CN113289622A - 一种水分解制氢复合材料及其制备方法 - Google Patents

一种水分解制氢复合材料及其制备方法 Download PDF

Info

Publication number
CN113289622A
CN113289622A CN202110709372.1A CN202110709372A CN113289622A CN 113289622 A CN113289622 A CN 113289622A CN 202110709372 A CN202110709372 A CN 202110709372A CN 113289622 A CN113289622 A CN 113289622A
Authority
CN
China
Prior art keywords
hydrogen production
composite material
layer
energy
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110709372.1A
Other languages
English (en)
Other versions
CN113289622B (zh
Inventor
李阳
任南
苏超
卞婷
郭峰
范新宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202110709372.1A priority Critical patent/CN113289622B/zh
Publication of CN113289622A publication Critical patent/CN113289622A/zh
Application granted granted Critical
Publication of CN113289622B publication Critical patent/CN113289622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6486Tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种水分解制氢复合材料及其制备方法,涉及能源化学、能源材料和催化技术领域,该复合材料自上而下包括产氢催化剂层、能量吸收层、基底层、产氧催化剂层,其中,能量吸收层采用逆向生长的单晶氧化亚铜薄膜,可实现光能与热能的联合转换;产氢催化剂层为透明或半透明状的金属产氢活性位。产氧催化剂层采用过渡金属、过渡金属合金、及其氧化物。本发明一方面实现了氧化亚铜单晶薄膜的可控生长,另一方面实现了多种能量形式利用的水分解制氢复合材料,能够应用于半导体、光伏、催化,以及热电转换等领域。

Description

一种水分解制氢复合材料及其制备方法
技术领域
本发明涉及半导体材料、能源技术、催化化学领域,具体地说,是一种兼具光能转换与热能转换能力的水分解制氢复合材料及其制造方法。
背景技术
氢能是国际上公认的清洁能源,作为化石燃料的替代品,以其低碳、可再生等优点逐渐脱颖而出。21世纪,中国、美国、日本、加拿大、欧盟等都制定了氢能发展规划,并且我国已在氢能领域取得了多方面的进展。利用太阳能进行氢气的生产可以实现不同清洁能源之间的转换,实现最为理想的氢能产生与能量储存形式。同时,太阳能中又包含大量的红外热能,如何同时高效利用光能与热能两种能量形式,也是目前研究与开发的热点技术。
传统的水分解制氢技术以电解水为基础,存在成本高、耗能大、效率低等问题(CN201380001460.X)。另一方面,自Fujishima和Honda在1972年开创了半导体光催化水分解制氢技术以来,采用光催化材料实现光能至氢能的转换成为水分解制氢的另一途径。相关专利,如CN201980017033.8,公开了一种起始电位优异的水分解装置,其产氢电极包含p型CIGS和n型CdS作为吸光层,及其上部的助催化剂层用于加速产氢;产氧电极由基底层、导电层、光催化剂层组成。专利CN201780045260.2公开了一种混合光电化学水分解装置,在p型单晶硅的(111)晶面上外延生长InGaN层并在其上部暴露出InN量子点作为产氧电极,n型单晶硅(100)晶面作为产氢电极,使其能够在被可见光或紫外光照射时将水分解成氢气和氧气。
由此可见,目前的技术发明主要集中于对电催化材料与光催化材料的改进。技术短板也是显而易见的,采用电能作为能量来源实施电解水制氢制氧,存在成本高、耗能大、效率低等问题。采用光催化技术实现水分解制氢制氧,存在能源利用形式单一、转换效率低等问题。因此,研发一套具有多种能量转换形式、性能优良、稳定性好、成本低廉的水分解制氢复合材料,是目前的迫切需求。
以往,氧化亚铜薄膜的电化学生长均在强碱性条件下进行,如2011年,Paracchino等报道了在pH=12的强碱性环境下获得的氧化亚铜薄膜表现出了较高的光电流特性(Nature Materials, 2011, 10, 456.)。2015年,Dias等同样在强碱性环境下获得了氧化亚铜薄膜,并采用原子层沉积技术对其进行保护,最终增强了氧化亚铜薄膜的稳定性(Advanced Energy Materials, 2015, 5, 1501537.)。2018年,Aggarwal等报道了在强碱性环境中生长的氧化亚铜薄膜表现出了较高的霍尔迁移率(Rapid Research Letters2018, 12, 1700312.)。但对于在弱碱性条件下是否可以生长出氧化亚铜单晶薄膜,是否可以在薄膜两侧暴露出两类独立的晶面,及其物理化学性质一直以来缺乏探索和认知。
另一方面,虽然有报道显示可以在不同pH环境下合成氧化亚铜单晶颗粒,但该技术方案下合成的单晶颗粒不能形成连续相,不能构成大尺度的薄膜化功能器件,同时,颗粒与颗粒之间相互独立,多缝隙、多晶界,造成极大的界面电阻,不利于电荷传输,可想而知,相较于单晶薄膜而言,单晶颗粒存在较大的技术缺陷。
发明内容
本发明根据氧化亚铜单晶薄膜晶面能量差异,研发了可以综合利用光能与热能以实现水分解产氢产氧的复合材料,从能源利用形式上与以往发明具有显著不同,具有更广泛的适用性与应用领域。
本发明所述的一种水分解制氢复合材料包括基底层,在基底层上生长暴露{111}晶面的单晶氧化亚铜薄膜,在所述薄膜上附着产氢催化剂层,在所述基底层的另一侧附着有产氧催化剂层,所述基底层采用导电材料。
优选的,所述基底层与产氧催化剂层之间设置有导电层。
一种水分解制氢复合材料的制备方法,包括如下步骤:
步骤1:对基底进行清洗及表面处理;
步骤2:配制铜离子溶液;
步骤3:在铜离子溶液中加入乳酸或乳酸钠中的任一种或其组合;
步骤4:使用碱将pH值调节到7~9之间;
步骤5:采用电化学沉积法在基底上逆向生长氧化亚铜单晶薄膜;
步骤6:切断电源,取出电极清洗并烘干。
步骤7:采用物理气相沉积,在氧化亚铜单晶薄膜{111}晶面上沉积产氢催化剂。
步骤8:采用物理气相沉积,在基底层背面沉积产氧催化剂。
优选的,铜离子可采用铜离子盐类提供,如硫酸铜、氯化铜、乙酸铜;
优选的,步骤5中生长电流密度范围控制在0~~1 mA/cm2
本发明的有益效果为:本发明在弱碱性范围(7~9)内,实现可控反向生长的氧化亚铜单晶薄膜,首次获得了四棱锥结构,仅暴露{111}晶面的氧化亚铜单晶薄膜。由于晶面能量差异,自发地在表面{111}晶面(A)富集电子,在底部{100}晶面(B)富集空穴。当有外部能量激发时,例如光能、热能,该反向生长的氧化亚铜单晶薄膜可以将外部能量吸收,转化为电子与空穴分别转移至表面{111}晶面(A)和底部{100}晶面(B),再分别通过产氢催化剂层与产氧催化剂层的催化作用,使水分子分解成为氢气与氧气。本发明的复合材料可有效利用可见光及红外线,提高了水分解的效率,大量{111}晶面与催化剂充分接触,提高产氢效率。
附图说明
图1本发明水分解制氢复合材料的结构示意图1;
图2本发明水分解制氢复合材料的结构示意图2;
图3为本发明反向生长的单晶氧化亚铜薄膜的电镜图;
图4为DFT模拟的反向生长的单晶氧化亚铜薄膜电荷分离效果图。其中深色区域为电子富集区,浅色区域为空穴富集区。
图5本发明水分解制氢复合材料的水分解性能曲线。
具体实施方式
本发明提供一种简便的制备具有特定取向的单晶氧化亚铜薄膜的方法,为使本发明的目的、技术方案和效果更加清楚明白,以下结合具体实施例,对本发明进一步详细说明。
实施例1:
将尺寸为2cm*2cm,厚度为1.1 mm的ITO导电玻璃,依次用去污粉、去离子水、异丙醇、乙醇盐酸、和丙酮超声清洗10min,除去表面的有机杂质和无机杂质,最后用氮气吹干备用。将1.2g无水硫酸铜、10ml乳酸钠和0.152 g四硼酸钠,溶解于40mL去离子水中,磁力搅拌直至充分溶解,得到澄清透明的淡蓝色溶液。加入10mL乳酸钠,磁力搅拌后得到澄清透明的深蓝色溶液。逐步滴加浓度为1M的NaOH溶液直至pH为8.5。需要强调的是,当酸碱度控制在7~9之间可形成暴露{111}晶面的四棱锥形貌,酸碱度控制大于11时,形成暴露{100}晶面的三棱锥形貌。
反应器以导电玻璃为负极,金属铂电极为正极,施加1.2V的恒电压,使氧化亚铜在导电玻璃表面沉积,直至薄膜厚度生长到3000nm后切断电源。取出氧化亚铜单晶电极,用去离子水反复冲洗,并用氮气吹干。最终获得沿(100)方向生长的单晶氧化亚铜薄膜,从扫描显微镜照片可以看出,该薄膜表面由无数四棱锥构成,每个四棱锥暴露4个(111)晶面。
采用磁控溅射法,在单晶氧化亚铜薄膜的{111}晶面上沉积Pt产氢催化剂层:真空室在沉积前被预抽到1.0×10-4 Pa的基压,以高纯氩气为工作气体,使用直径为50 mm的Pt靶(纯度:99.99%)在0.3 Pa的恒定工作压力下用直流磁控溅射沉积10 nm厚的Pt产氢催化剂层。
采用磁控溅射法,在基底层背面沉积氧化钌RuO2产氧催化剂层:真空室在沉积前被预抽到1.0×10-4 Pa的基压,以高纯氩气为工作气体,使用直径为50 mm的RuO2靶(纯度:99.99%)在0.3 Pa的恒定工作压力下用射频磁控溅射沉积50 nm厚的RuO2产氧催化剂层。
实施例2:
分别采用去污粉、丙酮、乙醇、去离子水在超声波清洗下对2cm*2cm软质聚碳酸酯(PC)基板的清洗10 min,除去表面有机和无机杂质,然后用高压氩气干燥。
真空室在沉积前被预抽到1.0×10-4 Pa的基压,以高纯氩气为工作气体,使用直径为50 mm的ITO靶(纯度:99.99%)在0.3 Pa的恒定工作压力下用直流磁控溅射仪沉积300 nm厚的ITO导电层。
将1.2g无水硫酸铜、10ml乳酸钠和0.152 g四硼酸钠溶解于40 ml去离子水溶液中,磁力搅拌直至充分溶解,逐步滴加浓度为1 M的氢氧化钠溶液,使镀液pH调至8.5。使用带温度探头的水浴将浴温维持在20 ℃,以导电玻璃为负极,金属铂电极为正极,施加1.2 V恒电压电沉积,直至薄膜厚度生长到3000 nm后切断电源。随后,用去离子水反复冲洗氧化亚铜薄膜,在高压氩气气流中快速干燥。最终获得了沿{100}方向生长具有各向异性晶面单元与红外热转换功能的单晶氧化亚铜薄膜,从扫描显微镜照片可以看出,该薄膜表面由无数四棱锥构成,每个四棱锥暴露4个{111}晶面。
采用磁控溅射法,在单晶氧化亚铜薄膜的{111}晶面上沉积Pt产氢催化剂层:真空室在沉积前被预抽到1.0×10-4 Pa的基压,以高纯氩气为工作气体,使用直径为50 mm的Pt靶(纯度:99.99%)在0.3 Pa的恒定工作压力下用直流磁控溅射沉积10 nm厚的Pt产氢催化剂层。
采用喷涂烧结的方式,在钛板基底表面烧结一层TaIr产氧催化剂:事先对钛板进行除油、喷砂、酸洗,形成凹凸不平的麻面层,增大比表面积。采用喷涂法,将3:7配比的TaIr前驱体溶液均匀喷涂至钛板表面,之后在450摄氏度下热解制备形成70%IrO2+30%Ta2O5(摩尔分数)的二元氧化物产氧催化剂层。
采用结构胶将钛板与聚碳酸酯层进行粘合固定,并用导电铜胶带连接ITO层与钛板连接,至此,产生的自由电子将进入Pt产氢催化剂层,产生的自由空穴将进入TaIr产氧催化剂层。
如基底层3采用导电玻璃(ITO或FTO)时,基底层背部含有绝缘层5,此时基底层3与产氧催化剂层4无法直接接触,如图2所示,可通过导体6,如导线、导电涂料、导电胶带连接基底层3与产氧催化剂层4。本发明可以预见在能源、半导体、光伏、光催化、电催化领域都具有极大的应用潜力。
以上显示和描述了本发明的基本原理、主要特征及优点。本领域的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (10)

1.一种水分解制氢复合材料,自上而下依次为产氢催化剂层(1)、能量吸收层(2)、基底层(3)和产氧催化剂层(4),其特征在于,能量吸收层采用逆向生长的单晶氧化亚铜薄膜,可实现光能与热能的联合转换。
2.根据权利要求1所述的水分解制氢复合材料,其特征在于,所述逆向生长的单晶氧化亚铜薄膜,表面表现为四棱锥构型,且仅暴露{111}晶面。
3.根据权利要求1所述的水分解制氢复合材料,其特征在于,产氢催化剂层(1)采用镍钼锌合金NiMoZn、镍Ni或铂Pt中的任意一种;产氧催化剂层(4)采用金属钌Ru、钽铱TaIr或钌铱RuIr中的任意一种及其氧化物;基底层(3)为导电层,采用ITO、FTO、铜片、镍片、铝片或钛片中的任意一种。
4.根据权利要求1所述的水分解制氢复合材料,其特征在于,基底层(3)与产氧催化剂层(4)之间设置有绝缘层(5),基底层(3)与产氧催化剂层(4)通过导体(6)连接,导体(6)可选导线、导电涂料或导电胶带中的任意一种。
5.根据权利要求1所述的一种水分解制氢复合材料的制备方法,其特征在于,包括如下步骤:
步骤1:对基底进行清洗及表面处理;
步骤2:配制铜离子溶液;
步骤3:在硫酸铜溶液中加入乳酸或乳酸钠中的任一种或其组合;
步骤4:使用碱将pH值调节到7~9之间;
步骤5:采用电化学沉积法在基底上逆向生长氧化亚铜单晶薄膜;
步骤6:切断电源,取出电极清洗并烘干;
步骤7:采用物理气相沉积,在氧化亚铜单晶薄膜{111}晶面上沉积产氢催化剂;
步骤8:采用物理气相沉积,在基底层背面沉积产氧催化剂。
6.根据权利要求5所述的一种水分解制氢复合材料的制备方法,其特征在于,步骤4中所述碱为1M的NaOH溶液。
7.根据权利要求5所述的一种水分解制氢复合材料的制备方法,其特征在于,所述步骤5中生长电流密度范围为0~10 mA/cm2
8.根据权利要求7所述的一种水分解制氢复合材料的制备方法,其特征在于,生长电流密度范围为0.05~1 mA/cm2
9.根据权利要求5所述的一种水分解制氢复合材料的制备方法,步骤2中配置铜离子溶液的盐类为硫酸铜、氯化铜或乙酸铜中的任一种或其组合。
10.根据权利要求9所述的一种水分解制氢复合材料的制备方法,其特征在于,所述铜离子溶液中还添加有四硼酸钠。
CN202110709372.1A 2021-06-25 2021-06-25 一种水分解制氢复合材料及其制备方法 Active CN113289622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110709372.1A CN113289622B (zh) 2021-06-25 2021-06-25 一种水分解制氢复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110709372.1A CN113289622B (zh) 2021-06-25 2021-06-25 一种水分解制氢复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113289622A true CN113289622A (zh) 2021-08-24
CN113289622B CN113289622B (zh) 2023-10-24

Family

ID=77329601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110709372.1A Active CN113289622B (zh) 2021-06-25 2021-06-25 一种水分解制氢复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113289622B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703499A (zh) * 2022-03-21 2022-07-05 昆明理工大学 电解水析氢电极、电解水制氢装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882494A (zh) * 2014-03-12 2014-06-25 浙江大学 一种Cu2O/ZnO异质结材料的制备方法
CN105696047A (zh) * 2016-01-26 2016-06-22 太原理工大学 一种氧化亚铜纳米薄膜的快速制备方法
CN108977848A (zh) * 2018-08-09 2018-12-11 陕西师范大学 一种Cu2O基多层光电阴极薄膜材料的制备方法
CN110983361A (zh) * 2019-12-16 2020-04-10 山西大学 一种限域生长钴纳米颗粒的氮化钽碳纳米薄膜一体化电极及其制备方法和应用
CN111005035A (zh) * 2019-12-16 2020-04-14 山西大学 一种含铁镍掺杂的氮化钽碳纳米薄膜一体化电极的制备方法和应用
CN111375408A (zh) * 2020-02-15 2020-07-07 中国工程物理研究院材料研究所 一种氧化铱纳米粒子催化剂的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882494A (zh) * 2014-03-12 2014-06-25 浙江大学 一种Cu2O/ZnO异质结材料的制备方法
CN105696047A (zh) * 2016-01-26 2016-06-22 太原理工大学 一种氧化亚铜纳米薄膜的快速制备方法
CN108977848A (zh) * 2018-08-09 2018-12-11 陕西师范大学 一种Cu2O基多层光电阴极薄膜材料的制备方法
CN110983361A (zh) * 2019-12-16 2020-04-10 山西大学 一种限域生长钴纳米颗粒的氮化钽碳纳米薄膜一体化电极及其制备方法和应用
CN111005035A (zh) * 2019-12-16 2020-04-14 山西大学 一种含铁镍掺杂的氮化钽碳纳米薄膜一体化电极的制备方法和应用
CN111375408A (zh) * 2020-02-15 2020-07-07 中国工程物理研究院材料研究所 一种氧化铱纳米粒子催化剂的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELA NURLAELA等: "Plasma-enhanced chemical vapor deposition Ta3N5 synthesis leading to high current density during PEC oxygen evolution" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703499A (zh) * 2022-03-21 2022-07-05 昆明理工大学 电解水析氢电极、电解水制氢装置及方法
CN114703499B (zh) * 2022-03-21 2023-07-21 昆明理工大学 电解水析氢电极、电解水制氢装置及方法

Also Published As

Publication number Publication date
CN113289622B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
Wei et al. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting
Liu et al. A multijunction of ZnIn 2 S 4 nanosheet/TiO 2 film/Si nanowire for significant performance enhancement of water splitting
JP4803548B2 (ja) 酸化物薄膜太陽電池
Chen et al. Two-dimensional SnS2 nanosheets arrays as photoelectrode by low temperature CVD method for efficient photoelectrochemical water splitting
CN107287615B (zh) 一种钒掺杂ZnO纳米棒阵列光阳极及其制备方法和应用
CN111261413B (zh) 一种Ti掺杂α-Fe2O3纳米棒复合MOFs异质结光阳极及其制备方法与应用
CN101922015B (zh) 一种InGaN半导体光电极的制作方法
Xun et al. Activating the MoS2 basal plane toward enhanced solar hydrogen generation via in situ photoelectrochemical control
CN105986292B (zh) 一种钴、镍双层氢氧化物修饰的二氧化钛纳米管阵列的制备方法及光电化学水解制氢应用
KR20140119314A (ko) 광전기화학전지용 광전극, 이의 제조 방법 및 이를 포함하는 광전기화학전지
CN103872174A (zh) 一种Au修饰TiO2纳米棒阵列光阳极的制备方法
CN113289622B (zh) 一种水分解制氢复合材料及其制备方法
CN114657641A (zh) 一种退火处理的Si基InN纳米柱异质结及其制备方法与应用
CN110629195A (zh) 一种化学气相沉积法构造半导体与金属硫化物异质电极的方法
CN107845848B (zh) 用于人工光合作用的氮化镓基器件及其制备方法
US20080314435A1 (en) Nano engineered photo electrode for photoelectrochemical, photovoltaic and sensor applications
CN111334812B (zh) 基于水合羟基氧化铁的非晶硅薄膜光电极及其制备方法
Souza Sunlight-driven water splitting using hematite nanorod photoelectrodes
Chen et al. Mechanism and Optimized Process Conditions of Forming One‐Dimensional ZnO Nanorods with Al‐Doping by Electrodeposition Method
Chen et al. ZnO hemisphere pits nanowire/CdS photoelectrode for high-efficiency photoelectrochemical water splitting
Low et al. Graphene and its derivatives, synthesis route, and mechanism for photovoltaic solar cell applications
CN114540875B (zh) 一种基于InGaN/有机异质结构光电极材料及其制备方法与应用
CN115679371A (zh) 一种双阴极并联光驱动分解水制氢电极系统
CN105088266A (zh) 通过在半导体材料上复合共催化剂制备光电化学电池纳米结构光电极的方法
CN104928648A (zh) 一种氧化锌光阳极薄膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant