本发明实施例1所制备的三维ZnO@ZnFe2O4@GF纳米复合材料在TMB-H2O2存在下Na2HPO4-CA缓冲液中(0.2M,pH=3.0)加入干扰离子和组分后的紫外吸收变化柱状图。
图8是本发明实施例1所制备的三维ZnO@ZnFe2O4@GF纳米复合材料在TMB-H2O2存在下河水中加入不同浓度HQ后的紫外吸收图谱。
图9是本发明实施例1所制备的三维ZnO@ZnFe2O4@GF纳米复合材料在TMB-H2O2存在下河水中加入不同浓度HQ后,紫外吸收峰强度与加入的HQ浓度的线性拟合图。
具体实施方式
下面结合附图并通过具体实施案例对本发明进一步说明。
实施例1
本发明的具体制备过程如图1所示。取大小2*3cm2的泡沫镍分别用丙酮、乙醇和去离子水超声清洗15分钟,用氮气吹干。将洗好的泡沫镍浸入10ml,1.0mg/mL含有0.02g抗坏血酸的氧化石墨烯分散液中,95℃水浴保温5小时,60℃干燥3小时。将得到的样品在0.5MFeCl3和1M HCl混合溶液中80℃下刻蚀3小时,用去离子水清洗5遍,得到3D-GF。从扫描电镜图2(a)可以看出,3D-GF具有三维多孔框架结构,从图2(b)可以看出,3D-GF表面具有大量的褶皱。这种结构比表面积大,有利于纳米粒子的大量分布和吸附反应底物。
采用水热法,将得到的3D-GF浸入到含有尿素(0.025M)的Zn(NO3)2(0.0025M)和FeCl3(0.025M)的混合溶液中,180℃水热18小时。随后将产物用冻干机在-53℃冻干24小时,最后使用管式炉在450℃,氮气气氛中煅烧3小时。最终得到三维ZnO@ZnFe2O4@GF纳米复合材料。从扫描图2(c)可以看出,水热之后的样品保持了之前的三维框架结构,从放大图中可以看出,ZnO@ZnFe2O4纳米粒子均匀地分布在石墨烯表面。由透射电镜图2(f)可以看出,ZnO@ZnFe2O4纳米粒子在石墨烯表面具有很好的分散性,没有团聚,这就保持了其仿酶活性。
图3为ZnO@ZnFe2O4纳米复合材料的XRD表征图。图中可以看出明显的ZnO(100),ZnO(002),ZnO(101),ZnO(102),ZnO(110),ZnO(103),ZnO,(112),ZnO(201)和ZnFe2O4(221),ZnFe2O4(222),ZnFe2O4(400),ZnFe2O4(422),ZnFe2O4(511)等特征峰,说明了ZnO@ZnFe2O4纳米复合材料的生成。图4为三维ZnO@ZnFe2O4@GF纳米复合材料XPS表征图,从图4(a)中可以观察到位于结合能284.8eV,286.0eV和288.7eV分别对应于sp2杂化碳(C-C)、环氧或羟基(C-O)和羰基碳(C=O)的特征峰。图4(b)为Fe 2p两个自旋轨道的XPS谱。结合能为710.9eV和712.8eV的Fe 2p3/2的拟合峰与四面体和八面体相符合。此外,725.3eV和718.7eV的峰分别归因于Fe 2p1/2和卫星峰,这证实了三维ZnO@ZnFe2O4@GF纳米复合材料存在Fe3+。图4(c)为Zn 2p的XPS谱。结合能为1045.1eV和1022.1eV的峰分别对应于Zn 2p1/2和Zn 2p3/2,表明Zn2+的存在并与ZnFe2O4中的尖晶石八面体相关。此外,位于1021.6eV和1044.6eV的两个峰对应于ZnO中的Zn2+。O 1s图谱(图4d)中出现了530.5eV,531.5eV,和532.5eV三个峰。530.5eV处的峰归因于金属(Zn/Fe)-氧框架中典型的晶格氧;在531.5eV处与三维ZnO@ZnFe2O4@GF纳米复合材料表面的化学吸附氧相关;532.5eV处的峰来自产物中低含氧量的缺陷。XPS结果进一步说明了三维ZnO@ZnFe2O4@GF纳米复合材料的成功制备。
将制备的三维ZnO@ZnFe2O4@GF纳米复合材料加入到含有TMB(0.5mM)-H2O2(150mM)的Na2HPO4-CA缓冲液中(0.2M,pH=3.0),使溶液变蓝色。图5为加入不同量HQ之后的紫外吸收图谱,从图中可以看出,随着HQ量的加入,紫外吸收强度逐渐变弱。图6为不同浓度对应于紫外吸收强度图,可以看出,在缓冲液中,对HQ检测的线性范围为0-150μM。如图7所示,在多种干扰物质的存在下,只有加入HQ才会引起紫外吸收峰的明显变化,说明三维ZnO@ZnFe2O4@GF纳米复合材料对HQ具有很好的选择性。用同样的方法,在实际河水中对HQ做了检测。检测之前将河水pH值用CA(0.1M)溶液调节到3.0。图8为在河水中加入不用浓度HQ之后的紫外吸收图。同样,在河水中随着HQ的加入,紫外吸收峰的强度逐渐变弱。由图9可得,在河水中对HQ的线性范围为0-200μM。
实施例2
取大小2*2cm2的泡沫镍分别用丙酮、乙醇和去离子水超声清洗15分钟,用氮气吹干。将洗好的泡沫镍浸入10ml,1.0mg/mL含有0.02g抗坏血酸的氧化石墨烯分散液中,95℃水浴保温5小时,60℃干燥3小时。将得到的样品在0.5M FeCl3和1M HCl混合溶液中80℃下刻蚀3小时,用去离子水清洗5遍,得到3D-GF。实验表明,适当改变模板面积,不会影响3D-GF的合成。
采用水热法,将得到的3D-GF浸入到含有尿素(0.025M)的Zn(NO3)2(0.0025M)和FeCl3(0.025M)的混合溶液中,180℃水热18小时。随后将产物用冻干机在-53℃冻干24小时,最后使用管式炉在450℃,氮气气氛中煅烧3小时。最终得到三维ZnO@ZnFe2O4@GF纳米复合材料。实验表明,在一定范围内改变3D-GF面积,不会影响三维ZnO@ZnFe2O4@GF纳米复合材料的合成。
实施例3
取大小2*3cm2的泡沫镍分别用丙酮、乙醇和去离子水超声清洗15分钟,用氮气吹干。将洗好的泡沫镍浸入10ml,1.0mg/mL含有0.02g抗坏血酸的氧化石墨烯分散液中,95℃水浴保温5小时,60℃干燥3小时。将得到的样品在0.5M FeCl3和1M HCl混合溶液中80℃下刻蚀5小时,用去离子水清洗5遍,得到3D-GF。实验表明,在一定范围内改变刻蚀时间,不会影响3D-GF框架的合成。
采用水热法,将得到的3D-GF浸入到含有尿素(0.025M)的Zn(NO3)2(0.0025M)和FeCl3(0.025M)的20mL混合溶液中,180℃水热18小时。随后将产物用冻干机在-48℃冻干24小时,最后使用管式炉在450℃,氮气气氛中煅烧3小时。最终得到三维ZnO@ZnFe2O4@GF纳米复合材料。实验表明,在一定范围内改变冻干温度,不会影响三维ZnO@ZnFe2O4@GF纳米复合材料的合成。
本领域的普通技术人员都会理解,在本发明的保护范围内,对于上述实施例进行修改,添加和替换都是有可能的,其没有超出本发明的保护范围。

Claims (8)

1.一种三维ZnO@ZnFe2O4@GF纳米复合材料的制备方法,其特征在于,包括以下步骤:
步骤①:将大小为2*3cm2的泡沫镍超声清洗15分钟,吹干,将洗好的泡沫镍浸入含有抗坏血酸的氧化石墨烯分散液中,60-100℃水浴保温3-5小时,冷冻干燥;
步骤②:将步骤①得到的样品在FeCl3和HCl的混合溶液中80℃下刻蚀3-5小时,清洗,得到3D-GF;
步骤③:采用水热法,将步骤②得到的3D-GF浸入到含有尿素的Zn(NO3)2和FeCl3的混合溶液中,150-200℃水热18小时,随后将产物冻干,最后使用管式炉在450℃,氮气气氛中煅烧3小时,最终得到三维ZnO@ZnFe2O4@GF纳米复合材料。
2.根据权利书要求1所述的制备方法,其特征在于,步骤①中,所述超声清洗为分别采用丙酮、乙醇和去离子水清洗。
3.根据权利书要求1所述的制备方法,其特征在于,步骤①中,所述吹干为用氮气吹干泡沫镍。
4.根据权利书要求1所述的制备方法,其特征在于,步骤①中,所述抗坏血酸的质量为0.02g。
5.根据权利书要求1所述的制备方法,其特征在于,步骤①中,所述氧化石墨烯分散液体积为10ml,浓度为1.0mg/mL。
6.根据权利书要求1所述的制备方法,其特征在于,步骤①中,所述干燥为用烘箱60℃干燥3小时。
7.根据权利书要求1所述的制备方法,其特征在于,步骤②中,所述清洗为用去离子水清洗5遍,上述步骤③中,所述尿素、Zn(NO3)2和FeCl3的摩尔浓度比为10:1:2。
8.根据权利书要求1所述的制备方法,其特征在于,步骤③中,所述冻干指用冻干机在-53℃冻干24小时。
CN201810498563.6A 2018-05-23 2018-05-23 三维石墨烯泡沫框架复合ZnO@ZnFe2O4纳米复合材料及其制备方法 Active CN109030469B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810498563.6A CN109030469B (zh) 2018-05-23 2018-05-23 三维石墨烯泡沫框架复合ZnO@ZnFe2O4纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810498563.6A CN109030469B (zh) 2018-05-23 2018-05-23 三维石墨烯泡沫框架复合ZnO@ZnFe2O4纳米复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109030469A CN109030469A (zh) 2018-12-18
CN109030469B true CN109030469B (zh) 2021-01-22

Family

ID=64611648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810498563.6A Active CN109030469B (zh) 2018-05-23 2018-05-23 三维石墨烯泡沫框架复合ZnO@ZnFe2O4纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109030469B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378874B (zh) * 2020-11-07 2022-04-12 中国海洋大学 一种用于海水中有机酚检测的复合材料及其制备方法
CN112803016A (zh) * 2020-12-30 2021-05-14 赣州市力道新能源有限公司 一种石墨烯-锌基氧化物复合材料及其制备方法、在锂离子电池负极材料中的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102861586B (zh) * 2012-09-23 2014-10-01 盐城工学院 一种可磁控回收的可见光复合光催化剂的制备方法
CN103681003B (zh) * 2013-11-25 2016-04-27 北京工业大学 一种三维石墨烯-氧化镍复合材料基底的制备方法
CN105274555B (zh) * 2015-11-12 2017-07-11 中国海洋大学 一种NiO@PANI@ZnO三维纳米复合材料及其制备方法
CN105977502B (zh) * 2016-06-03 2019-04-09 济南大学 一种以泡沫镍为基体的三维石墨烯/银纳米粒子复合材料及其制备方法
CN106629817B (zh) * 2016-11-18 2018-05-22 哈尔滨理工大学 一种石墨烯/氧化锌纳米线阵列/三维泡沫石墨烯复合材料的制备及应用
CN107734950B (zh) * 2017-10-30 2019-07-19 西北工业大学 铁酸锌@二氧化锰@石墨烯复合吸波材料及其制备方法

Also Published As

Publication number Publication date
CN109030469A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
Dong et al. 2D Ti3C2 as electron harvester anchors on 2D g-C3N4 to create boundary edge active sites for boosting photocatalytic performance
Raza et al. Studies of Z-scheme WO3-TiO2/Cu2ZnSnS4 ternary nanocomposite with enhanced CO2 photoreduction under visible light irradiation
CN108579779B (zh) 一种三维复合材料、其制备方法及在水污染物可见光催化降解去除中的应用
Cheng et al. Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation
Guo et al. Fabrication of a direct Z-scheme heterojunction between MoS2 and B/Eu-g-C3N4 for an enhanced photocatalytic performance toward tetracycline degradation
CN113061441B (zh) 用于氧化修复土壤水体有机污染的生物炭负载铁材料及其制备方法、应用
Lettieri et al. Evidencing opposite charge-transfer processes at TiO2/graphene-related materials interface through a combined EPR, photoluminescence and photocatalysis assessment
Viet et al. Noble metal-doped graphitic carbon nitride photocatalyst for enhancement photocatalytic decomposition of antibiotic pollutant in wastewater under visible light
Liang et al. Facile synthesis of NiAl2O4/g-C3N4 composite for efficient photocatalytic degradation of tetracycline
CN109030469B (zh) 三维石墨烯泡沫框架复合ZnO@ZnFe2O4纳米复合材料及其制备方法
CN103482706A (zh) 一种空心球形纳米铁酸锰,其制备方法及其应用
CN106513017A (zh) 一种复合光催化材料及其制备方法和应用
Chuaicham et al. Visible light-driven ZnCr double layer oxide photocatalyst composites with fly ashes for the degradation of ciprofloxacin
CN112023972B (zh) 一种复合光催化材料及其制备方法和应用
Wu et al. Enhanced adsorption and synergistic photocatalytic degradation of tetracycline by MOF-801/GO composites via solvothermal synthesis
Wang et al. One-step synthesis of Bi4Ti3O12/Bi2O3/Bi12TiO20 spherical ternary heterojunctions with enhanced photocatalytic properties via sol-gel method
Lei et al. Fabrication and catalytic mechanism study of CeO2-Fe2O3-ZnO mixed oxides on double surfaces of polyimide substrate using ion-exchange technique
CN113828332A (zh) 一种硫化钴负载生物炭催化剂及其制备方法和应用
CN113181949A (zh) 钴铁合金/氮硫共掺杂碳纳米复合材料及其制法与应用
Yang et al. Novel ZnO@ NPC core–shell polyhedral heterostructures derived from ZIF-8 with enhanced photocatalytic performance for aflatoxin B1 degradation
Wang et al. Enhanced photocatalytic performance of persimmon cake like oxygen vacancies enriched NiO/BiVO4 heterojunctions benefited from S-scheme interfacial charge pairs separation and transfer mechanism
CN110743535B (zh) 一种氧化钨同质结复合光催化剂及其制备方法和应用
Qahtan et al. Tuning the oxidation state of titanium dioxide mesoporous film by 1000 eV argon ion beam irradiation
CN111013627A (zh) 一种Cu/OCN复合催化臭氧分解材料及其制备方法与应用
CN111939956B (zh) 一种蜂窝状FeV2O4复合氮化碳负载不锈钢丝网复合材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant