CN108977848A - 一种Cu2O基多层光电阴极薄膜材料的制备方法 - Google Patents

一种Cu2O基多层光电阴极薄膜材料的制备方法 Download PDF

Info

Publication number
CN108977848A
CN108977848A CN201810903289.6A CN201810903289A CN108977848A CN 108977848 A CN108977848 A CN 108977848A CN 201810903289 A CN201810903289 A CN 201810903289A CN 108977848 A CN108977848 A CN 108977848A
Authority
CN
China
Prior art keywords
layer
quito
film material
metal
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810903289.6A
Other languages
English (en)
Other versions
CN108977848B (zh
Inventor
马艺
张婉
尹志广
王子豪
王奕岚
王增林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201810903289.6A priority Critical patent/CN108977848B/zh
Publication of CN108977848A publication Critical patent/CN108977848A/zh
Application granted granted Critical
Publication of CN108977848B publication Critical patent/CN108977848B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Cu2O基多层光电阴极薄膜材料的制备方法,通过电化学沉积Cu2O后的FTO导电玻璃上先磁控溅射沉积一层金属或金属的氧化物纳米层,然后用含S2‑的水溶液浸渍并退火,或先将沉积Cu2O后的FTO导电玻璃用含S2‑的水溶液浸渍并退火,再磁控溅射沉积一层金属或金属的氧化物纳米层,最终得到Cu2O基多层光电阴极薄膜材料。本发明的制备过程简单,原材料价格低廉,降低了生产成本,同时提高了Cu2O的光电催化活性和稳定性,在光电催化分解水领域具有潜在的应用。

Description

一种Cu2O基多层光电阴极薄膜材料的制备方法
技术领域
本发明属于光电催化分解水技术领域,具体涉及一种Cu2O基光电阴极薄膜材料的制备方法。
背景技术
近几年来,越来越严峻的环境问题使得人们迫切的寻找新型的清洁可在生能源来替代传统的化石燃料。太阳能是目前最理想的替代能源,在众多的太阳能利用方式中,光电催化水分解技术因为将太阳能和氢能有效的进行了结合,因此是目前的研究热点。
Cu2O的禁带宽度约为2.2eV,可直接被可见光激发,其原料为无毒、储量丰富且价格低廉的Cu,因此Cu2O被广泛应用于光电催化领域,同时Cu2O也存在比较明显的缺点,由于其还原电位低于氢离子的还原电位,因此在水溶液中很容易被还原成Cu,并且光生载流子的复合率比较高,所以如何提高Cu2O的催化活性和稳定性是亟待解决的问题。
发明内容
本发明的目的是提供一种高催化活性和高稳定性的Cu2O基多层光电阴极薄膜材料的制备方法。
针对上述目的,本发明所采用的技术方案由下述步骤组成:
1、在清洗干净的FTO导电玻璃上离子溅射沉积一层Au纳米层,然后电化学沉积一层Cu2O。
2、在沉积Cu2O后的FTO导电玻璃上先磁控溅射沉积一层金属或金属的氧化物纳米层,然后浸渍于含S2-的水溶液中,浸渍完后退火,得到Cu2O基多层光电阴极薄膜材料;或先将沉积Cu2O后的FTO导电玻璃浸渍于含S2-的水溶液中,浸渍完后退火,然后再磁控溅射沉积一层金属或金属的氧化物纳米层,得到Cu2O基多层光电阴极薄膜材料。
上述步骤1中,电化学沉积Cu2O的参比电极选用Ag/AgCl(饱和KCl),铂片为对电极,沉积Au纳米层的FTO导电玻璃为工作电极,电解质溶液是含0.2~0.5mol/L硫酸铜和1~6mol/L乳酸的水溶液,且该水溶液通过氢氧化钠调节pH为8~14,优选电解质溶液是含0.3~0.4mol/L硫酸铜和3~4mol/L乳酸的水溶液,且该水溶液通过氢氧化钠调节pH为12~13;采用恒电位电化学沉积Cu2O,所施加的电压为-0.3~-0.8V,在25~60℃的条件下沉积200~1000s。
上述步骤2中,所述的金属为Mn、Ni、Co或F,金属或金属的氧化物纳米层的厚度为5~20nm,磁控溅射沉积金属或金属的氧化物纳米层的Ar压力为1~5mTorr,沉积功率为10~50W,沉积时间为20s~5min;所述含S2-的水溶液为硫化钠、硫脲、硫化铵中任意一种或两种以上的水溶液,其中S2-浓度为1mmol/L~0.1mol/L,浸渍时间控制在20s~5min;所述退火温度为200~300℃,退火时间为1~3h。
本发明通过在Cu2O表面沉积一层金属或金属的氧化物来提高催化活性,通过将电极浸渍于含S2-的溶液中,利用离子交换的方法生成一层Cu2S,由于Cu2S的导带电位相对于Cu2O更正,有利用光生电子从Cu2O层迁移至Cu2S层,促进了光生电子和空穴的分离,提高了Cu2O的稳定性。
附图说明
图1是Cu2O、Cu2S/Cu2O、Ni/Cu2O-2min、Ni/Cu2S/Cu2O-2min、Cu2S/Ni/Cu2O-2min的XRD图。
图2是Cu2O、Cu2S/Cu2O、Ni/Cu2O-2min、Ni/Cu2S/Cu2O-2min、Cu2S/Ni/Cu2O-2min的光电极I-V性能曲线。
图3是Cu2O、Cu2S/Cu2O、Ni/Cu2O-2min、Ni/Cu2S/Cu2O-2min、Cu2S/Ni/Cu2O-2min的光电极稳定性曲线。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、将FTO导电玻璃切割成1cm×1.5cm的基片后,以导电面朝上的方式以60°斜靠于聚四氟乙烯的凹槽内,用丙酮超声清洗15min后,再用乙醇超声清洗15min,最后用水超声清洗15min,转移至烘箱内烘干。然后通过离子溅射的方式,在FTO导电玻璃的导电面沉积一层Au纳米层,时间控制在80s。再利用三电极体系进行恒电位电化学沉积Cu2O,参比电极选用Ag/AgCl(饱和KCl),铂片为对电极,沉积Au纳米层的FTO导电玻璃为工作电极,电解质溶液是含0.3mol/L硫酸铜和3mol/L乳酸的水溶液,且该水溶液通过氢氧化钠调节pH为12,所施加的电压为-0.6V,在50℃的条件下沉积500s。
2、以高纯Ni靶为靶材,采用磁控溅射沉积法在沉积Cu2O后的FTO导电玻璃上沉积一层Ni纳米层,沉积条件为:Ar压力1.5mTorr、沉积功率20W、沉积时间20s。然后将沉积Ni纳米层后的FTO导电玻璃浸渍于50mmol/L硫化钠水溶液中,时间控制在90s,浸渍完后于200℃退火2小时,得到Cu2O基多层光电阴极薄膜材料,记为Cu2S/Ni/Cu2O-20s。
实施例2
本实施例的步骤2中,沉积时间为1min,其他步骤与实施例1相同,得到Cu2O基多层光电阴极薄膜材料,记为Cu2S/Ni/Cu2O-1min。
实施例3
本实施例的步骤2中,沉积时间为2min,其他步骤与实施例1相同,得到Cu2O基多层光电阴极薄膜材料,记为Cu2S/Ni/Cu2O-2min。
实施例4
本实施例的步骤2中,沉积时间为2.5min,其他步骤与实施例1相同,得到Cu2O基多层光电阴极薄膜材料,记为Cu2S/Ni/Cu2O-2.5min。
实施例5
本实施例的步骤1与实施例1相同。在步骤2中,先将沉积Cu2O后的FTO导电玻璃浸渍于50mmol/L硫化钠水溶液中,时间控制在90s,浸渍完后于200℃退火2小时,然后以高纯Ni靶为靶材,采用磁控溅射沉积法沉积一层Ni纳米层,沉积条件为:Ar压力1.5mTorr、沉积功率20W、沉积时间20s,得到Cu2O基多层光电阴极薄膜材料,记为Ni/Cu2S/Cu2O-20s。
实施例6
本实施例的步骤2中,沉积时间为1min,其他步骤与实施例5相同,得到Cu2O基多层光电阴极薄膜材料,记为Ni/Cu2S/Cu2O-1min。
实施例7
本实施例的步骤2中,沉积时间为2min,其他步骤与实施例5相同,得到Cu2O基多层光电阴极薄膜材料,记为Ni/Cu2S/Cu2O-2min。
实施例8
本实施例的步骤2中,沉积时间为2.5min,其他步骤与实施例5相同,得到Cu2O基多层光电阴极薄膜材料,记为Ni/Cu2S/Cu2O-2.5min。
实施例9
在实施例1~8中,所用的镍靶用钴靶替换,其他步骤与相应实施例相同。
发明人对实施例1~8中得到的Cu2O基多层光电阴极薄膜进行了XRD以及光电性能的测定,结果见图1~3。图1为不同电极的XRD图谱,除去FTO的衬底峰,所有的衍射峰均为Cu2O相,说明Cu2S和Ni的担载量很少或是以无定型态存在。图2为单独Cu2O光电阴极与Cu2O基多层光电阴极的LSV曲线,从图中可以看出在电压为-0.8V时,单独Cu2O的电流密度为-1.89mA/cm2,Cu2S/Cu2O的电流密度为-1.99mA/cm2,Ni/Cu2O-2min的电流密度为-2.38mA/cm2,Ni/Cu2S/Cu2O-2min的电流密度为-3.29mA/cm2,Cu2S/Ni/Cu2O-2min的电流密度为-3.37mA/cm2,可以看出,每担载一层催化剂后对催化活性均有提高。图3是对一系列电极进行了稳定性测试,从图中可以看出单独Cu2O起始时的电流密度为-1.02mA/cm2,500s后变为-0.127mA/cm2,衰减量为87.5%,Cu2S/Cu2O起始时的电流密度为-1.03mA/cm2,500s后变为-0.55mA/cm2,衰减量为46.6%,Ni/Cu2O-2min起始时的电流密度为-1.36mA/cm2,500s后变为-0.46mA/cm2,衰减量为66.5%,Ni/Cu2S/Cu2O-2min起始时的电流密度为-2.01mA/cm2,500s后变为-1.02mA/cm2,衰减量为49.3%,可以看出Cu2S层的加入对稳定性的提高有很大的改善,原因是Cu2S的导带电位相对于Cu2O更正,有利用光生电子从Cu2O层迁移至Cu2S层,促进了光生电子和空穴的分离,提高了Cu2O的稳定性。

Claims (9)

1.一种Cu2O基多层光电阴极薄膜材料的制备方法,其特征在于该方法由下述步骤组成:
(1)在清洗干净的FTO导电玻璃上离子溅射沉积一层Au纳米层,然后电化学沉积一层Cu2O;
(2)在沉积Cu2O后的FTO导电玻璃上先磁控溅射沉积一层金属或金属的氧化物纳米层,然后浸渍于含S2-的水溶液中,浸渍完后退火,得到Cu2O基多层光电阴极薄膜材料。
或先将沉积Cu2O后的FTO导电玻璃浸渍于含S2-的水溶液中,浸渍完后退火,然后再磁控溅射沉积一层金属或金属的氧化物纳米层,得到Cu2O基多层光电阴极薄膜材料;
2.根据权利要求1所述的Cu2O基多层光电阴极薄膜材料的制备方法,其特征在于:步骤(2)中,所述的金属为Mn、Ni、Co或Fe。
3.根据权利要求1所述的Cu2O基多层光电阴极薄膜材料的制备方法,其特征在于:步骤(2)中,所述的金属或金属的氧化物纳米层的厚度为5~20nm。
4.根据权利要求3所述的Cu2O基多层光电阴极薄膜材料的制备方法,其特征在于:步骤(2)中,所述磁控溅射沉积金属或金属的氧化物纳米层的Ar压力为1~5mTorr,沉积功率为10~50W,沉积时间为20s~5min。
5.根据权利要求1所述的Cu2O基多层光电阴极薄膜材料的制备方法,其特征在于:步骤(2)中,所述含S2-的水溶液为硫化钠、硫脲、硫化铵中任意一种或两种以上的水溶液,其中S2-浓度为1mmol/L~0.1mol/L,浸渍时间控制在20s~5min。
6.根据权利要求1所述的Cu2O基多层光电阴极薄膜材料的制备方法,其特征在于:步骤(2)中,所述退火温度为200~300℃,退火时间为1~3h。
7.根据权利要求1~6任意一项所述的Cu2O基多层光电阴极薄膜材料的制备方法,其特征在于:步骤(1)中,电化学沉积Cu2O的参比电极选用Ag/AgCl(饱和KCl),铂片为对电极,沉积Au纳米层的FTO导电玻璃为工作电极,电解质溶液是含0.2~0.5mol/L硫酸铜和1~6mol/L乳酸的水溶液,且该水溶液通过氢氧化钠调节pH为8~14。
8.根据权利要求7所述的Cu2O基多层光电阴极薄膜材料的制备方法,其特征在于:电解质溶液是含0.3~0.4mol/L硫酸铜和3~4mol/L乳酸的水溶液,且该水溶液通过氢氧化钠调节pH为12~13。
9.根据权利要求7所述的Cu2O基多层光电阴极薄膜材料的制备方法,其特征在于:采用恒电位电化学沉积Cu2O,所施加的电压为-0.3~-0.8V,在25~60℃的条件下沉积200~1000s。
CN201810903289.6A 2018-08-09 2018-08-09 一种Cu2O基多层光电阴极薄膜材料的制备方法 Active CN108977848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810903289.6A CN108977848B (zh) 2018-08-09 2018-08-09 一种Cu2O基多层光电阴极薄膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810903289.6A CN108977848B (zh) 2018-08-09 2018-08-09 一种Cu2O基多层光电阴极薄膜材料的制备方法

Publications (2)

Publication Number Publication Date
CN108977848A true CN108977848A (zh) 2018-12-11
CN108977848B CN108977848B (zh) 2020-04-24

Family

ID=64555724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810903289.6A Active CN108977848B (zh) 2018-08-09 2018-08-09 一种Cu2O基多层光电阴极薄膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN108977848B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111359609A (zh) * 2020-04-03 2020-07-03 上海应用技术大学 可见光响应的氧化铁/氧化亚铜光催化薄膜及其制备方法
CN113289622A (zh) * 2021-06-25 2021-08-24 江苏科技大学 一种水分解制氢复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236503A (zh) * 2013-04-22 2013-08-07 国家纳米科学中心 一种聚合物太阳能电池及其制备方法
CN108796532A (zh) * 2017-05-03 2018-11-13 天津大学 氧化镍—氧化亚铜同质结光电阴极及其制备方法和在光催化中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236503A (zh) * 2013-04-22 2013-08-07 国家纳米科学中心 一种聚合物太阳能电池及其制备方法
CN108796532A (zh) * 2017-05-03 2018-11-13 天津大学 氧化镍—氧化亚铜同质结光电阴极及其制备方法和在光催化中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHIA-YU LIN ET AL.: "Cu2O/NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting", 《CHEMISTRY SCIENCE》 *
MINGUEZ-BACHO: "Conformal Cu2S-coated Cu2O nanostructures grown by ion exchange reaction and their photoelectrochemical properties", 《NANOTECHNOLOGY》 *
YU-XIANG YU ET AL.: "Solution-Processed Cu2S Photocathodes for Photoelectrochemical Water Splitting", 《ENERGY LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111359609A (zh) * 2020-04-03 2020-07-03 上海应用技术大学 可见光响应的氧化铁/氧化亚铜光催化薄膜及其制备方法
CN113289622A (zh) * 2021-06-25 2021-08-24 江苏科技大学 一种水分解制氢复合材料及其制备方法
CN113289622B (zh) * 2021-06-25 2023-10-24 江苏科技大学 一种水分解制氢复合材料及其制备方法

Also Published As

Publication number Publication date
CN108977848B (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
Kunturu et al. Efficient solar water splitting photocathodes comprising a copper oxide heterostructure protected by a thin carbon layer
CN106435635B (zh) 一种高效光电催化分解水产氧电极的制备方法及应用
Yang et al. Engineering a Cu 2 O/NiO/Cu 2 MoS 4 hybrid photocathode for H 2 generation in water
CN109440130B (zh) 一种大尺寸的纳米多孔BiVO4光阳极及其制备方法与应用
Kang et al. Synthetic mechanism discovery of monophase cuprous oxide for record high photoelectrochemical conversion of CO2 to methanol in water
Tan et al. Controlled Electrodeposition of Photoelectrochemically Active Amorphous MoS x Cocatalyst on Sb2Se3 Photocathode
Cheng et al. Strategies for improving photoelectrochemical water splitting performance of Si‐based electrodes
CN105597784B (zh) MoS2掺杂的氧化铁光催化薄膜、制备方法及其在处理含酚废水中的应用
CN110983359B (zh) 一种氮掺杂背表面电场增强的氧化亚铜基光阴极
Lee et al. Electrodeposited heterogeneous nickel-based catalysts on silicon for efficient sunlight-assisted water splitting
CN111261413B (zh) 一种Ti掺杂α-Fe2O3纳米棒复合MOFs异质结光阳极及其制备方法与应用
CN111359609A (zh) 可见光响应的氧化铁/氧化亚铜光催化薄膜及其制备方法
Janáky et al. On the substantially improved photoelectrochemical properties of nanoporous WO 3 through surface decoration with RuO 2
Zhao et al. A WO3/Ag–Bi oxygen-evolution catalyst for splitting water under mild conditions
Chen et al. A dual-heterojunction Cu2O/CdS/ZnO nanotube array photoanode for highly efficient photoelectrochemical solar-driven hydrogen production with 2.8% efficiency
CN113957456A (zh) 共掺杂结合异质结构的镍基碱性电解水催化剂及制备方法
CN109574096B (zh) 一种金属硫化物的制备方法及应用
CN108977848A (zh) 一种Cu2O基多层光电阴极薄膜材料的制备方法
Silva et al. All-electrochemically synthesized tin and nickel oxide-modified hematite as photo-electrocatalyst anodes for solar-driven water splitting
CN108866563A (zh) 一种硼化钴修饰的钒酸铋膜光电阳极、其制备方法与用途
CN108492994A (zh) 一种用于染料敏化太阳能电池的硫化钨掺杂导电聚噻吩对电极的制备方法
Shoute et al. Effect of morphology on the photoelectrochemical performance of nanostructured Cu2O photocathodes
CN105161319A (zh) 无定形碳包覆及氧空位修饰二氧化钛纳米管阵列负载镍钴氧化物电极材料的制备方法
CN103219565B (zh) 逆光电化学电池
CN111286753B (zh) 氧化亚铜/硫化亚铜/硫化镍三层光电极及制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant