CN109020587B - 一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法 - Google Patents

一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法 Download PDF

Info

Publication number
CN109020587B
CN109020587B CN201810813096.1A CN201810813096A CN109020587B CN 109020587 B CN109020587 B CN 109020587B CN 201810813096 A CN201810813096 A CN 201810813096A CN 109020587 B CN109020587 B CN 109020587B
Authority
CN
China
Prior art keywords
boron nitride
powder
nitride nanotube
titanium carbide
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810813096.1A
Other languages
English (en)
Other versions
CN109020587A (zh
Inventor
王玉金
阮超
张翰超
谢芳
王诗阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Changyu Tetao New Material Technology Co ltd
Original Assignee
Jilin Changyu Tetao New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Changyu Tetao New Material Technology Co ltd filed Critical Jilin Changyu Tetao New Material Technology Co ltd
Priority to CN201810813096.1A priority Critical patent/CN109020587B/zh
Publication of CN109020587A publication Critical patent/CN109020587A/zh
Application granted granted Critical
Publication of CN109020587B publication Critical patent/CN109020587B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法,包括:步骤一、按摩尔比称取二氧化钛,炭黑及氮化硼纳米管,在氮气保护下分别球磨得到初步球磨粉末;步骤二、将二氧化钛的初步球磨粉末及氮化硼纳米管的初步球磨粉末分别加入到聚乙烯醇水溶液中,将炭黑初步球磨粉末加入到胆酸钠水溶液中,并进行超声分散后混合得到混合液;步骤三、对混合液进行喷雾造粒,并多次进行真空抽滤‑冲洗过程,再经干燥、研磨、过筛得到复合粉体;步骤四、将复合粉体进行低温烧结;步骤五、将低温烧结粉体装入模具中,在真空条件下进行热压烧结成型。采用本发明提供制备方法,制得的碳化钛陶瓷中具有良好的防中子辐射性能。

Description

一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法
技术领域
本发明属于特种陶瓷材料技术领域,特别涉及一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法。
背景技术
碳化钛(TiC)陶瓷是近年来发展较快的一种新型陶瓷材料,TiC属面心立方晶型,熔点高,导热性能好,硬度大,耐磨性好,化学稳定好,又有一定的韧性和可塑性,是一类非常重要的高性能结构材料;另一方面,TiC的熔点(3250℃)大幅高于碳化钨的熔点(2630℃)而其密度却只有WC的1/3,并且其抗氧化性远胜于WC;TiC不水解,高温抗氧化性好,可用于填补WC-Co系硬质合金和氧化铝陶瓷刀具材料之间的间隙。但目前已有的大多数制备工艺往往只能提高TiC基金属陶瓷材料的单一性能指标,而缺少提高其综合性能的研究成果。因此,目前的研发核心不仅要低成本的制备碳化钛陶瓷,保证高硬度,还要同时具备较高的力学性能、高温稳定性以及防辐射性能等综合性能。
氮化硼纳米管(BNNTs)与碳纳米管(CNTs)的结构及理化性能均十分相似,如低密度、高强度、高导热性等,而不同点在于BNNTs是绝缘体,且具有更高的化学稳定性和高温抗氧化能力,更因B原子的存在使得BNNTs可以吸收中子具有防辐射特性。故而将BNNTs掺杂到TiC陶瓷中,既可以保持TiC陶瓷的高硬度、高导热性、耐磨性、化学稳定性,又可以赋予其更加优越的高温抗氧化性、高温力学性能及防中子辐射性能,使得BNNTs增韧TiC陶瓷可以用于各种苛刻的特种环境中,如高温反应容器、核反应堆、燃气轮机的燃烧器、火箭推进器高温组件、空间飞行器防辐射部件、坦克防护装甲等。
发明内容
本发明的目的是提供一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法,其将氮化硼纳米管结合到碳化钛陶瓷中,能够保持碳化钛陶瓷的高硬度、高导热性、耐磨性、化学稳定性,同时能够提高碳化钛陶瓷的防中子辐射性能。
本发明提供的技术方案为:
一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法,包括:
步骤一、按摩尔比称取100份二氧化钛,300份炭黑以及5~50份氮化硼纳米管,在氮气保护下分别球磨得到初步球磨粉末;
步骤二、将二氧化钛的初步球磨粉末及氮化硼纳米管的初步球磨粉末分别加入到聚乙烯醇水溶液中,将炭黑的初步球磨粉末加入到胆酸钠水溶液中,分别得到二氧化钛分散液、氮化硼纳米管分散液及炭黑分散液;将二氧化钛分散液、氮化硼纳米管分散液及炭黑分散液混合得到混合液;
步骤三、对所述混合液进行喷雾造粒,并多次进行真空抽滤和冲洗,再经干燥、研磨、过筛得到复合粉体;
步骤四、将所述复合粉体在真空条件下升温、保温,冷却,得到低温烧结粉体;
步骤五、将所述低温烧结粉体装入模具中,在真空条件下,热压烧结成型。
优选的是,在所述步骤二中,将二氧化钛和氮化硼纳米管的初步球磨粉末分别加入到聚乙烯醇水溶液中,将炭黑的初步球磨粉末加入到胆酸钠水溶液中,进行超声分散。
优选的是,所述超声分散的方法为在零度以下的冰水浴中超声分散24h。
优选的是,在所述步骤四中,在真空度小于300Pa的条件下,将所述复合粉体以10℃/min的升温速率升至800℃并保温2~4h,冷却,到低温烧结粉体。
优选的是,所述氮化硼纳米管的制备方法为:
在氨气环境下,将氧化硼和催化剂,在1150℃的反应温度下,反应90~120min。
优选的是,所述催化剂为氧化镁和四氧化三铁混合粉体。
优选的是,在所述步骤三中,真空抽滤和冲洗至少为5次。
优选的是,所述步骤四中,冷却后抽真空至烧结炉内真空度<100Pa。
优选的是,在所述步骤五中,热压烧结成型的方法为:
用30min升至1400℃,之后施加18MPa的压力,保温60min后以40~60℃/min的升温速率升至温度为1800℃,施加压力为30MPa,保温60min。
优选的是,在所述步骤一中,得到初步球磨粉末的球磨时间为48h。
本发明的有益效果是:
1、本发明制备氮化硼纳米管时以氧化硼为硼源,氨为氮源,氧化镁和四氧化三铁为催化剂;碳化钛陶瓷则以二氧化钛为钛源,炭黑为碳源,原料价格低廉,生产工艺简单,对设备要求低,对环境及生产人员友好;
2、本发明分别制备了氮化硼纳米管、二氧化钛与炭黑分散液,混合造粒有效抑制原料缠绕卷曲,使得反应原料混合均匀、品相均一,同时采取抽滤—冲洗与低温段烧结流程尽可能除去分散剂,减少了对陶瓷性能的不利影响;
3、本发明为高温烧结制得氮化硼纳米管增韧碳化钛中子吸收陶瓷,结合了氮化硼纳米管和氮化钛陶瓷的优势,产品具有优越的高温稳定性及防中子辐射性能。
附图说明
图1为本发明所述的实施例1中的氮化硼纳米管的透射电镜图。
图2为本发明所述的实施例2中的氮化硼纳米管的透射电镜图。
图3为本发明所述的实施例3中的氮化硼纳米管的透射电镜图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
本发明提供了一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法,包括如下步骤:
步骤一、按摩尔比称取100份钛源(二氧化钛),300份碳源(炭黑),5~50份氮化硼纳米管,分别于氮气保护下,球磨48h过筛后得初步球磨粉料。
其中,所述氮化硼纳米管的优选制备方法为:以氧化硼为硼源,氨气为氮源,氧化镁和四氧化三铁混合粉体为催化剂(二者摩尔比为1:1),氧化硼、氧化镁和四氧化三铁的摩尔比为4:1:1,反应温度为1150℃,反应时间为90~120min。
将石英舟中装有氧化硼和催化剂,并向石英舟中通入氨气,石英舟上端部分盖有硅基片,按照表1中不同的工艺参数进行化学气相沉积反应,从产物的颜色可以判断可以生长氮化硼纳米管的优选工艺参数为:B2O3:MgO:Fe3O4=4:1:1,石英舟上端部分盖有硅基片且硅基片上需预分散氧化镁催化剂,反应温度为1150℃,反应时间为90~120min。从实施过程可知:单纯延长反应时间并不会影响氮化硼纳米管的形貌,当催化剂残留在纳米管中时会大幅增加氮化硼纳米管的直径。
表1化学气相沉积不同工艺参数所制备产物的颜色
Figure BDA0001739666170000041
步骤二、将二氧化钛的初步球磨粉末、氮化硼纳米管粉体初步球磨粉末分别加入到5vol.%聚乙烯醇水溶液中,将炭黑的初步球磨粉末加入到1wt.%胆酸钠水溶液中,采用超声破碎仪强力超声分散24h,分别得到二氧化钛、氮化硼纳米管及炭黑分散液,之后将上述三种分散液混合制得混合液。其中,作为优选,将所述的超声分散过程零度以下冰水浴中进行,以抑制水分挥发并制得分散性更稳定的分散液。
步骤三、对步骤二中得到的混合液进行喷雾造粒,真空抽滤,并用大量蒸馏水冲洗,多次重复抽滤—冲洗过程,然后经干燥、研磨、过筛后得复合粉体;其中,抽滤-冲洗过程至少重复5次,以尽可能去除分散剂聚乙烯醇及胆酸钠。
步骤四、对步骤三中所得复合粉体进行初步真空烧结(真空度<300Pa),以10℃/min升温速率升至800℃保温2~4h,使残存的分散剂完全分解,之后冷却得低温烧结粉体。作为优选,冷却后再次抽真空至烧结炉内真空度<100Pa,以去除对后续烧结会产生影响的反应气体。
步骤五、将步骤四中得到的低温烧结粉体装入到石墨模具中,再次进行真空烧结,用30min升至1400℃,之后施加18MPa的压力,保温60min后以40~60℃/min的升温速率升至温度为1800℃,施加压力为30MPa,保温60min热压烧结成型,得到氮化硼纳米管增韧碳化钛中子吸收陶瓷。
实施例1
(1)氮化硼纳米管的制备:在石英舟中装有B2O3:MgO:Fe3O4=4:1:1,石英舟上端部分盖有硅基片,且硅基片上需预先分散氧化镁催化剂,在氨气环境下,反应温度为1150℃,反应时间为100min,得到氮化硼纳米管。透射电镜表征如图1所示:所形成的氮化硼纳米管为多壁结构,直径为16-60nm。
(2)氮化硼纳米管增韧碳化钛陶瓷的制备:称取20g二氧化钛,9g炭黑,0.31g氮化硼纳米管,分别于氮气保护下球磨48h;将球磨研细的二氧化钛、氮化硼纳米管粉体加入到5vol.%聚乙烯醇水溶液中,炭黑加入到1wt.%胆酸钠水溶液中,采用超声破碎仪强力超声分散24h;然后将三者混合进行喷雾造粒,真空抽滤并用大量蒸馏水冲洗,重复抽滤-冲洗过程5次,然后经干燥、研磨、过筛后得复合粉体;将复合粉体进行真空烧结,以10℃/min升温速率升至800℃保温3h,再将低温烧结粉体转移到石墨模具中,再次进行真空烧结,用30min升至1400℃,施加18MPa的压力,保温60min后以40℃/min的升温速率升至1800℃施加30MPa的压力,保温60min后得到氮化硼纳米管增韧碳化钛中子吸收陶瓷。
实施例2
(1)氮化硼纳米管的制备:在石英舟中装有B2O3:MgO:Fe3O4=4:1:1,石英舟上端部分盖有硅基片,且硅基片上需预先分散氧化镁催化剂,在氨气环境下,反应温度为1150℃,反应时间为90min,制得的氮化硼纳米管的透射电镜表征如图2所示,所形成的氮化硼纳米管为多壁结构,直径为16-18nm。
(2)氮化硼纳米管增韧碳化钛陶瓷的制备:称取5g二氧化钛粉体,2.25g炭黑为原料,0.78g氮化硼纳米管,分别于氮气保护下球磨48h将研细的二氧化钛、氮化硼纳米管粉体加入到5vol.%聚乙烯醇水溶液中,炭黑加入到1wt.%胆酸钠水溶液中,采用超声破碎仪强力超声分散24h,然后将三者混合进行喷雾造粒,真空抽滤并用大量蒸馏水冲洗,重复抽滤-冲洗过程8次,然后经干燥、研磨、过筛后得复合粉体;将复合粉体进行真空烧结,以10℃/min升温速率升至800℃保温2h,再将低温烧结粉体转移到石墨模具中,再次进行真空烧结,用30min升至1400℃,施加18MPa的压力,保温60min后以50℃/min的升温速率升至1800℃施加30MPa的压力,保温60min后得到氮化硼纳米管增韧碳化钛中子吸收陶瓷。
实施例3
(1)氮化硼纳米管的制备:在石英舟中装有B2O3:MgO:Fe3O4=4:1:1,石英舟上端部分盖有硅基片,且硅基片上需预先分散氧化镁催化剂,在氨气环境下,反应温度为1150℃,反应时间为120min,制得的氮化硼纳米管的透射电镜表征如图3所示。三个实施例中都能够制得符合生产要求的氮化硼纳米管。
(2)氮化硼纳米管增韧碳化钛陶瓷的制备:称取10g二氧化钛粉体,4.5g炭黑为原料,0.72g氮化硼纳米管,分别于氮气保护下球磨48h将研细的二氧化钛、氮化硼纳米管粉体加入到5vol.%聚乙烯醇水溶液中,炭黑加入到1wt.%胆酸钠水溶液中,采用超声破碎仪强力超声分散24h,然后将三者混合进行喷雾造粒,真空抽滤并用大量蒸馏水冲洗,重复抽滤-冲洗过程8次,然后经干燥、研磨、过筛后得复合粉体;将复合粉体进行真空烧结,以10℃/min升温速率升至800℃保温4h,再将低温烧结粉体转移到石墨模具中,再次进行真空烧结,用30min升至1400℃,施加18MPa的压力,保温60min后以60℃/min的升温速率升至1800℃施加30MPa的压力,保温60min后得到氮化硼纳米管增韧碳化钛中子吸收陶瓷。
在Am-Be同位素源下,测试实施例1、2、3所制备的氮化硼纳米管增韧碳化钛陶瓷的中子吸收性能。距中子发射源10cm处安置5cm厚聚乙烯慢化板,使通过该板的中子为热中子,发射源的中子发射率为7×105n/s。陶瓷样品被放在孔道正前方15cm处,所发射的中子依次通过慢化板和陶瓷样品,然后由3He中子探测器监测记录。在关闭放射源和不放置材料的情况下记录本底值,时间为300s。然后,打开实验孔道,记录放射源在300s内的中子计数。测试结果如表2所示:实施例1、2、3中制得的碳化钛陶瓷均具有较好的吸收中子性能,随着氮化硼纳米管的含量增加,陶瓷材料的吸收中子能力增强,随着陶瓷材料厚度增加,陶瓷材料的吸收中子能力增强。
表2不同厚度、不同氮化硼纳米管掺量的陶瓷块体中子吸收性能(透射系数)
Figure BDA0001739666170000071
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (8)

1.一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法,其特征在于,包括如下步骤:
步骤一、按摩尔比称取100份二氧化钛,300份炭黑以及5~50份氮化硼纳米管,在氮气保护下分别球磨得到初步球磨粉末;
步骤二、将二氧化钛的初步球磨粉末及氮化硼纳米管的初步球磨粉末分别加入到5vol.%聚乙烯醇水溶液中,将炭黑的初步球磨粉末加入到1wt.%胆酸钠水溶液中,分别得到二氧化钛分散液、氮化硼纳米管分散液及炭黑分散液;将二氧化钛分散液、氮化硼纳米管分散液及炭黑分散液混合得到混合液;
步骤三、对所述混合液进行喷雾造粒,并多次进行真空抽滤和冲洗,再经干燥、研磨、过筛得到复合粉体;
步骤四、将所述复合粉体在真空条件下升温、保温,冷却,得到低温烧结粉体;
步骤五、将所述低温烧结粉体装入模具中,在真空条件下,热压烧结成型;
所述氮化硼纳米管的制备方法为:
在氨气环境下,将氧化硼和催化剂,在1150℃的反应温度下,反应90~120min;
所述催化剂为氧化镁和四氧化三铁混合粉体。
2.根据权利要求1所述的氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法,其特征在于,在所述步骤二中,将二氧化钛和氮化硼纳米管的初步球磨粉末分别加入到聚乙烯醇水溶液中,将炭黑的初步球磨粉末加入到胆酸钠水溶液中,进行超声分散。
3.根据权利要求2所述的氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法,其特征在于,所述超声分散的方法为在零度以下的冰水浴中超声分散24h。
4.根据权利要求3所述的氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法,其特征在于,在所述步骤四中,在真空度小于300Pa的条件下,将所述复合粉体以10℃/min的升温速率升至800℃并保温2~4h,冷却,得到低温烧结粉体。
5.根据权利要求4所述的氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法,其特征在于,在所述步骤三中,真空抽滤和冲洗至少为5次。
6.根据权利要求5所述的氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法,其特征在于,所述步骤四中,冷却后抽真空至烧结炉内真空度<100Pa。
7.根据权利要求6所述的氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法,其特征在于,在所述步骤五中,热压烧结成型的方法为:
用30min升至1400℃,之后施加18MPa的压力,保温60min后以40~60℃/min的升温速率升至温度为1800℃,施加压力为30MPa,保温60min。
8.根据权利要求7所述的氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法,在所述步骤一中,得到初步球磨粉末的球磨时间为48h。
CN201810813096.1A 2018-07-23 2018-07-23 一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法 Active CN109020587B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810813096.1A CN109020587B (zh) 2018-07-23 2018-07-23 一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810813096.1A CN109020587B (zh) 2018-07-23 2018-07-23 一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN109020587A CN109020587A (zh) 2018-12-18
CN109020587B true CN109020587B (zh) 2021-06-01

Family

ID=64644396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810813096.1A Active CN109020587B (zh) 2018-07-23 2018-07-23 一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN109020587B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772637B (zh) * 2021-10-18 2023-04-28 青海大学 一种集导热、吸波于一体的纳米复合材料及其制备方法
CN115198131B (zh) * 2022-07-12 2023-07-04 吉林长玉特陶新材料技术股份有限公司 一种硬质相与添加相协同颗粒级配制备高性能混晶Ti(C,N)基金属陶瓷的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717077A (zh) * 2009-11-24 2010-06-02 哈尔滨工业大学 氮化硼纳米管的制备方法
CN102231287A (zh) * 2011-06-17 2011-11-02 清华大学 中子吸收球
CN102757223A (zh) * 2012-07-04 2012-10-31 山东大学 一种稀土硼化物/碳化硼复合中子吸收材料及其制备方法
EP2534114A1 (en) * 2010-02-12 2012-12-19 Element Six Abrasives S.A. Superhard element, method of using same and method of making same
CN103833403A (zh) * 2014-03-04 2014-06-04 上海工程技术大学 一种碳化硅晶须增韧碳化硼陶瓷复合材料的制备方法及产品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073332B (zh) * 2013-02-05 2014-07-16 中国科学院上海硅酸盐研究所 具有纳米孔结构的过渡金属碳化物陶瓷及其制备方法
CN103803950B (zh) * 2014-03-13 2015-07-01 中国人民解放军国防科学技术大学 一种氮化硼纳米管增强陶瓷基复合材料及其制备方法
CN105272259B (zh) * 2015-10-27 2017-04-19 西安交通大学 一种碳化钛泡沫陶瓷的制备方法
US20170275742A1 (en) * 2016-03-11 2017-09-28 A. Jacob Ganor Ceramic and metal boron nitride nanotube composites
CN108298996A (zh) * 2018-01-12 2018-07-20 海南大学 一种氮化硼纳米管增韧氮化硅陶瓷的方法及其制备的产品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717077A (zh) * 2009-11-24 2010-06-02 哈尔滨工业大学 氮化硼纳米管的制备方法
EP2534114A1 (en) * 2010-02-12 2012-12-19 Element Six Abrasives S.A. Superhard element, method of using same and method of making same
CN102231287A (zh) * 2011-06-17 2011-11-02 清华大学 中子吸收球
CN102757223A (zh) * 2012-07-04 2012-10-31 山东大学 一种稀土硼化物/碳化硼复合中子吸收材料及其制备方法
CN103833403A (zh) * 2014-03-04 2014-06-04 上海工程技术大学 一种碳化硅晶须增韧碳化硼陶瓷复合材料的制备方法及产品

Also Published As

Publication number Publication date
CN109020587A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
CN107731318B (zh) 一种单晶二氧化铀核燃料芯块的制备方法
CN109671511A (zh) 一种单晶高导热二氧化铀核燃料芯块的制备方法
CN103924111B (zh) 一种硬质合金纳米粒径粉末与高性能烧结块体材料的制备方法
CN105706177B (zh) 一种热导率增强型核燃料芯块及其制备方法
CN108298587B (zh) 一种纳米二氧化铀复合材料粉末的制备方法
CN108218456B (zh) 一种高安全性二氧化铀核燃料芯块的制备方法
CN109020587B (zh) 一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法
CN110157931B (zh) 一种具有三维网络结构的纳米碳增强金属基复合材料及其制备方法
CN101804980B (zh) 碳化硼微粉及其制备方法
CN110204341B (zh) 一种(Hf,Ta,Nb,Ti)B2高熵陶瓷粉体及其制备方法
US20220074027A1 (en) High-hardness composite oxide dispersion-strengthened tungsten alloy and preparation method thereof
CN111377449A (zh) 一种碳化硼纳米颗粒的制备方法
WO2019037688A1 (zh) 碳化铀芯块及其制备方法、燃料棒
WO2019227811A1 (zh) 一种超细过渡金属硼化物粉体及其制备方法和应用
CN109794613A (zh) 一种纳米ZrC增强FeCrAl合金的制备方法
CN113121237A (zh) 一种碳化硼基复合陶瓷及其制备工艺
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN111187075A (zh) 一种自分散超细ZrC-SiC陶瓷复合粉体的前驱体转化法制备工艺
CN108417278B (zh) 一种高辐照稳定性的金属型燃料芯块的制备方法
CN109234563A (zh) 一种新型石墨烯-金属基复合材料的制备方法
CN111204741B (zh) 一种三维石墨烯/碳纳米管交联复合材料的制备方法
US20210114883A1 (en) Chemical synthesis method for fabricating boron carbide powders
US20220306543A1 (en) Method for preparing boron carbide material
CN114927243A (zh) 复合核燃料
CN112694331B (zh) 采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant