CN108998014A - 一种基于石墨烯量子点的肿瘤催化纳米反应器的制备方法和应用 - Google Patents

一种基于石墨烯量子点的肿瘤催化纳米反应器的制备方法和应用 Download PDF

Info

Publication number
CN108998014A
CN108998014A CN201810952275.3A CN201810952275A CN108998014A CN 108998014 A CN108998014 A CN 108998014A CN 201810952275 A CN201810952275 A CN 201810952275A CN 108998014 A CN108998014 A CN 108998014A
Authority
CN
China
Prior art keywords
tumour
preparation
quantum dot
graphene quantum
catalytic nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810952275.3A
Other languages
English (en)
Other versions
CN108998014B (zh
Inventor
齐蕾
戴黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou Medical University
Original Assignee
Wenzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Medical University filed Critical Wenzhou Medical University
Priority to CN201810952275.3A priority Critical patent/CN108998014B/zh
Publication of CN108998014A publication Critical patent/CN108998014A/zh
Application granted granted Critical
Publication of CN108998014B publication Critical patent/CN108998014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/44Elemental carbon, e.g. charcoal, carbon black
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种基于石墨烯量子点的肿瘤催化纳米反应器的制备方法和应用,其技术方案:(1)制备具有过氧化物酶活性的石墨烯量子点(Py‑GQDs);(2)利用碳化二亚胺/N‑羟基琥珀酰亚胺在常温条件下活化步骤(1)制备Py‑GQDs的羧基端,通过酰胺反应将步骤(1)制备的Py‑GQDs与葡萄糖氧化酶(Gox)的氨基端共价连接,制备获得肿瘤催化纳米反应器PyG‑Gox。本发明优点:本发明制备的肿瘤催化纳米反应器PyG‑Gox在肿瘤微酸性环境下,首先通过降解环境中的葡萄糖产生大量过氧化氢,进一步把过氧化氢催化降解为羟基自由基,从而对肿瘤细胞产生明显的杀伤效果,因此可应用于抗肿瘤药物的制备。此外该纳米反应器在中性条件下催化效率极低,因而表现出极好的生物相容性,对正常组织没有毒害作用。

Description

一种基于石墨烯量子点的肿瘤催化纳米反应器的制备方法和 应用
技术领域
本发明涉及一种石墨烯量子点,具体是指一种对肿瘤细胞产生明显的杀伤效果的基于石墨烯量子点的肿瘤催化纳米反应器的制备方法和应用。
背景技术
石墨烯量子点(GQDs)具有极大的比表面积、丰富又活跃的边缘功能基团以及稳定的自发荧光,因而广泛应用到药物的递送、生物传感、成像等领域。除此之外,研究发现GQDs具有类似于辣根过氧化物酶的过氧化物酶活性,在酸性条件下,能够将过氧化氢降解为羟基自由基。由此,GQDs常被应用于制备检测葡萄糖的生物传感器。
目前,国内外有关GQDs应用的研究报道,未见关于其肿瘤催化治疗相关应用。
发明内容
本发明的目的是为了克服现有技术存在的缺点和不足,而提供一种基于石墨烯量子点的肿瘤催化纳米反应器及其制备方法和应用。该基于石墨烯量子点的肿瘤催化纳米反应器通过将GQDs与葡萄糖氧化酶连接制备成催化反应器(PyG-Gox),该反应器在肿瘤微酸性环境中,首先将环境中的葡萄糖降解为过氧化氢,再进一步利用GQDs的过氧化物酶活性,将过氧化氢降解为羟自由基,由此杀死肿瘤细胞。
作为本发明的第一个方面,本发明的技术方案是该肿瘤催化纳米反应器的结构为具有过氧化物酶活性石墨烯量子点的羧基端与葡萄糖氧化酶的氨基端共价连接而成。
作为本发明的第二个方面,本发明的技术方案是是提供一种肿瘤催化纳米反应器的制备方法包括以下步骤:
(1)以芘为原料,将芘与硝酸反应制备三硝基嵌二萘,该三硝基嵌二萘为前驱物,进一步利用水热反应将前驱物制备成具有过氧化物酶活性的石墨烯量子点;
(2)利用碳化二亚胺/N-羟基琥珀酰亚胺在常温条件下活化步骤(1)制备的具有过氧化物酶活性的石墨烯量子点的羧基端,使其与葡萄糖氧化酶的氨基端共价连接,制备肿瘤催化纳米反应器。
进一步设置是所述步骤(1)中芘与硝酸反应制备三硝基嵌二萘的反应温度为80-100℃。
进一步设置是步骤(1)的水热反应的条件为180-200℃,10-12小时。
进一步设置是所述的步骤(1)中所制备的具有过氧化物酶活性的石墨烯量子点在透析袋中通过离子水透析并冷冻干燥,透析袋的截留分子量为≤3500。
进一步设置是所述的步骤(2)中具有过氧化物酶活性的石墨烯量子点和葡萄糖氧化酶的质量比为1:1-1:5。
进一步设置是所述的步骤(2)中具有过氧化物酶活性的石墨烯量子点和葡萄糖氧化酶的质量比为1:2。
作为本发明的第三个方面,本发明还提供一种肿瘤催化纳米反应器在制备抗肿瘤药物中的应用,该抗肿瘤药物中包括有所述的肿瘤催化纳米反应器。
此外,本发明还提供一种抗肿瘤药物组合物,含有治疗有效量的活性成分和药学上可接受的药用辅料;所述的活性成分包含所述的肿瘤催化纳米反应器或其可药用的衍生物。
本发明中所述“药用辅料”指药学领域常规的药物载体,例如:粘合剂如纤维素衍生物、藻酸盐、明胶和聚乙烯吡咯烷酮;稀释剂如淀粉、预胶化淀粉、糊精、蔗糖、乳糖、甘露醇等,填充剂如淀粉、蔗糖等;湿润剂如甘油;崩解剂如羧甲基淀粉钠、交联聚乙烯吡咯烷酮和干淀粉等;吸收促进剂如季铵化合物;表面活性剂如聚山梨酯、脂肪酸山梨坦和脂肪酸甘油酯等;着色剂如二氧化钛、日落黄、亚甲蓝、药用氧化铁红等;润滑剂如氢化植物油、滑石粉和聚乙二醇等。包衣材料如丙烯酸树脂、羟丙甲纤维素、聚维酮、纤维醋法酯等;另外还可以在组合物中加入其它辅剂如香味剂、甜味剂等。
本发明药物组合物的各种剂型可以按照药学领域的常规生产方法制备。例如使活性成分与一种或多种载体混合,然后将其制成所需的剂型。所述药物的制剂形式包括注片剂、颗粒剂、胶囊剂、溶液剂、乳剂、混悬剂、喷雾剂、气雾剂、粉雾剂、滴剂、滴丸剂及纳米制剂等。本发明可以组合物的形式通过经胃肠道给药,注射给药、呼吸道给药、皮肤给药、粘膜给药和腔道给药等方式施用于需要这种治疗的患者。用于口服时,可将其制成常规的固体制剂如片剂、粉剂、粒剂、胶囊等,制成液体制剂如水或油悬浮剂或其它液体制剂如糖浆、酏剂等;用于肠胃外给药时,可将其制成注射用的溶液、水或油性悬浮剂等。
本发明优点:本发明制备的肿瘤催化纳米反应器(PyG-Gox)在肿瘤微酸性环境下,首先通过降解环境中的葡萄糖产生大量过氧化氢,进一步把过氧化氢催化降解为羟基自由基,从而对肿瘤细胞产生明显的杀伤效果,因此可应用于抗肿瘤药物的制备。此外其在中性条件下不会产生催化作用,因而表现出极好的生物相容性,对正常组织没有毒害作用。
具体效果见实施例部分。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1:Py-GQDs的表征图(其中,图1a.原子力显微镜表征Py-GQDs;图1b.紫外可见分光光度计及荧光分光光度计表征Py-GQDs;图1c.拉曼光谱仪表征Py-GQDs;图1d.傅里叶红外光谱表征Py-GQDs);
图2傅里叶红外光谱表征本发明所制备的肿瘤催化纳米反应器图;
图3以3,3',5,5'-四甲基联苯胺(TMB)及过氧化氢(H2O2)为底物检测Py-GQDs的过氧化物酶活性(其中,图2a.Py-GQDs在酸性条件下降解H2O2产生羟自由基,并与TMB反应,产物在652nm处的紫外特殊吸收峰;图2b.比较Py-GQDs和辣根过氧化物酶的催化活性);
图4在微酸性(pH 6.0)或中性(pH 7.4)条件下,不同浓度PyG-Gox(PG)及Py-GQDs刺激三种肿瘤细胞MCF-7、OCM-1及Hela细胞的存活率图;
图5.荧光显微镜观察在微酸性(pH 6.0)或中性(pH 7.4)条件下,不同浓度PyG-Gox刺激Hela细胞的活死染色图片;
图6.荧光显微镜观察微酸性(pH 6.0)或中性(pH 7.4)条件下,不同浓度PyG-Gox或Py-GQDs刺激Hela细胞产生活性氧荧光图片。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
制备实施例:
本实施例包括以下步骤:
(1)以芘为原料,在80-100℃(优选为90℃)下将芘与硝酸反应制备前驱物:三硝基嵌二萘,并将其冷冻干燥;利用氢氧化钠溶液将前驱物重悬,超声反应后,将混合物加入反应釜中,通过水热反应制备石墨烯量子点(Py-GQDs),将Py-GQDs在透析袋中通过离子水透析并冷冻干燥,透析袋的截留分子量为≤3500,水热反应的条件为180-200℃(优选为190℃),10-12小时(优选为11小时)。
(2)利用碳化二亚胺/N-羟基琥珀酰亚胺在常温条件下活化步骤(1)制备的Py-GQDs的羧基端,使其与葡萄糖氧化酶(Gox)的氨基端共价连接,制备肿瘤催化纳米反应器PyG-Gox;本步骤中Py-GQDs和Gox的质量比为1:1-1:5(优选为1:2)。
检测实施例
本发明实施例中,如图1所示,原子力显微镜检测发现本方法制备的Py-GQDs厚度为1.5±0.5nm;利用紫外可见分光光度计表征发现Py-GQDs在230nm和357nm具有特殊吸收峰,分布代表了C=C键和C=O键;荧光分光光度计表征发现其最大激发波长为460nm,最大发射峰在523nm,此外该石墨烯量子点具有上转换特性,能够在近红外光860nm激发;拉曼光谱显示其在1487cm-1处的G峰明显高于1144.5cm-1处的D峰,G/D比为1.3;傅里叶红外光谱显示Py-GQDs在1740cm-1处具有C=O峰,在1380cm-1处具有C-N峰,由此说明Py-GQDs具有明显的羧基。
如图2所示的傅里叶红外光谱表征PyG-Gox图,如傅里叶红外光谱所示,反应过程中Gox在3300cm-1处的N-H与Py-GQDs在1736cm-1处的羧基共价结合,形成产物PyG-Gox中的酰胺键(1630cm-1),由此说明PyG-Gox制备成功。
如图3所示的以3,3',5,5'-四甲基联苯胺(TMB)及过氧化氢(H2O2)为底物检测Py-GQDs的过氧化物酶活性检测图,图2a.Py-GQDs在酸性条件下降解H2O2产生羟自由基,并与TMB反应,产物在652nm处的紫外特殊吸收峰;图2b.比较Py-GQDs和辣根过氧化物酶的催化活性。
如图4所示在微酸性(pH 6.0)或中性(pH 7.4)条件下,不同浓度PyG-Gox(PG)及Py-GQDs刺激三种肿瘤细胞MCF-7、OCM-1及Hela细胞的存活率:
将肿瘤细胞MCF-7、OCM-1及Hela细胞在微酸性(pH 6.0)或中性(pH 7.4)条件下与不同浓度的PyG-Gox共培养。细胞的存活率与PyG-Gox浓度、培养液pH值及培养时间有密切关系。在pH 6.0条件下,PyG-Gox对三种肿瘤细胞表现出很强的杀伤力,随着材料浓度增加细胞的存活率逐渐下降。例如MCF-7细胞,在与不同浓度PyG-Gox(0,0.15,0.45,0.75and1.5μg/mL)共培养6h后,细胞的存活率分别为86%、60.9%、36.7%以及26.7%。当共培养时间延长到24h,细胞的存活率进一步下降,当材料浓度仅为0.15μg/mL时,细胞的存活率就下降到18%。而在pH 7.4条件下,MCF-7与材料共培养6h细胞受到的影响很小,仅当浓度达到1.5μg/mL细胞的存活率下降当50%(图4a)。其他两个肿瘤细胞与材料共培养后,其存活率的趋势与MCF-7相似(图4b,4c)。此外,我们检测了细胞与不同浓度Py-GQDs在酸性和中性条件下共培养24h后细胞的存活率。虽然高浓度的Py-GQDs对细胞有一定杀伤力,但是与PyG-Gox相比,Py-GQDs的影响可以忽略不计。本结果说明,PyG-Gox反应器在酸性条件下,首先把培养液中的葡萄糖降解为过氧化氢,由于反应器中Py-GQDs的过氧化物酶活性,进一步将过氧化氢降解为羟基自由基,从而对细胞起到杀伤作用。而在中性条件下,PyG-Gox的催化作用非常低,对细胞没有明显影响。
如图5所示的荧光显微镜观察在微酸性(pH 6.0)或中性(pH 7.4)条件下,不同浓度PyG-Gox刺激Hela细胞的活死染色图片
将Hela细胞在在微酸性(pH 6.0)或中性(pH 7.4)条件下,与不同浓度的PyG-Gox共培养24h后,用钙黄绿素/PI染料对细胞进行染色,钙黄绿素可以标记活细胞发出绿色荧光,PI用来标记死细胞发出红色荧光。如图所示,在pH6.0条件下当细胞与0.45μg/mL的PyG-Gox共培养,Hela细胞几乎全被杀死,而在pH 7.4条件下,细胞死亡率不高。活死细胞染色实验进一步验证了图4中细胞存活率的结果。
如图6所示的荧光显微镜观察微酸性(pH 6.0)或中性(pH 7.4)条件下,不同浓度PyG-Gox或Py-GQDs刺激Hela细胞产生活性氧荧光图片:
将Hela细胞在在微酸性(pH 6.0)或中性(pH 7.4)条件下,与PyG-Gox或Py-GQDs(0.45μg/mL)共培养6h后,利用DCFH-DA荧光探针标记细胞内活性氧浓度,如图所示,在pH6.0的培养条件下,细胞与PyG-Gox共培养后产生大量的活性氧,而在pH 7.4的培养条件下或细胞与Py-GQDs共培养,其细胞内产生的活性浓度与负对照接近。由此进一步说明,酸性条件下反应器PyG-Gox能够降解葡萄糖产生过氧化氢,并进一步产生羟基自由基,从而导致细胞死亡。
本发明首次合成制备的肿瘤催化纳米反应器PyG-Gox在肿瘤微酸性环境下,首先通过降解环境中的葡萄糖产生大量过氧化氢,进一步把过氧化氢催化降解为羟基自由基,从而对肿瘤细胞产生明显的杀伤效果,因此可应用于抗肿瘤药物的制备。此外其在中性条件下催化效率极低,因而表现出极好的生物相容性,对正常组织没有毒害作用。
将本发明的肿瘤催化纳米反应器作为制备抗肿瘤药物具有非常优秀的前景和可行性。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

1.一种基于石墨烯量子点的肿瘤催化纳米反应器,其特征在于:该肿瘤催化纳米反应器的结构为具有过氧化物酶活性石墨烯量子点的羧基端与葡萄糖氧化酶的氨基端共价连接而成。
2.一种如权利要求1所述的肿瘤催化纳米反应器的制备方法,其特征在于包括以下步骤:
(1)以芘为原料,将芘与硝酸反应制备三硝基嵌二萘,该三硝基嵌二萘为前驱物,进一步利用水热反应将前驱物制备成具有过氧化物酶活性的石墨烯量子点;
(2)利用碳化二亚胺/N-羟基琥珀酰亚胺在常温条件下活化步骤(1)制备的具有过氧化物酶活性的石墨烯量子点的羧基端,使其与葡萄糖氧化酶的氨基端共价连接,制备肿瘤催化纳米反应器。
3.根据权利要求2所述的制备方法,其特征在于:所述步骤(1)中芘与硝酸反应制备三硝基嵌二萘的反应温度为80-100℃。
4.根据权利要求2所述的制备方法,其特征在于:步骤(1)的水热反应的条件为180-200℃,10-12小时。
5.根据权利要求2所述的制备方法,其特征在于:所述的步骤(1)中所制备的具有过氧化物酶活性的石墨烯量子点在透析袋中通过离子水透析并冷冻干燥,透析袋的截留分子量为≤3500。
6.根据权利要求2所述的制备方法,其特征在于:所述的步骤(2)中具有过氧化物酶活性的石墨烯量子点和葡萄糖氧化酶的质量比为1:1-1:5。
7.根据权利要求5所述的制备方法,其特征在于:所述的步骤(2)中具有过氧化物酶活性的石墨烯量子点和葡萄糖氧化酶的质量比为1:2。
8.一种如权利要求2-7之一所述的制备方法所制备的肿瘤催化纳米反应器。
9.一种如权利要求8所述的肿瘤催化纳米反应器在制备抗肿瘤药物中的应用,其特征在于:该抗肿瘤药物中包括有所述的肿瘤催化纳米反应器。
10.一种抗肿瘤药物组合物,其特征在于:含有治疗有效量的活性成分和药学上可接受的药用辅料;所述的活性成分包含权利要求8所述的肿瘤催化纳米反应器或其可药用的衍生物。
CN201810952275.3A 2018-08-21 2018-08-21 一种基于石墨烯量子点的肿瘤催化纳米反应器的制备方法和应用 Active CN108998014B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810952275.3A CN108998014B (zh) 2018-08-21 2018-08-21 一种基于石墨烯量子点的肿瘤催化纳米反应器的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810952275.3A CN108998014B (zh) 2018-08-21 2018-08-21 一种基于石墨烯量子点的肿瘤催化纳米反应器的制备方法和应用

Publications (2)

Publication Number Publication Date
CN108998014A true CN108998014A (zh) 2018-12-14
CN108998014B CN108998014B (zh) 2021-08-17

Family

ID=64592904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810952275.3A Active CN108998014B (zh) 2018-08-21 2018-08-21 一种基于石墨烯量子点的肿瘤催化纳米反应器的制备方法和应用

Country Status (1)

Country Link
CN (1) CN108998014B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110974978A (zh) * 2019-12-23 2020-04-10 暨南大学 一种用于肿瘤治疗的纳米催化剂及其制备方法与应用
CN113930335A (zh) * 2021-12-17 2022-01-14 深圳市第二人民医院(深圳市转化医学研究院) 一种纳米酶级联生物反应器及其制备方法和应用
CN115571870A (zh) * 2022-09-30 2023-01-06 中国科学院合肥物质科学研究院 一种类过氧化物酶的石墨烯量子点及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101020654A (zh) * 2007-01-26 2007-08-22 中国医学科学院医药生物技术研究所 抗肿瘤化合物及其制备方法
CN105288623A (zh) * 2015-11-19 2016-02-03 同济大学 一种用于肿瘤治疗的药物及其制备方法
CN105621407A (zh) * 2016-03-02 2016-06-01 桂林理工大学 一步合成硫掺杂石墨烯量子点的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101020654A (zh) * 2007-01-26 2007-08-22 中国医学科学院医药生物技术研究所 抗肿瘤化合物及其制备方法
CN105288623A (zh) * 2015-11-19 2016-02-03 同济大学 一种用于肿瘤治疗的药物及其制备方法
CN105621407A (zh) * 2016-03-02 2016-06-01 桂林理工大学 一步合成硫掺杂石墨烯量子点的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HANJUN SUN ET AL.,: ""Graphene quantum dots-band-aids used for wound disinfection"", 《ACS NANO》 *
LIAN-HUA FU ET AL.,: ""Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment"", 《CHEM. SOC. REV.》 *
MINFENG HUO ET AL.,: ""Tumor-selective catalytic nanomedicine by nanocatalyst delivery"", 《NATURE COMMUNICATIONS》 *
李国英 等: "《胶原化学》", 30 April 2013, 中国轻工业出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110974978A (zh) * 2019-12-23 2020-04-10 暨南大学 一种用于肿瘤治疗的纳米催化剂及其制备方法与应用
CN110974978B (zh) * 2019-12-23 2023-08-18 暨南大学 一种用于肿瘤治疗的纳米催化剂及其制备方法与应用
CN113930335A (zh) * 2021-12-17 2022-01-14 深圳市第二人民医院(深圳市转化医学研究院) 一种纳米酶级联生物反应器及其制备方法和应用
CN115571870A (zh) * 2022-09-30 2023-01-06 中国科学院合肥物质科学研究院 一种类过氧化物酶的石墨烯量子点及其制备方法和应用
CN115571870B (zh) * 2022-09-30 2023-10-13 中国科学院合肥物质科学研究院 一种类过氧化物酶的石墨烯量子点及其制备方法和应用

Also Published As

Publication number Publication date
CN108998014B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
DE60103504T2 (de) Nasal verabreichbare cyclische antimykotische peptidzusammensetzungen
CN108998014A (zh) 一种基于石墨烯量子点的肿瘤催化纳米反应器的制备方法和应用
Samed et al. Hydrogen bonded niosomes for encapsulation and release of hydrophilic and hydrophobic anti-diabetic drugs: an efficient system for oral anti-diabetic formulation
CN109718207A (zh) 化疗药-光敏剂共组装纳米粒及其构建
CN109876008B (zh) 一种用于肿瘤治疗的药物及其制备方法和应用
CN107019690A (zh) 含类菌胞素氨基酸的创伤治愈用皮肤外用剂组合物及其制造方法
JP2006510731A (ja) 標的化送達
CN109288819A (zh) 一种含槲皮素和益生因子的结肠靶向纳米纤维膜及其制备方法和应用
JP2001231545A (ja) アントロディアカンフォラータ(Antrodiacamphorata)の分離株、その培養物の生産方法、及びそれにより得られる産生物
Fu et al. Implantable fibrous scaffold with hierarchical microstructure for the ‘on-site’synergistic cancer therapy
CN109481404B (zh) 一种pH敏感咪唑脂质体的制备方法
CN106715421A (zh) 用于治疗hiv相关病症的方法和组合物
CN109091666A (zh) 一种具有靶向肿瘤功能的肿瘤催化纳米反应体系的制备方法和应用
HUE027053T2 (en) Carrier composition for immediate delivery of nucleic acid
US9452130B2 (en) Pharmaceutical composition for preparing drug delivery nano/micro bubbles
CN114652699B (zh) 一种尺寸转变型纳米递药载体及其制备方法和应用
CN113616620B (zh) 安罗替尼白蛋白纳米颗粒及其制备方法和用途、及包含其的制剂
EP1452545B1 (en) Novel chitosans
CN108714221A (zh) 一种单抗类药物口服纳米制剂及其制备方法
DE69936783T2 (de) Aerothricin analoge, deren herstellung und verwendung
US20070042005A1 (en) Pharmaceutical composition comprising fungal cell or fragment thereof
CN109674777A (zh) 异绿原酸类化合物在制备神经退行性疾病和忧郁症的药物中的应用
CN101791410B (zh) 抗感染药物-多糖偶联物及其药物组合物的制备和应用
Qin et al. Manganese-doped stellate mesoporous silica nanoparticles: A bifunctional nanoplatform for enhanced chemodynamic therapy and tumor imaging
CN114177302B (zh) 一种用于抗肿瘤药物递送的糖胺聚糖改性物及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant