CN108950284A - 一种低蠕变铝合金及其制备方法 - Google Patents

一种低蠕变铝合金及其制备方法 Download PDF

Info

Publication number
CN108950284A
CN108950284A CN201810818045.8A CN201810818045A CN108950284A CN 108950284 A CN108950284 A CN 108950284A CN 201810818045 A CN201810818045 A CN 201810818045A CN 108950284 A CN108950284 A CN 108950284A
Authority
CN
China
Prior art keywords
powder
aluminium alloy
low creep
inorganic nano
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810818045.8A
Other languages
English (en)
Inventor
姚辉
孟晓明
廖晶
陈胜男
何卫
汤超
王利民
楼平
邓静伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Auspicious Electric Power Project Engineering Equipment Ltd South Wuhan
State Grid Corp of China SGCC
State Grid Jiangxi Electric Power Co Ltd
NARI Group Corp
Huzhou Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
Auspicious Electric Power Project Engineering Equipment Ltd South Wuhan
State Grid Corp of China SGCC
State Grid Jiangxi Electric Power Co Ltd
NARI Group Corp
Huzhou Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auspicious Electric Power Project Engineering Equipment Ltd South Wuhan, State Grid Corp of China SGCC, State Grid Jiangxi Electric Power Co Ltd, NARI Group Corp, Huzhou Power Supply Co of State Grid Zhejiang Electric Power Co Ltd filed Critical Auspicious Electric Power Project Engineering Equipment Ltd South Wuhan
Priority to CN201810818045.8A priority Critical patent/CN108950284A/zh
Publication of CN108950284A publication Critical patent/CN108950284A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/101Pretreatment of the non-metallic additives by coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0005Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种低蠕变铝合金,其由以下方法制备得到:1)将无机纳米粉末高温氧化处理后,再在经过高温氧化处理的无机纳米粉末表面镀金属层,得到表面包覆一层金属的无机纳米粉末;2)将步骤1)所得表面包覆一层金属的无机纳米粉末与纯铝粉末置于真空球磨机中进行球磨,得到分散均匀的复合粉末;3)将铝合金锭熔化后得到铝合金熔体,在700‑900℃下保温,加入步骤2)所得复合粉末,并且边加入复合粉末边搅拌,然后浇铸得到低蠕变铝合金材料。本发明提供的铝合金具有低蠕变特性,使用领域广。

Description

一种低蠕变铝合金及其制备方法
技术领域
本发明涉及铝合金技术领域,具体涉及一种低蠕变铝合金及其制备方法。
背景技术
金属材料在高温下力学行为的一个重要特点就是产生蠕变,所谓蠕变就是材料在长时间的恒温、恒载荷作用下缓慢地产生塑性变形的现象。由于这种变形而最后导致材料的断裂称为蠕变断裂。传统铝合金由于机械强度低、蠕变性能差,在长时间的恒温恒载荷作用下容易发生蠕变断裂而失效,这对于铝合金的工程应用产生了极大的安全隐患,限制了铝合金的应用领域。
本发明针对现有技术中铝合金存在的上述问题,研制出一种低蠕变的铝合金。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种低蠕变铝合金及其制备方法。
为解决上述技术问题,本发明提供的技术方案是:
提供一种低蠕变铝合金,其由以下方法制备得到:
1)将无机纳米粉末高温氧化处理后,再在经过高温氧化处理的无机纳米粉末表面镀金属层,得到表面包覆一层金属的无机纳米粉末;
2)将步骤1)所得表面包覆一层金属的无机纳米粉末与纯铝粉末置于真空球磨机中进行球磨,得到分散均匀的复合粉末;
3)将铝合金锭熔化后得到铝合金熔体,在700-900℃下保温,加入步骤2)所得复合粉末,并且边加入复合粉末边搅拌,然后浇铸得到低蠕变铝合金材料。
按上述方案,步骤1)所述无机纳米粉末为SiC、Al2O3、TiC、SiO2、TiB2中的一种或者几种,粒径为10-50nm。
按上述方案,步骤1)所述金属为铜或镍,所述金属层厚度为10-50nm。
按上述方案,步骤2)所述纯铝粉末粒径为10-50μm。
按上述方案,步骤2)表面包覆一层金属的无机纳米粉末与纯铝粉末质量比为1:10-20。
按上述方案,步骤2)球磨工艺条件为:球磨机转速为200-1000rpm,球磨时间为1-24h,球料比为1-20:1。
按上述方案,步骤3)所述铝合金锭为2系铝合金、5系铝合金、6系铝合金、7系铝合金中的一种。
优选的是,步骤3)所述铝合金锭为2024、5083、6061、7075铝合金。
按上述方案,步骤3)复合粉末与铝合金锭质量比为1-10:100。
按上述方案,步骤3)搅拌工艺条件为:搅拌速度为200-600rpm,搅拌时间为30min-2h。
本发明还提供上述低蠕变铝合金的制备方法,具体步骤如下:
1)将无机纳米粉末高温氧化处理后,再在经过高温氧化处理的无机纳米粉末表面镀金属层,得到表面包覆一层金属的无机纳米粉末;
2)将步骤1)所得表面包覆一层金属的无机纳米粉末与纯铝粉末置于真空球磨机中进行球磨,得到分散均匀的复合粉末;
3)将铝合金锭熔化后得到铝合金熔体,在700-900℃下保温,加入步骤2)所得复合粉末,并且边加入复合粉末边搅拌,然后浇铸得到低蠕变铝合金材料。
无机纳米粉末本身与铝基体的润湿性差,界面结合强度较弱,不能充分发挥纳米粒子的钉扎作用,本发明通过在纳米粒子表面镀铜或者镍可有效增加纳米粒子与铝基体的润湿性能,强化界面结合作用。所用无机纳米粉末熔点较高且在铝基体中溶解度很小,并且无机纳米粉末高温氧化处理后再与纯铝粉末混合球磨,可以有效的将纳米粒子分散在铝粉末中,极大降低了后期在铝熔体中搅拌分散的难度,使得纳米粒子能够在铝合金基体中均匀分布,在与铝合金熔体混合后,纳米粒子主要集中在位错胞及晶界,或者均匀分布在微细晶粒内,具有钉扎作用,能有效强化晶界和阻碍位错运动,从而有效改善铝合金材料的高温强度和抗蠕变性能。
本发明的有益效果在于:1、本发明提供的铝合金具有低蠕变特性,使用领域广。2、本发明先将无机纳米粉末高温氧化处理后再镀一层金属进行表面改性处理,改性后的无机纳米粉末与纯铝粉末真空球磨,得到的复合粉末再与熔化的铝合金进行搅拌铸造,浇铸成型,得到低蠕变铝合金材料,步骤较为简单,具有工业化推广价值。
附图说明
图1为本发明实施例1中低蠕变铝合金材料生产流程图;
图2为实施例1中经过表面高温氧化且经过表面改性处理后,与纯铝粉末真空球磨得到的复合粉末的照片。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述。
实施例1
制备一种低蠕变铝合金,具体步骤如下(生产流程图如图1所示):
1)将平均粒径为10nm的SiC粉末在1000℃下进行高温氧化处理,氧化处理时间为24h,然后将经过高温氧化处理的SiC粉末进行表面化学镀铜处理:倒入含有表面活性剂的化学镀铜液中,边搅拌边滴加还原剂,滴加完毕后过滤清洗至中性,得到表面包覆一层金属铜的SiC粉末(镀铜层厚度10nm);
2)将步骤1)所得表面包覆一层金属铜的SiC粉末与平均粒径为20μm的纯铝粉末置于真空球磨机中混合,SiC粉末与纯铝粉末质量比为1:19,球磨机转速为300rpm,球磨时间为24h,球料比为10:1,得到分散均匀的复合粉末(照片如图2所示);
3)将6063铝合金锭熔化后得到铝合金熔体,保持温度为700℃,加入步骤2)所得复合粉末,复合粉末与铝合金锭质量比为1:50,并且边加入复合粉末边搅拌,搅拌速度为300rpm,搅拌时间为30min,然后在700℃温度下浇铸,制备得到低蠕变铝合金材料(0.1%SiC/6063Al)。同理,改变原料用量制得0.3%SiC/6063Al、0.5%SiC/6063Al。
测试本实施例制备的不同SiC含量的铝合金材料在外加应力112MPa、温度90℃或120℃时的稳态蠕变速率,测试结果如表1所示。
表1外加应力112MPa时SiC/6063Al复合材料在不同温度下的稳态蠕变速率
实施例2
制备一种低蠕变铝合金,具体步骤如下:
1)将平均粒径为20nm的TiB2在800℃下进行高温氧化处理,氧化处理时间为24h,然后将经过高温氧化处理的TiB2粉末进行表面化学镀镍处理,得到表面包覆一层金属镍的TiB2粉末(镀镍层厚度30nm);
2)将步骤1)所得表面包覆一层金属镍的TiB2粉末与平均粒径为50μm的纯铝粉末置于真空球磨机中混合,TiB2粉末与纯铝粉末质量比为1:19,球磨机转速为500rpm,球磨时间为12h,球料比为5:1,得到分散均匀的复合粉末;
3)将5083铝合金锭熔化后得到铝合金熔体,保持温度为800℃,加入步骤2)所得复合粉末,复合粉末与铝合金锭质量比为1:50,并且边加入复合粉末边搅拌,搅拌速度为200rpm,搅拌时间为1h,然后在700℃温度下浇铸,制备得到低蠕变铝合金材料(0.1%TiB/5083Al)。同理,改变原料用量制得0.3%TiB/5083Al、0.5%TiB/5083Al。
测试本实施例制备的不同TiB含量的铝合金材料在外加应力112MPa、温度90℃或120℃时的稳态蠕变速率,测试结果如表2所示。
表2外加应力150MPa时不同质量分数的纳米TiB/Al复合材料在不同温度下的稳态蠕变速率

Claims (10)

1.一种低蠕变铝合金,其特征在于,其由以下方法制备得到:
1)将无机纳米粉末高温氧化处理后,再在经过高温氧化处理的无机纳米粉末表面镀金属层,得到表面包覆一层金属的无机纳米粉末;
2)将步骤1)所得表面包覆一层金属的无机纳米粉末与纯铝粉末置于真空球磨机中进行球磨,得到分散均匀的复合粉末;
3)将铝合金锭熔化后得到铝合金熔体,在700-900℃下保温,加入步骤2)所得复合粉末,并且边加入复合粉末边搅拌,然后浇铸得到低蠕变铝合金材料。
2.根据权利要求1所述的低蠕变铝合金,其特征在于,步骤1)所述无机纳米粉末为SiC、Al2O3、TiC、SiO2、TiB2中的一种或者几种,粒径为10-50nm。
3.根据权利要求1所述的低蠕变铝合金,其特征在于,步骤1)所述金属为铜或镍,所述金属层厚度为10-50nm。
4.根据权利要求1所述的低蠕变铝合金,其特征在于,步骤2)所述纯铝粉末粒径为10-50μm。
5.根据权利要求1所述的低蠕变铝合金,其特征在于,步骤2)表面包覆一层金属的无机纳米粉末与纯铝粉末质量比为1:10-20。
6.根据权利要求1所述的低蠕变铝合金,其特征在于,步骤2)球磨工艺条件为:球磨机转速为200-1000rpm,球磨时间为1-24h,球料比为1-20:1。
7.根据权利要求1所述的低蠕变铝合金,其特征在于,步骤3)所述铝合金锭为2系铝合金、5系铝合金、6系铝合金、7系铝合金中的一种。
8.根据权利要求1所述的低蠕变铝合金,其特征在于,步骤3)复合粉末与铝合金锭质量比为1-10:100。
9.根据权利要求1所述的低蠕变铝合金,其特征在于,步骤3)搅拌工艺条件为:搅拌速度为200-600rpm,搅拌时间为30min-2h。
10.一种权利要求1-9任一所述的低蠕变铝合金的制备方法,其特征在于,具体步骤如下:
1)将无机纳米粉末高温氧化处理后,再在经过高温氧化处理的无机纳米粉末表面镀金属层,得到表面包覆一层金属的无机纳米粉末;
2)将步骤1)所得表面包覆一层金属的无机纳米粉末与纯铝粉末置于真空球磨机中进行球磨,得到分散均匀的复合粉末;
3)将铝合金锭熔化后得到铝合金熔体,在700-900℃下保温,加入步骤2)所得复合粉末,并且边加入复合粉末边搅拌,然后浇铸得到低蠕变铝合金材料。
CN201810818045.8A 2018-07-24 2018-07-24 一种低蠕变铝合金及其制备方法 Pending CN108950284A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810818045.8A CN108950284A (zh) 2018-07-24 2018-07-24 一种低蠕变铝合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810818045.8A CN108950284A (zh) 2018-07-24 2018-07-24 一种低蠕变铝合金及其制备方法

Publications (1)

Publication Number Publication Date
CN108950284A true CN108950284A (zh) 2018-12-07

Family

ID=64464541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810818045.8A Pending CN108950284A (zh) 2018-07-24 2018-07-24 一种低蠕变铝合金及其制备方法

Country Status (1)

Country Link
CN (1) CN108950284A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111136376A (zh) * 2019-12-19 2020-05-12 江苏理工学院 一种提高铝合金抗高温蠕变的改性方法
CN114525434A (zh) * 2022-04-22 2022-05-24 西安欧中材料科技有限公司 一种SiC诱导多相增强铝基复合材料及其制备方法
CN117165804A (zh) * 2023-11-02 2023-12-05 国网山东省电力公司烟台供电公司 一种电力金具用梯度铝基复材棒材及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104532031A (zh) * 2014-12-24 2015-04-22 南昌大学 一种纳米陶瓷颗粒增强铝基复合材料的制备方法
CN105132733A (zh) * 2015-09-29 2015-12-09 华中科技大学 一种制备纳米颗粒增强铝基复合材料的方法
CN105543530A (zh) * 2015-11-11 2016-05-04 陕西盛迈石油有限公司 一种制备SiCpAl复合材料的方法
CN106244867A (zh) * 2016-09-20 2016-12-21 桂林理工大学 纳米TiN颗粒增强铝基复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104532031A (zh) * 2014-12-24 2015-04-22 南昌大学 一种纳米陶瓷颗粒增强铝基复合材料的制备方法
CN105132733A (zh) * 2015-09-29 2015-12-09 华中科技大学 一种制备纳米颗粒增强铝基复合材料的方法
CN105543530A (zh) * 2015-11-11 2016-05-04 陕西盛迈石油有限公司 一种制备SiCpAl复合材料的方法
CN106244867A (zh) * 2016-09-20 2016-12-21 桂林理工大学 纳米TiN颗粒增强铝基复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王小红等: "钻杆用铝基复合材料中SiC/Al界面润湿性研究进展", 《新技术新工艺》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111136376A (zh) * 2019-12-19 2020-05-12 江苏理工学院 一种提高铝合金抗高温蠕变的改性方法
CN114525434A (zh) * 2022-04-22 2022-05-24 西安欧中材料科技有限公司 一种SiC诱导多相增强铝基复合材料及其制备方法
CN117165804A (zh) * 2023-11-02 2023-12-05 国网山东省电力公司烟台供电公司 一种电力金具用梯度铝基复材棒材及其制备方法
CN117165804B (zh) * 2023-11-02 2024-01-16 国网山东省电力公司烟台供电公司 一种电力金具用梯度铝基复材棒材及其制备方法

Similar Documents

Publication Publication Date Title
CN111940723B (zh) 一种用于3d打印的纳米陶瓷金属复合粉末及应用
CN108950284A (zh) 一种低蠕变铝合金及其制备方法
JP5726663B2 (ja) ナノシリコンカーバイドコーティングを用いる炭素材料の界面強化方法
US5134039A (en) Metal articles having a plurality of ultrafine particles dispersed therein
CN107119207B (zh) 一种非计量比TiC增强铜基复合材料及其制备方法
CN107159869B (zh) 一种用于易氧化金属的熔模精密铸造型壳的制备方法
FR2691456A1 (fr) Nouveau procédé de production d'un matériau réfractaire en silice vitreuse frittée, nouveau mélange de grains et particules de silice vitreuse, et nouveau matériau en silice vitreuse frittée.
CN113215432B (zh) 一种适用于3d打印的纳米碳化硅颗粒增强铜基球形金属粉体及其制备方法
CN114406275A (zh) 一种纳米TiB增强钛基复合粉末及其制备方法
Padmavathi et al. Synthesis of Al/Mg hybrid nanocomposite by electromagnetic stir cast: characteristics study
CN101328066A (zh) 纳米碳化硅/钇铝石榴石复合粉体的制备方法
CN101368237A (zh) 一种硅颗粒增强锌基复合材料的制备方法
CN102990063B (zh) 兼具减磨和抗磨效果的双相纳米增强金属基微纳粉及其制备方法
CN114850472B (zh) 一种包覆陶瓷颗粒的方法及复合材料制备方法
CN100999796A (zh) 原位颗粒增强耐热铝基复合材料
CN103028726B (zh) 纳米碳黑和纳米稀土协同增强的金属基微纳粉及其制备方法
CN103042209B (zh) 纳米碳化硅和纳米氧化铈协同增强的金属基微纳粉及制备方法
JP4121733B2 (ja) 黒鉛含有アルミニウム合金の製造方法及び摺動部材
CN109128058A (zh) 复合场铸造法生产ods钢的装置及方法
CN111893343B (zh) 改性纳米粒子弥散强化铜合金及其制备方法和应用、电子元件、机械元件
CN112831707A (zh) 一种添加石墨烯作为增强相的硬质合金
CN112662918A (zh) Al2O3-TiC颗粒增强铝基复合材料及其制备方法
JPS58147532A (ja) Al系複合材の製造方法
JP2000073129A (ja) 鋳造用金属−セラミックス複合材料の製造方法
JP2000109942A (ja) ジルコニア複合マグネシウム合金の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181207