CN109022561B - 一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器 - Google Patents

一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器 Download PDF

Info

Publication number
CN109022561B
CN109022561B CN201810638242.1A CN201810638242A CN109022561B CN 109022561 B CN109022561 B CN 109022561B CN 201810638242 A CN201810638242 A CN 201810638242A CN 109022561 B CN109022561 B CN 109022561B
Authority
CN
China
Prior art keywords
mercury
copper
spcr
ions
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810638242.1A
Other languages
English (en)
Other versions
CN109022561A (zh
Inventor
许文涛
罗云波
黄昆仑
杜再慧
田晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN201810638242.1A priority Critical patent/CN109022561B/zh
Publication of CN109022561A publication Critical patent/CN109022561A/zh
Application granted granted Critical
Publication of CN109022561B publication Critical patent/CN109022561B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于重金属检测领域,具体公开了一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器。本发明通过巧妙地设计引物与模板(SEQ ID NO.1‑4所示),使得在汞、铜离子存在下可对模板进行超快扩增,并使扩增产物在适宜环境中形成G四链体。进一步利用G四链体的类过氧化物酶活性进行显色,解决了传统PCR产物难于可视化检测的难题,实现了对汞、铜离子的快速、可视化检测。不仅如此,本发明所提供的传感器与方法对汞、铜离子具有高特异、高灵敏的特点,检测结果更加客观、准确。

Description

一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器
技术领域
本发明属于重金属检测领域,具体地说,涉及一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器。
背景技术
汞是一种常见的有毒重金属,俗称水银,化学符号Hg,原子序数80、凝固点-38.83℃(-37.89°F;234.32K)、沸点356.73℃(674.11°F;629.88K)、银白色、室温下为液态、密度大、为d区的过渡元素。常被用来制作温度计、气压计、压力计、血压计、浮阀、水银开关和其他装置。汞在全世界的矿产中都有产出,主要来自朱砂(硫化汞)。摄入或吸入的朱砂粉尘都是剧毒的。汞中毒还可能是由于接触可溶解于水的汞(例如氯化汞和甲基汞),或是吸入汞蒸气,亦或是食用被汞污染的海产品或吸食入汞化合物引起中毒。
铜是一种过渡元素,化学符号Cu,原子序数29,原子量是63.546,属第IB族。纯铜是柔软的金属,表面刚切开时为红橙色带金属光泽,单质呈紫红色。延展性好,导热性和导电性高,正常人体内铜的量为100-200毫克,在人体中铜离子主要以作为许多酶和蛋白的催化辅助因子或结构组成,广泛参与体内许多重要的新陈代谢过程,影响着人体血液的生成、结缔组织的形成,中枢神经系统,胆固醇和葡萄糖的代谢,心脏功能和免疫系统等,人体仅仅需要微量的铜就可以维持正常的生命活动。但是,铜缺乏或铜过量都会对健康产生不利的影响。铜缺乏一般伴随着其他营养元素的缺乏或者其生物拮抗物质的摄取过量,影响细胞内许多酶的正常功能,进而影响细胞的新陈代谢过程。铜过量通常是由于遗传性疾病或者由于环境重金属污染,误食了大量含铜的食物或吸入了含铜量高的气体所造成。铜(Cu)及其化合物在环境中所造成的污染主要由于铜锌矿的开采和冶炼、金属加工、机械制造、钢铁生产等产生,其中,冶炼排放的烟尘是大气铜污染的主要来源。
目前汞、铜离子的检测方法有很多,主要包括原子吸收光谱法(AAS)、原子荧光光谱法(AFS)、电感耦合等离子体质谱法、电化学分析方法、可见分光光度法、流动注射化学发光法和微分电位溶出法等。这些方法具有灵敏度高、检测范围广、适合多种样品分析等优点,但是这些方法同样具有前处理复杂,需要大型仪器和专业人员操作、维护成本高、检测时间长、不适合用于现场快速检测等缺点。因此迫切需要一种对汞、铜离子的操作简单、价格低廉、灵敏、快速、准确的可视化检测新方法。
发明内容
为了解决现有技术中存在的问题,本发明的目的是提供一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器,以求实现对汞、铜离子的快速、可视化检测。
为了实现本发明目的,本发明的技术方案如下:
第一方面,本发明提供一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器,包括:(1)sPCR扩增体系,(2)包含ABTS显色液的检测体系,所述检测体系用于对待测样品经由所述sPCR扩增体系进行扩增后所得产物进行显色检测;
其中,所述sPCR扩增体系包括:模板、DNA聚合酶、正向引物、反向引物、dNTP、缓冲液;
所述模板为:
Figure BDA0001702057340000021
TCAGTATCAGTGCTATACGTCGATCAGTA
Figure BDA0001702057340000022
TTGTTGTTGCGATAGCGCCAGC;
所述正向引物为:
GTGGGTAGGGCGGGTTGG-隔断-CCAACCCGCCCTACCCAC
Figure BDA0001702057340000031
所述反向引物为:
反向引物-Cu:GTGGGTAGGGCGGGTTGG-隔断-CCAACCCGCCCTACCCAC
Figure BDA0001702057340000032
和反向引物-Hg:GTGGGTAGGGCGGGTTGG-隔断-CCAACCCGCCCTACCCAC
Figure BDA0001702057340000033
所述正向引物和反向引物中的隔断为聚六乙二醇。
所述隔断与两端碱基通过磷酸二酯键方式连接。
本发明中,ABTS显色液的配方为:1mL DNAzyme底物缓冲液,柠檬酸0.933g,蒸馏水100mL,5μL ABTS底物溶液,1μL 30%H2O2
DNAzyme底物缓冲液:即为pH 3.6的柠檬酸盐缓冲液,配方为:Na2HPO4.12H2O1.843g,柠檬酸0.933g,蒸馏水100mL。
ABTS底物溶液:取20mg 2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐粉末(购自Sigma公司)溶于1mL DMSO,即得。
所述DNA聚合酶为Ex Taq DNA聚合酶,所述缓冲液为10×Ex Taq Buffer,二者与所述dNTP均购自赛默飞科技(Thermo Scientific Life Technologies)。
在汞离子存在的情况,基于汞离子与胸腺嘧啶错配,上述正向引物和反向引物中斜体字体所示的碱基,将与上述模板序列中斜体字体所示的碱基成功配对,从而启动上述引物与模板的sPCR扩增。然而,由于隔断的存在,将阻碍DNA聚合酶的继续延伸,使得sPCR产物的5’末端和3’末端带有富G序列的单链。
在铜离子存在的情况,基于铜离子与胞嘧啶错配,上述正向引物和反向引物中斜体字体所示的碱基,将与上述模板序列中斜体字体所示的碱基成功配对,从而启动上述引物与模板的sPCR扩增。然而,由于隔断的存在,将阻碍DNA聚合酶的继续延伸,使得sPCR产物的5’末端和3’末端带有富G序列的单链。
进一步地,在K+的存在下,所述sPCR产物将结合氯高铁血红素形成具有类过氧化物酶活性的G-四链体结构,催化H2O2和ABTS显色,通过比色检测,完成对汞、铜离子的检测。
因此,基于上述检测原理,本发明所述的检测体系包括:酶活缓冲液,氯高铁血红素溶液。
其中,所述酶活缓冲液为:100mM Tris、120mM NaCl、10mM MgCl2、100mM KCl,pH8.4。
所述氯高铁血红素溶液为20mM的氯高铁血红素原液与上述酶活缓冲液按照2μL:1mL的比例混合后的氯高铁血红素稀释溶液。
第二方面,本发明提供了前述传感器在检测汞、铜离子方面中的应用,所述检测可表现为定性检测或定量检测。
第三方面,本发明提供了一种利用前述传感器对汞、铜离子进行定性检测的方法,包括如下步骤:
S1、利用所述sPCR扩增体系对待测样品和阴性对照样品进行超快聚合酶链式反应,得sPCR产物;
S2、利用所述检测体系对所述sPCR产物进行检测;
依据待测样品与阴性对照样品的颜色差异进行汞离子和铜离子的定性判断;
所述阴性对照样品为不含有汞离子和铜离子的去离子水。
所述sPCR扩增体系中,含有用于将铜离子还原为亚铜离子的还原剂,例如抗坏血酸钠,但并不限于此。
当实验组与阴性组对照有明显的颜色变化时,判断待测样品中含有汞离子和/或铜离子;当无明显颜色变化时,判断待测样品中汞离子和铜离子含量低于定性检出限。
进一步地,所述sPCR扩增体系中,正向引物的用量与两种反向引物的用量总和相等。
作为优选,所述S1包括:
S11、在冰上配制sPCR反应体系:
Figure BDA0001702057340000051
S12、迅速置于sPCR反应装置中进行温度控制:
90-95℃2s,55-60℃3s,30-40个循环;优选为95℃2s,58℃
3s,36个循环。
S13、完成sPCR反应过程,使用聚丙烯酰胺凝胶电泳验证sPCR反应体系的扩增效果,反应条件:120V 2h,拍照系统:Molecular Imager Gel Doc XR(Bio-Rad)。
进一步地,所述检测体系包括酶活缓冲液和氯高铁血红素稀释溶液,将酶活缓冲液、氯高铁血红素稀释溶液和sPCR产物按体积比为8:1:1混匀获得混合物,在37℃条件下反应30min,加入与前述混合物等量体积的ABTS显色液,混匀,37℃避光孵育10min,肉眼监测。
例如,取酶活缓冲液80μL、氯高铁血红素稀释溶液10μL、sPCR产物10μL,将上述物质混匀后,在37℃条件下反应30min,使sPCR产物结合氯高铁血红素形成具有类过氧化物酶活性的G-四链体结构,加入与上述混合物等量体积(100μL)的ABTS显色液,混匀,37℃避光孵育10min,肉眼监测。
第四方面,本发明提供了一种利用前述传感器对汞、铜离子进行定量检测的方法,包括如下步骤:
SI、制作标准曲线:
利用已知浓度的汞离子溶液或铜离子溶液,构建具有不同汞离子溶液或铜离子浓度的sPCR体系,扩增与检测步骤与前述定性检测的方法相同;
之后,以汞离子或铜离子浓度为横坐标,以OD415值为纵坐标,绘制标准曲线;
其中,所述不同铜离子浓度的浓度区间为0.2-10μM;所述不同汞离子浓度的浓度区间为10-500nM。在本发明的一个具体实施方式中,采用0.2μM、0.5μM、1μM、2μM、5μM、10μM的铜离子浓度制作标准曲线;采用10nM、50nM、100nM、200nM、400nM、500nM的汞离子浓度制作标准曲线;
SII、按照前述定性检测的方法对待测样品进行检测,将测得的OD415值代入标准曲线,计算得到待测样品中汞离子或铜离子的含量,实现对汞离子或铜离子的定量检测。
本发明的有益效果在于:
本发明提供了一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器及方法,通过巧妙地设计引物与模板,使得在汞、铜离子存在下可对模板进行超快扩增,将耗时3小时左右的传统PCR过程缩减到10分钟,显著减少了PCR反应的用时。进一步结合G四链体的类过氧化物酶活性进行显色,解决了传统PCR产物难于可视化检测的难题,实现了对汞、铜离子的快速、可视化检测。
不仅如此,本发明所提供的传感器与方法对汞、铜离子具有高特异、高灵敏的特点,检测结果更加客观、准确。
附图说明
图1为实施例1中聚丙烯酰胺凝胶电泳验证sPCR反应体系的扩增效果;其中,泳道1:DNA ladder;泳道2:双重超速PCR体系获得的sPCR产物;泳道3:汞离子超速PCR体系获得的sPCR产物;泳道4:铜离子超速PCR体系获得的sPCR产物。
图2为实施例1中的定性实验;1为阴性;2为Hg2+;3为Cu2+
图3为本发明实施例2所述的汞离子的标准曲线。
图4为本发明实施例2所述的铜离子的标准曲线。
图5为本发明实施例3进行的特异性实验。
图6为本发明对比例1进行的反向引物错配碱基优化实验。
图7为本发明对比例2进行的反向引物错配碱基优化实验。
具体实施方式
下面结合实施例对本发明做进一步的解释说明。需要理解的是以下实施例的给出仅是为了起到说明的目的,并不是用于对本发明的范围进行限制。本领域的技术人员在不背离本发明的发明构思的情况下,可以对本发明进行各种修改和替换。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
本发明所使用的实验材料如下:
SYBR Gold核酸染料、核酸分子量标准ultra-low range DNA ladder、dNTP、ExTaq DNA聚合酶、10×Taq buffer、氯高铁血红素、氯化铜、氯化汞、2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二胺盐(ABTS)、H2O2,均购自赛默飞科技(Thermo Scientific LifeTechnologies)。实验用水均来自Milli-Q纯水系统。
除此之外,下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1定性实验
本实施例以人为添加不同浓度铜离子的超纯水水、不同浓度汞离子的超纯水为待测样品,以说明本发明所述传感器的使用和本发明所述方法。
1、sPCR装置的搭建
sPCR装置的温度变化经由一个95℃的高温水浴锅和一个58℃的中温水浴锅来实现。采用Light Cycler型号的毛细管(20uL,04 929 292001,Roche)作为sPCR样品室。通过快速离心的方式,样品会分别聚集到各个毛细管一端;离心完成后带有样品的毛细管被固定在一个专用的塑料支架上。
2、sPCR反应
sPCR反应体系见下表:
表1
Figure BDA0001702057340000081
sPCR反应过程:
按照上表,在冰上配制10微升反应体系,迅速置于sPCR反应装置中进行温度控制:95℃2s,58℃3s,36个循环。
完成sPCR反应过程,使用20%聚丙烯酰胺凝胶电泳验证sPCR反应体系的扩增效果(见图1),反应条件:120V 2h,拍照系统:Molecular Imager Gel Doc XR(Bio-Rad)。
实验结果表明,当目标金属离子存在的情况下,通用隔断引物可以与模板结合,并在短时间内完成扩增。
3、对sPCR产物的显色检测
配制检测混合体系:
80μL酶活缓冲液(100mM Tris、120mM NaCl、10mM MgCl2、100mM KCl,pH8.4),10μL氯高铁血红素稀释溶液(2μL氯高铁血红素原液(20mM)与1mL酶活缓冲液混合)与10μL sPCR产物。
混匀后,在37℃条件下反应30min,使sPCR产物结合氯高铁血红素形成具有类过氧化物酶活性的G-四链体结构,加入100μLABTS显色液,混匀,37℃避光孵育10min,肉眼监测。
进一步地,本实施例还采用不含有汞离子和铜离子的去离子水作为对照组,以验证本发明所提供的传感器和方法在定性检测方面的准确性。
测定结果如图2所示,由图可以看出,实验组与对照组颜色上发生明显的差异。
实施例2定量检测
本实施例在实施例1所述定性检测的基础上,通过利用不同浓度的汞离子溶液和铜离子溶液制作标准曲线,实现对待测样品铜离子的定量检测。
相对于实施例1,本实施例增加了制备标准曲线的步骤,具体如下:
利用已知浓度的汞离子溶液,配制汞离子终浓度分别为10nM、50nM、100nM、200nM、400nM、500nM的sPCR反应体系(所述反应体系中,不含有铜离子及反向引物-Cu,正向引物与反向引物-Hg的终浓度均为2μM,其余与实施例1相同),将sPCR产物在适宜的条件下可以形成G四链体,催化ABTS显色,标准曲线如图3所示。
回归方程为:Y=0.0024X+0.0089,R2=0.999。
利用已知浓度的铜离子溶液,配制铜离子终浓度分别为0.2μM、0.5μM、1μM、2μM、5μM、10μM的sPCR反应体系(所述反应体系中,不含有汞离子及反向引物-Hg,正向引物与反向引物-Cu的终浓度均为2μM,其余与实施例1相同),将sPCR产物在适宜的条件下可以形成G四链体,催化ABTS显色,标准曲线如图4所示。
回归方程为:Y=0.0658x+0.0203,R2=0.9997。
对待测样品进行扩增和检测的方法同实施例1,在本实施例中,可将检测所得的OD415值代入上述回归方程进行计算,实现对待测样品的定量检测。
实施例3特异性实验
本实施例用于验证本发明所述传感器和方法的特异性。
本实施例通过将100nM的Hg2+和2μM的Cu2+,以及100μM的Pb2+、Cr3+、Zn2+、Cd2+分别加入到反应体系中,按照实施例1所述方法进行特异性实验,实验结果如图5所示,显示本发明所述传感器和方法对汞离子和铜离子具有较高的双重特异性。
实施例4灵敏度实验
本实施例用于验证本发明所述传感器和方法的灵敏度。
本实施例通过将0.2μM、1μM、5μM的Cu2+加标样品分别加入到反应体系中进行灵敏度实验,实验结果如表2所示。
表2
Figure BDA0001702057340000101
本实施例通过将10nM、50nM、100nM的Hg2+加标样品分别加入到反应体系中进行灵敏度实验,实验结果如表3所示。
表3
Figure BDA0001702057340000102
对比例1
本对比例用于说明在本发明针对铜离子所设计的反向引物的错配碱基数目对检测准确性的影响。
本发明通过设计具有不同错配碱基数目的反向引物,选择最优的反向引物序列,具体如下:
将反向引物的错配碱基个数,分别设计为四个、六个和八个,分为三组进行实验。
序列如下:
四个错配:
GTGGGTAGGGCGGGTTGG-隔断-CCAACCCGCCCTACCCAC
Figure BDA0001702057340000113
六个错配:
GTGGGTAGGGCGGGTTGG-隔断-CCAACCCGCCCTACCCAC
Figure BDA0001702057340000112
八个错配:
GTGGGTAGGGCGGGTTGG-隔断-CCAACCCGCCCTACCCAC
Figure BDA0001702057340000111
将上述三组反向引物分别加入到反应体系中,按照实施例1所述反应体系和方法进行实验,结果如图6所示。
对比例2
本对比例用于说明在本发明针对汞离子所设计的反向引物的错配碱基数目对检测准确性的影响。
本发明通过设计具有不同错配碱基数目的反向引物,选择最优的反向引物序列,具体如下:
将反向引物的错配碱基个数,分别设计为两个、四个和六个,分为三组进行实验。
序列如下:
两个错配:
GTGGGTAGGGCGGGTTGG-隔断-CCAACCCGCCCTACCCAC
Figure BDA0001702057340000121
四个错配:
GTGGGTAGGGCGGGTTGG-隔断-CCAACCCGCCCTACCCAC
Figure BDA0001702057340000122
六个错配:
GTGGGTAGGGCGGGTTGG-隔断-CCAACCCGCCCTACCCAC
Figure BDA0001702057340000123
将上述三组反向引物分别加入到反应体系中,按照实施例1所述反应体系和方法进行实验,结果如图7所示。
应当理解的是,对上述实施例所用试剂或原料的用量进行等比例扩大或者缩小后的技术方案,与上述实施例的实质相同。
应当理解的是,对上述实施例所用试剂或原料的用量进行等比例扩大或者缩小后的技术方案,与上述实施例的实质相同。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 中国农业大学
<120> 一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器
<141> 2018-05-28
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 95
<212> DNA
<213> 人工引物(Artificial Sequence)
<400> 1
tcatcgcacc gtcaaaggaa cctcagtatc agtgctatac gtcgatcagt acccccccca 60
tgataagtca cgattgttgt tgcgatagcg ccagc 95
<210> 2
<211> 58
<212> DNA
<213> 人工引物(Artificial Sequence)
<400> 2
gtgggtaggg cgggttggcc aacccgccct acccactcat cgcaccgtca aaggaacc 58
<210> 3
<211> 58
<212> DNA
<213> 人工引物(Artificial Sequence)
<400> 3
gtgggtaggg cgggttggcc aacccgccct acccactcgt gacttatcat cccccccc 58
<210> 4
<211> 58
<212> DNA
<213> 人工引物(Artificial Sequence)
<400> 4
gtgggtaggg cgggttggcc aacccgccct acccacgctg gcgctatcgc ttcttctt 58
<210> 5
<211> 58
<212> DNA
<213> 人工引物(Artificial Sequence)
<400> 5
gtgggtaggg cgggttggcc aacccgccct acccactcgt gacttatcat ggggcccc 58
<210> 6
<211> 58
<212> DNA
<213> 人工引物(Artificial Sequence)
<400> 6
gtgggtaggg cgggttggcc aacccgccct acccactcgt gacttatcat ggcccccc 58
<210> 7
<211> 58
<212> DNA
<213> 人工引物(Artificial Sequence)
<400> 7
gtgggtaggg cgggttggcc aacccgccct acccactcgt gacttatcat cccccccc 58
<210> 8
<211> 58
<212> DNA
<213> 人工引物(Artificial Sequence)
<400> 8
gtgggtaggg cgggttggcc aacccgccct acccacgctg gcgctatcgc aacaactt 58
<210> 9
<211> 58
<212> DNA
<213> 人工引物(Artificial Sequence)
<400> 9
gtgggtaggg cgggttggcc aacccgccct acccacgctg gcgctatcgc aacttctt 58
<210> 10
<211> 58
<212> DNA
<213> 人工引物(Artificial Sequence)
<400> 10
gtgggtaggg cgggttggcc aacccgccct acccacgctg gcgctatcgc ttcttctt 58

Claims (10)

1.一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器,其特征在于,包括:(1)sPCR扩增体系,(2)包含ABTS显色液的检测体系,所述检测体系用于对待测样品经由所述sPCR扩增体系进行扩增后所得产物进行显色检测,在K+的存在下,所述sPCR产物将结合氯高铁血红素形成具有类过氧化物酶活性的G-四链体结构,催化H2O2和ABTS显色,通过比色检测,完成对汞、铜离子的检测;
其中,所述sPCR扩增体系包括:模板、正向引物和反向引物;
所述模板为:
TCATCGCACCGTCAAAGGAACCTCAGTATCAGTGCTATACGTCGATCAGTACCCCCCCCATGATAAGTCACGATTGTTGTTGCGATAGCGCCAGC;
所述正向引物为:
GTGGGTAGGGCGGGTTGG-隔断-CCAACCCGCCCTACCCACTCATCGCACCGTCAAAGGAACC;
所述反向引物为:
GTGGGTAGGGCGGGTTGG-隔断-CCAACCCGCCCTACCCACTCGTGACTTATCATCCCCCCCC;
GTGGGTAGGGCGGGTTGG-隔断-CCAACCCGCCCTACCCACGCTGGCGCTATCGCTTCTTCTT;
所述sPCR扩增体系,还包括将铜离子还原为亚铜离子的还原剂:抗坏血酸钠。
2.根据权利要求1所述的传感器,其特征在于,所述正向引物和反向引物中的隔断为聚六乙二醇。
3.根据权利要求1或2所述的传感器,其特征在于,所述检测体系包括:酶活缓冲液和氯高铁血红素溶液。
4.权利要求1~3任一项所述的传感器在检测汞、铜离子方面中的应用。
5.根据权利要求4所述的应用,其特征在于,所述检测为定性检测或定量检测。
6.一种利用权利要求1~3任一项所述的传感器对汞、铜离子进行定性检测的方法,其特征在于,包括如下步骤:
S1、利用所述sPCR扩增体系对待测样品和阴性对照样品进行超快聚合酶链式反应,得sPCR产物;
S2、利用所述检测体系对所述sPCR产物进行检测;
依据待测样品与阴性对照样品的颜色差异进行汞离子和铜离子的定性判断;
所述阴性对照样品为不含有汞离子和铜离子的去离子水。
7.根据权利要求6所述的方法,其特征在于,所述sPCR扩增体系中,正向引物的用量与两种反向引物的用量之和相等。
8.根据权利要求6所述的方法,其特征在于,所述检测体系包括酶活缓冲液和氯高铁血红素稀释溶液,将酶活缓冲液、氯高铁血红素稀释溶液和sPCR产物按体积比为8:1:1混匀获得混合物,在35-40℃条件下反应20-40min,加入与前述混合物等量体积的ABTS显色液,混匀,35-40℃避光孵育。
9.一种利用权利要求1~3任一项所述的传感器对汞、铜离子进行定量检测的方法,其特征在于,包括如下步骤:
SI、制作标准曲线:
利用已知浓度的汞离子溶液或铜离子溶液,构建具有不同汞离子溶液或铜离子浓度的sPCR体系,扩增与检测步骤与权利要求6中的S1和S2相同;
以汞离子或铜离子浓度为横坐标,以OD415值为纵坐标,绘制标准曲线;
SII、按照权利要求6所述的方法对待测样品进行检测,将测得的OD415值代入标准曲线,计算得到待测样品中汞离子或铜离子的含量,实现对汞离子或铜离子的定量检测。
10.根据权利要求9所述的方法,其特征在于,所述不同铜离子浓度的浓度区间为0.2-10μM;所述不同汞离子浓度的浓度区间为10-500nM。
CN201810638242.1A 2018-06-20 2018-06-20 一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器 Active CN109022561B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810638242.1A CN109022561B (zh) 2018-06-20 2018-06-20 一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810638242.1A CN109022561B (zh) 2018-06-20 2018-06-20 一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器

Publications (2)

Publication Number Publication Date
CN109022561A CN109022561A (zh) 2018-12-18
CN109022561B true CN109022561B (zh) 2021-07-06

Family

ID=64609895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810638242.1A Active CN109022561B (zh) 2018-06-20 2018-06-20 一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器

Country Status (1)

Country Link
CN (1) CN109022561B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976436B (zh) * 2017-10-27 2021-04-06 中国农业大学 一种铜的耐高盐核酸传感器及其应用
CN107976435B (zh) * 2017-10-27 2020-10-02 中国农业大学 一种基于功能核酸的传感器及其在钠离子检测中的应用
CN107988321A (zh) * 2017-10-27 2018-05-04 中国农业大学 一种汞的耐高盐核酸传感器及其应用
CN107966438B (zh) * 2017-10-27 2020-11-24 中国农业大学 一种基于锌的功能核酸的耐高盐传感器及其应用
CN107966436B (zh) * 2017-10-27 2020-10-02 中国农业大学 一种基于镉的功能核酸的可视化传感器及其应用

Also Published As

Publication number Publication date
CN109022561A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
Wu et al. A sensitive aptasensor for the detection of Vibrio parahaemolyticus
Yuan et al. Carbon quantum dots originated from chicken blood as peroxidase mimics for colorimetric detection of biothiols
Lu et al. Enzyme-free aptamer/AuNPs-based fluorometric and colorimetric dual-mode detection for ATP
CN107976427A (zh) 一种荧光生物传感器、制备方法及其对铜离子、焦磷酸根和碱性磷酸酶的检测应用
CN104007092A (zh) 一种基于点击化学的铜离子荧光检测方法
CN106093023B (zh) 一种检测汞离子的比色传感器及其制备方法
Zhao et al. A label-free electrochemiluminescent sensor for ATP detection based on ATP-dependent ligation
CN107976436B (zh) 一种铜的耐高盐核酸传感器及其应用
CN108949931B (zh) 一种锌离子切割型通用隔断超快扩增可视化传感器
CN107064515A (zh) 一种基于点击化学的铜离子检测方法及检测试剂盒
Sánchez-Visedo et al. Visual detection of microRNA146a by using RNA-functionalized gold nanoparticles
CN108949917B (zh) 一种汞离子错配型通用隔断超快扩增比色传感器
Shu et al. Ag+–3, 3′, 5, 5′-tetramethylbenzidine as a probe for colorimetric detection of ascorbic acid in beverages
Wei et al. A label-free Exonuclease I-assisted fluorescence aptasensor for highly selective and sensitive detection of silver ions
CN104677897B (zh) 基于纳米金催化显色体系的pH及尿素的测定方法
CN108949932B (zh) 通用隔断超快扩增铜、钙切割型功能核酸可视化检测方法
CN109022561B (zh) 一种通用隔断超快扩增汞、铜错配型功能核酸比色传感器
Qin et al. Homogeneous label-free colorimetric strategy for convenient bleomycin detection based on bleomycin enhanced Fe (ii)–H 2 O 2–ABTS reaction
CN108949934B (zh) 一种铬离子切割型通用隔断超快扩增可视化传感器
CN110982916B (zh) 用于检测产志贺毒素大肠埃希氏菌的引物组合及检测试剂盒
CN110628950B (zh) 一种用于检测ev71病毒的引物组合、试剂盒和psr方法
CN108841937B (zh) 通用隔断超快扩增镁、锌切割型功能核酸可视化检测方法
CN108929896B (zh) 一种铜离子错配型通用隔断超快扩增比色传感器
Xu et al. Toehold-mediated strand displacement coupled with single nanoparticle dark-field microscopy imaging for ultrasensitive biosensing
CN108949933B (zh) 一种银离子错配型通用隔断超快扩增比色传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant