CN109020500A - 一种高精度ntc热敏陶瓷的制备工艺 - Google Patents

一种高精度ntc热敏陶瓷的制备工艺 Download PDF

Info

Publication number
CN109020500A
CN109020500A CN201811177494.5A CN201811177494A CN109020500A CN 109020500 A CN109020500 A CN 109020500A CN 201811177494 A CN201811177494 A CN 201811177494A CN 109020500 A CN109020500 A CN 109020500A
Authority
CN
China
Prior art keywords
sensitive ceramics
thermal sensitive
hydro
ntc
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811177494.5A
Other languages
English (en)
Inventor
庞驰
方超
赵文英
段兆祥
贺晓东
左艳珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Aisheng Electronic Technology Co Ltd
Guizhou University
Original Assignee
Guangdong Aisheng Electronic Technology Co Ltd
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Aisheng Electronic Technology Co Ltd, Guizhou University filed Critical Guangdong Aisheng Electronic Technology Co Ltd
Priority to CN201811177494.5A priority Critical patent/CN109020500A/zh
Publication of CN109020500A publication Critical patent/CN109020500A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高精度NTC热敏陶瓷的制备工艺,包括如下步骤:1)取NTC热敏陶瓷原料;2)将NTC热敏陶瓷原料装入球磨罐充分混合球磨,将球磨后得到的浆料放置在干燥箱中烘干,得粉体;3)向粉体加入水,再加入氨水、柠檬酸或草酸中的一种或任意几种的组合物,然后加热进行水热处理,水热处理后的粉末烘干,得NTC热敏陶瓷原料粉体;4)将NTC热敏陶瓷原料粉体采用传统NTC陶瓷的处理工艺处理,得高精度NTC热敏陶瓷。本发明具有制得的NTC热敏陶瓷性能好,精度高,原料用量少,成本低,污染小,工艺更加简单,工艺稳定性好的特点。

Description

一种高精度NTC热敏陶瓷的制备工艺
技术领域
本发明涉及一种陶瓷氧化物复合粉体的处理方法,特别是一种高精度NTC热敏陶瓷的制备工艺。
背景技术
NTC陶瓷又称为负温度系数热敏电阻陶瓷,负温度系数热敏陶瓷的电阻率随温度升高按指数关系减小。这种陶瓷大多是具有尖晶石结构的过渡金属氧化物固溶体,即多数含有一种或多种过渡金属(如Mn,Cu,Ni,Fe等)的氧化物,化学通式为AB2O4,其导电机理因组成、结构和半导体化的方式不同而异。负温度系数热敏陶瓷主要用于温度测量和温度补偿。
NTC热敏陶瓷原料的粒度大致在几微米至几十微米。如何将各组分的元素均匀分散到陶瓷中,是提高压敏陶瓷性能的关键因素。
现目前,在NTC热敏陶瓷的实际生产过程中,通常是将原料采用球磨法来处理,但球磨的方法仅仅能将原料球磨至1微米左右,虽然满足了大多数应用的要求,但是在一些高端的应用场合下,使用这些原料的陶瓷的性能还达不到客户的要求。最近几年有采用化学共沉淀、溶解-凝胶法、冷冻干燥法等手段来合成超细原料氧化物,从而提升陶瓷的性能。但是,仍然没有得到理想的效果。而水热法是目前针对陶瓷原料处理的一种新的方法,能够进一步提高原料的处理效果。但是,现目前的水热法仍然存在缺陷,主要体现在:1、现目前的水热法必须利用原料的可溶性盐(主要为硝酸盐)为原料,与碱进行反应,最终制得氧化物,但可溶性盐的价格比氧化物的价格昂贵得多,增加了陶瓷的原料成本;2、原料的可溶性盐最终制得的氧化物的量只是可溶性盐的量的一小部分(以氧化镍的可溶性硝酸盐-六水合硝酸镍为例,处理完成后氧化镍为25.7%,其余74.3%为硝酸根和结晶水),因此,制备氧化物时需要大量的可溶性盐和碱进行反应,进一步增加了陶瓷的原料成本,同时,废液中含有大量的酸根,对环境污染较大;3、可溶性盐与碱的反应体系更加复杂,条件更加苛刻,处理过程中的工艺的稳定性较难把握。
发明内容
本发明的目的在于,提供一种高精度NTC热敏陶瓷的制备工艺。本发明具有制得的NTC热敏陶瓷性能好,精度高,原料用量少,成本低,污染小,工艺更加简单,工艺稳定性好的特点。
本发明的技术方案:一种高精度NTC热敏陶瓷的制备工艺,包括如下步骤:
1)取Mn3O4、NiO、CuO、Al2O3和Bi2O3进行混合,得NTC热敏陶瓷原料;
2)将NTC热敏陶瓷原料装入球磨罐,加入酒精后将原料充分混合球磨,将球磨后得到的浆料放置在干燥箱中烘干,得粉体;
3)向粉体加入水,再加入氨水、柠檬酸或草酸中的一种或任意几种的组合物,然后加热进行水热处理,水热处理后的粉末在干燥箱中烘干,得NTC热敏陶瓷原料粉体;
4)将步骤3)制得的NTC热敏陶瓷原料粉体采用传统NTC陶瓷的处理工艺处理,得高精度NTC热敏陶瓷。
前述的高精度NTC热敏陶瓷的制备工艺,步骤2)中,所述浆料是在60-120℃的干燥箱中烘干。
前述的高精度NTC热敏陶瓷的制备工艺,所述浆料是在70℃的干燥箱中烘干。
前述的高精度NTC热敏陶瓷的制备工艺,步骤3)中,所述水热处理的反应体系中,氨水、柠檬酸或草酸中的一种或任意几种的组合物的浓度为0.5-2mol/L。
前述的高精度NTC热敏陶瓷的制备工艺,所述水热处理的反应体系中,氨水、柠檬酸或草酸中的一种或任意几种的组合物的浓度为1mol/L。
前述的高精度NTC热敏陶瓷的制备工艺,步骤3)中,所述水热处理的处理温度为200-400℃;所述水热处理的处理时间为5-25h。
前述的高精度NTC热敏陶瓷的制备工艺,所述水热处理的处理温度为300℃;所述水热处理的处理时间为15h。
前述的高精度NTC热敏陶瓷的制备工艺,步骤3)中,所述水热处理后的粉末是在60-80℃的干燥箱中烘干。
前述的高精度NTC热敏陶瓷的制备工艺,所述水热处理后的粉末是在70℃的干燥箱中烘干。
本发明的有益效果
1、本发明通过改进的水热处理方法处理原料粉体,制得的粉体分布更均匀、粉体粒径更小、粒度分布范围更窄、比表面积更多、活性更强,制得的NTC热敏陶瓷的性能更好,精度更高。
2、本发明通过直接利用氧化物作为原料进行处理,与采用可溶性盐作为原料相比,其原料成本得到了极大的降低;同时,由于是直接将氧化物进行处理得到氧化物,几乎没有原料的损失,而是需要多少的量就用多少原料进行处理即可,大大减少了材料的用量,进一步降低了成本;另外,本发明处理过程中处理剂用量少,产生的废液少,大大降低了对环境的污染程度;此外,本发明直接利用氧化物进行处理,工艺更加简单,工艺的稳定性更好。
为进一步说明本发明的有益效果,申请人设计了以下实验:
实验例
1、实验方法:本实验例共设置四组实验,第一组为传统工艺制备的NTC热敏陶瓷片,第二组为本发明实施例1制备的NTC热敏陶瓷片,第三组为本发明实施例2制备的NTC热敏陶瓷片,第四组为本发明实施例3制备的NTC热敏陶瓷片,分别对四组陶瓷片的阻值、B值、老化稳定性和温度冲击稳定性进行测量。
实验结果:表1为四组陶瓷片实验数据结果对比表,从表1可以看出:经本发明实施例所述方法处理的NTC热敏陶瓷片的老化阻值变化率降低了50%,温度循环冲击阻值变化率降低了30%,说明本发明制得的NTC热敏陶瓷的电阻值精度到了极大的提高的同时,还大大降低了陶瓷成本,减少了环境污染和保证了工艺稳定性。
表1:四组陶瓷片实验数据结果对比表
附图说明
附图1为传统固相法和本发明水热法制备的NTC热敏陶瓷粉末的粒度累积分布图;
附图2为传统固相法制备的NTC热敏陶瓷粉末的扫描电镜图;
附图3为本发明水热法制备的NTC热敏陶瓷粉末的扫描电镜图。
具体实施方式
下面结合实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
本发明的实施例
实施例1:一种高精度NTC热敏陶瓷的制备工艺,步骤如下:
1)按质量百分比计,取Mn3O4 40%、NiO 20%、CuO 8%、Al2O3 4%和Bi2O3 28%进行混合,得NTC热敏陶瓷原料;
2)将NTC热敏陶瓷原料装入球磨罐,加入酒精后将原料充分混合球磨,将球磨后得到的浆料放置在在70℃的干燥箱中烘干,得粉体;
3)向粉体加入水,再加入氨水,然后加热进行水热处理,水热处理的反应体系中,氨水的浓度为1mol/L,水热处理的处理温度为300℃,水热处理的处理时间为15h,水热处理后的粉末在70℃的干燥箱中烘干,得NTC热敏陶瓷原料粉体;
4)向步骤3)制得的NTC热敏陶瓷原料粉体中按质量比1:2加入去离子水混合,然后球磨24小时,将研磨后的粉料烘干,用等静压将粉料压制成型,再在1100℃进行烧结,得高精度NTC热敏陶瓷。
实施例2:一种高精度NTC热敏陶瓷的制备工艺,步骤如下:
1)按质量百分比计,取Mn3O4 40%、NiO 20%、CuO 8%、Al2O3 4%和Bi2O3 28%进行混合,得NTC热敏陶瓷原料;
2)将NTC热敏陶瓷原料装入球磨罐,加入酒精后将原料充分混合球磨,将球磨后得到的浆料放置在在60℃的干燥箱中烘干,得粉体;
3)向粉体加入水,再加入柠檬酸,然后加热进行水热处理,水热处理的反应体系中柠檬酸的浓度为0.5mol/L,水热处理的处理温度为200℃,水热处理的处理时间为25h,水热处理后的粉末在60℃的干燥箱中烘干,得NTC热敏陶瓷原料粉体;
4)向步骤3)制得的NTC热敏陶瓷原料粉体中按质量比1:1.5加入去离子水混合,然后球磨15小时,将研磨后的粉料烘干,用等静压将粉料压制成型,再在1000℃进行烧结,得高精度NTC热敏陶瓷。
实施例3:一种高精度NTC热敏陶瓷的制备工艺,步骤如下:
1)按质量百分比计,取Mn3O4 40%、NiO 20%、CuO 8%、Al2O3 4%和Bi2O3 28%进行混合,得NTC热敏陶瓷原料;
2)将NTC热敏陶瓷原料装入球磨罐,加入酒精后将原料充分混合球磨,将球磨后得到的浆料放置在在120℃的干燥箱中烘干,得粉体;
3)向粉体加入水,再加入草酸,然后加热进行水热处理,水热处理的反应体系中,草酸的浓度为2mol/L,水热处理的处理温度为400℃,水热处理的处理时间为5h,水热处理后的粉末在80℃的干燥箱中烘干,得NTC热敏陶瓷原料粉体;
4)向步骤3)制得的NTC热敏陶瓷原料粉体中按质量比1:2.5加入去离子水混合,然后球磨30小时,将研磨后的粉料烘干,用等静压将粉料压制成型,再在1200℃进行烧结,得高精度NTC热敏陶瓷。

Claims (9)

1.一种高精度NTC热敏陶瓷的制备工艺,其特征在于,包括如下步骤:
1)取Mn3O4、NiO、CuO、Al2O3和Bi2O3进行混合,得NTC热敏陶瓷原料;
2)将NTC热敏陶瓷原料装入球磨罐,加入酒精后将原料充分混合球磨,将球磨后得到的浆料放置在干燥箱中烘干,得粉体;
3)向粉体加入水,再加入氨水、柠檬酸或草酸中的一种或任意几种的组合物,然后加热进行水热处理,水热处理后的粉末在干燥箱中烘干,得NTC热敏陶瓷原料粉体;
4)将步骤3)制得的NTC热敏陶瓷原料粉体采用传统NTC陶瓷的处理工艺处理,得高精度NTC热敏陶瓷。(具体工艺已在说明书中写清楚)
2.根据权利要求1所述的高精度NTC热敏陶瓷的制备工艺,其特征在于:步骤2)中,所述浆料是在60-120℃的干燥箱中烘干。
3.根据权利要求2所述的高精度NTC热敏陶瓷的制备工艺,其特征在于:所述浆料是在70℃的干燥箱中烘干。
4.根据权利要求1所述的高精度NTC热敏陶瓷的制备工艺,其特征在于:步骤3)中,所述水热处理的反应体系中,氨水、柠檬酸或草酸中的一种或任意几种的组合物的浓度为0.5-2mol/L。
5.根据权利要求4所述的高精度NTC热敏陶瓷的制备工艺,其特征在于:所述水热处理的反应体系中,氨水、柠檬酸或草酸中的一种或任意几种的组合物的浓度为1mol/L。
6.根据权利要求1所述的高精度NTC热敏陶瓷的制备工艺,其特征在于:步骤3)中,所述水热处理的处理温度为200-400℃;所述水热处理的处理时间为5-25h。
7.根据权利要求6所述的高精度NTC热敏陶瓷的制备工艺,其特征在于:所述水热处理的处理温度为300℃;所述水热处理的处理时间为15h。
8.根据权利要求1所述的高精度NTC热敏陶瓷的制备工艺,其特征在于:步骤3)中,所述水热处理后的粉末是在60-80℃的干燥箱中烘干。
9.根据权利要求8所述的高精度NTC热敏陶瓷的制备工艺,其特征在于:所述水热处理后的粉末是在70℃的干燥箱中烘干。
CN201811177494.5A 2018-10-10 2018-10-10 一种高精度ntc热敏陶瓷的制备工艺 Pending CN109020500A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811177494.5A CN109020500A (zh) 2018-10-10 2018-10-10 一种高精度ntc热敏陶瓷的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811177494.5A CN109020500A (zh) 2018-10-10 2018-10-10 一种高精度ntc热敏陶瓷的制备工艺

Publications (1)

Publication Number Publication Date
CN109020500A true CN109020500A (zh) 2018-12-18

Family

ID=64616464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811177494.5A Pending CN109020500A (zh) 2018-10-10 2018-10-10 一种高精度ntc热敏陶瓷的制备工艺

Country Status (1)

Country Link
CN (1) CN109020500A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109942285A (zh) * 2019-04-09 2019-06-28 济南大学 一种原位生成层状复合负温度系数热敏陶瓷材料和制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000043358A (ko) * 1998-12-26 2000-07-15 김종원 고온 절대습도센서용 부온도계수 써미스터 소자 제조방법 및 그조성물
CN101127266A (zh) * 2007-09-12 2008-02-20 山东中厦电子科技有限公司 高均匀性负温度系数热敏电阻材料及其制备方法
CN101318814A (zh) * 2008-07-10 2008-12-10 中国计量学院 负温度系数热敏粉体的制备方法——水热反应法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000043358A (ko) * 1998-12-26 2000-07-15 김종원 고온 절대습도센서용 부온도계수 써미스터 소자 제조방법 및 그조성물
CN101127266A (zh) * 2007-09-12 2008-02-20 山东中厦电子科技有限公司 高均匀性负温度系数热敏电阻材料及其制备方法
CN101318814A (zh) * 2008-07-10 2008-12-10 中国计量学院 负温度系数热敏粉体的制备方法——水热反应法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
尹邦跃: "《陶瓷核燃料工艺》", 31 January 2016, 哈尔滨工程大学出版社 *
谢宇: "《变化莫测的分子王国——化学工业》", 31 January 2010, 百花洲文艺出版社 *
马仁君等: "固相球磨-水热法制备Mn1.56Co0.96Ni0.48O4纳米粉体及其NTC性能", 《功能材料》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109942285A (zh) * 2019-04-09 2019-06-28 济南大学 一种原位生成层状复合负温度系数热敏陶瓷材料和制备方法及应用

Similar Documents

Publication Publication Date Title
Boston et al. Protocols for the fabrication, characterization, and optimization of n-type thermoelectric ceramic oxides
CN101691297B (zh) 铁氧体/陶瓷复合材料及其制备方法和应用
CN107200576A (zh) 一种高介电常数铕和铌共掺二氧化钛陶瓷及其制备方法
CN114262228B (zh) 铌酸钾钠基无铅压电陶瓷及其制备方法和应用
CN106045501A (zh) 无铅压电陶瓷及其制备方法
CN105967674A (zh) 一种铬掺杂铝酸镁高温热敏电阻材料及其制备方法
CN109020500A (zh) 一种高精度ntc热敏陶瓷的制备工艺
CN108484126A (zh) 一种微波介质陶瓷及其制备方法
CN109970443B (zh) 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法
Taguchi et al. Electrical properties of perovskite-type La (Cr1− xMnx) O3+ δ
CN106278250A (zh) 一种无铅正温度系数热敏电阻陶瓷的制备方法
Taguchi Spin State of Cobalt Ion in Nd (Cr1− xCox) O3
CN102336567A (zh) 钛镁酸铋-铋锌基钙钛矿-钛酸铅三元系高温压电陶瓷及其制备方法
CN100415414C (zh) 用于制备高精度热敏电阻的纳米粉体
Singh et al. Structural and dielectric properties of Dy2 (Ba0. 5R0. 5) 2O7 (R= W, Mo) ceramics
CN101215160B (zh) 一种超高介、低损耗的高频介质陶瓷及其制备方法
CN102491756A (zh) 一种水热法制备纳米热敏粉体的方法
CN108863344A (zh) 一种高性能ZnO压敏陶瓷的制备工艺
KR101786056B1 (ko) 코어쉘 구조를 갖는 저온소성용 무연압전 세라믹 및 그 제조 방법
CN102432285B (zh) 钛镍酸铋-钛锌酸铋-钛酸铅三元系高温压电陶瓷及其制备方法
Sang et al. Correlation between B value deviation and sintering temperature of perovskite solid solution materials
CN103193476B (zh) 一种制备纯相BiFeO3陶瓷的湿化学方法
CN108947523A (zh) 一种高性能ptc热敏陶瓷的制备工艺
Mudinepalli et al. Structural, dielectric and ferroelectric properties of lead-free Na 0.5 Bi 0.5 TiO 3 ceramics prepared by spark plasma sintering technique
CN104370525B (zh) 一种锰钴铜体系非线性负温度系数厚膜电子浆料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181218