CN108940368A - 类沸石骨架封装的金属纳米颗粒催化剂及其制备方法和应用 - Google Patents

类沸石骨架封装的金属纳米颗粒催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN108940368A
CN108940368A CN201810712416.4A CN201810712416A CN108940368A CN 108940368 A CN108940368 A CN 108940368A CN 201810712416 A CN201810712416 A CN 201810712416A CN 108940368 A CN108940368 A CN 108940368A
Authority
CN
China
Prior art keywords
catalyst
metal nanoparticle
encapsulation
metal
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810712416.4A
Other languages
English (en)
Other versions
CN108940368B (zh
Inventor
张锋伟
李志鸿
张永霞
张献明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN201810712416.4A priority Critical patent/CN108940368B/zh
Publication of CN108940368A publication Critical patent/CN108940368A/zh
Application granted granted Critical
Publication of CN108940368B publication Critical patent/CN108940368B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种类沸石骨架封装的金属纳米颗粒催化剂及其制备方法和应用,以有机溶剂为还原剂和抑制剂,使金属盐在溶液体系中缓慢分解并可控生长,得到细小尺寸、高度分散的金属纳米颗粒胶体溶液,随后加入2‑甲基咪唑和六水合硝酸锌,通过一锅反应得到类沸石骨架材料封装的金属纳米颗粒催化剂。本发明制得的类沸石型骨架封装的金属纳米颗粒催化剂的形貌和尺寸可以有效调控,催化剂尺寸在50‑100nm之间,金属纳米颗粒可以完全或部分封装于孔道内部;具有优越催化活性的同时还具有显著择形催化特征和良好的循环稳定性,能够很好地满足工业生产中有机分子的高效分离与纯化目的。

Description

类沸石骨架封装的金属纳米颗粒催化剂及其制备方法和应用
技术领域
本发明涉及一种类沸石骨架封装的金属纳米颗粒催化剂及其制备方法和应用,属于催化剂制备技术领域。
背景技术
沸石分子筛由于具有4-13 Å的尺寸均匀的微孔结构,因而表现出空间限域效应和尺寸选择效应,在烃类化合物的尺寸选择性吸附及大规模分离纯化过程中得到了广泛应用。沸石分子筛的微孔结构决定了直链和线形分子可以进入沸石的孔道内部,而环状和大分子则被排斥在孔道外面,从而实现了烃类化合物高效分离的目的。前期研究表明(1、Chemistry of Materials, 2005, 17, 301-3071;2、ACS Catalysis, 2015, 5, 6893-6901;3、Catalysis Communications, 2018, 109, 16-19),将具有催化活性的金属纳米颗粒封装到沸石孔道内部,得到的复合催化材料在加氢、氧化和偶联等众多有机反应中表现出优越的尺寸选择性和形状选择性。类似地,在二氧化硅、聚合物和蛋白质中封装金属纳米颗粒制备的杂化体系中,也能观察到这种尺寸选择性催化现象的存在。然而,目前具有高比表面积、均匀的内部孔道和完全的纳米颗粒封装型催化材料,往往面临着制备过程复杂、反应条件苛刻、循环稳定性差等问题,导致它们在规模化放大和实际应用中受到极大限制。
在过去几年里,沸石型咪唑骨架(ZIFs),作为金属有机骨架材料(MOFs)的一个分支,具有高比表面积、类似于沸石的拓扑结构、均匀且可调的内腔等特性。其中,沸石型咪唑骨架的微孔内腔在有效稳定纳米颗粒的同时,还具有空间限域和尺寸选择效应。其中,ZIF-8型沸石材料,具有方钠石型沸石结构,因为相比传统的MOFs呈现出更高的化学和热稳定性,非常适于作为多相催化剂的载体。ZIF-8的六元环状微孔窗口大小为3.4 Å,而其内腔的大小约为11.4 Å,这些均匀的内腔和狭窄的孔窗口能够很好地容纳催化活性物种,非常适合用于支链/环形烯烃与线性烯烃的有效分离及选择性催化。因而,近年来研究者们制备了一系列ZIF-8封装的金属纳米颗粒催化剂,并研究了金属纳米颗粒与MOFs载体之间的协同效应。
研究表明,金属纳米颗粒的尺寸、分散性和空间分布,ZIF-8的空间拓扑结构等众多因素对催化活性的有效调控起着重要作用。尤其是纳米颗粒的量子尺寸效应和ZIF-8的高比表面积对催化活性的影响最为显著。例如,研究发现ZIF-8载体的尺寸越小,表现出的催化活性越高,这主要是由底物分子的扩散路径缩短及纳米催化剂活性位点暴露更多引起的。通常,制备ZIF-8封装金属纳米颗粒催化剂,主要通过含金属盐的前驱体在NaBH4的水溶液中还原并加入保护剂稳定,或通入H2进行还原处理后再对其进行后续的包覆。然而,采用上述方法对纳米颗粒的尺寸、组成、分散性、空间分布和限域效应的精准调控难以实现,而且加还原剂和保护剂让整个制备过程繁琐、昂贵且不够环保,使得这种催化剂的实际应用依然难以实现。因此,开发一种新型的制备方法显得至关重要。
发明内容
针对目前金属有机骨架材料封装的金属纳米催化剂存在的制备过程繁琐昂贵、纳米颗粒尺寸形貌难以控制、分散度不够好等问题,本发明提供了一种类沸石骨架封装的金属纳米颗粒催化剂及其制备方法和应用,采用一锅法制备封装有颗粒细小且高度分散的钯纳米颗粒的小尺寸MOFs催化剂,可用于实现精细化学品的高效、尺寸选择性催化合成。
本发明提供的催化剂利用简单而绿色的制备方法,该制备方法与传统方法相比无需添加任何保护剂,且金属盐的用量很少、步骤简单、绿色环保、经济高效,有望实现金属纳米催化剂封装型催化材料的大规模制备。该方法制得的催化剂具有类似沸石的微孔结构,尺寸选择与择形催化功能,在对有机分子进行选择性筛分的同时还可以得到催化转化的目标产物,是一种一举多得的反应历程,具有巨大的潜在应用价值。
本发明提供了一种类沸石骨架封装的金属纳米颗粒催化剂的制备方法,以有机溶剂为还原剂和弱覆盖剂,使金属盐在溶液体系中缓慢分解并可控生长,得到细小尺寸、高度分散的金属纳米颗粒胶体溶液,随后加入2-甲基咪唑和六水合硝酸锌,通过一锅反应得到类沸石骨架材料封装的金属纳米颗粒催化剂。
本发明提供的上述类沸石骨架封装的金属纳米颗粒催化剂的制备方法,具体包括以下步骤:
(1)称取金属盐加入到甲醇等有机溶剂中,超声处理形成均匀的透明溶液,该溶液在低于50℃的水浴中快速磁力搅拌0.5~6小时,形成黑色的浑浊液;
金属盐与甲醇溶液的比例为:5~30 mg金属盐溶解在30~100 mL甲醇溶液中;
(2)向上述浑浊液缓慢加入六水合硝酸锌,继续搅拌1~3小时后,缓慢加入 2-甲基咪唑,反应体系搅拌2-8小时,在室温下晶化处理8~24小时;得到暗灰色浑浊液;
所述六水合硝酸锌与2-甲基咪唑的质量比为2.0~5.0 :1.0~6.0 ,其中硝酸锌与金属盐的质量比为200~500 :0.5~3;
(3)将得到的灰色浑浊液过滤分离,用水和乙醇反复冲洗并真空干燥,即制得类沸石型骨架封装的金属纳米颗粒催化剂。
上述制备方法中,所述金属盐为氯化钌、氯化钴、氯化钯、醋酸钴、醋酸钯、氯化镍或醋酸镍中的一种;
上述制备方法中,有机溶剂为甲醇、乙醇、异丙醇或N,N-二甲基甲酰胺中的一种或两种以上的复合溶剂。
上述制备方法中,步骤(2)的反应温度为30~50℃,金属纳米颗粒的尺寸在1.0~5.0nm并具有很高的分散度。
上述制备方法中,步骤(2)中,2-甲基咪唑和六水合硝酸锌的加入先后顺序也能相互调整。
上述制备方法中,得到的类沸石型骨架封装的金属纳米颗粒催化剂比表面积为1469~2869m2/g,催化剂尺寸为50-100nm,孔径分布在0.60~0.92nm,金属负载量为0.1~0.5%。
本发明提供了一种通过上述方法制备而成的催化剂。
本发明提供了上述催化剂在精细化学品的尺寸选择性催化合成中的应用。具体评价方法如下:称取10~50 mg催化剂,1 mmol 1-辛烯(或环辛烯)反应物,5 mL乙醇于耐压玻璃反应管中,向反应体系通入氢气约2分钟后,整个反应过程中维持氢气的压力为1个大气压,然后将反应瓶置入30 ℃水浴锅,搅拌一段时间,并定时取样进行色谱分析。同时,用上述不同的催化剂来考察它们对1-辛烯和环辛烯的催化性能,间隔取样,检测反应进度。
本发明的有益效果:
(1)本发明制得的类沸石型骨架封装的金属纳米颗粒催化剂的形貌和尺寸可以有效调控,催化剂尺寸在50-100nm之间,金属纳米颗粒可以完全或部分封装于孔道内部;
(2)具有优越催化活性的同时还具有显著择形催化特征和良好的循环稳定性,能够很好地满足工业生产中有机分子的高效分离与纯化目的。
附图说明
图1为实施例1中甲醇溶剂原位还原醋酸钯制备的钯纳米颗粒的透射电镜图;
图2为实施例1中类沸石骨架材料封装金属纳米颗粒催化剂的的透射电镜图;
图3为实施例1中类沸石骨架材料封装金属纳米颗粒催化剂的的粉末X-射线谱图;
图4为实施例1中类沸石骨架材料封装金属纳米颗粒催化剂的的傅里叶变换红外谱图;
图5为实施例1中类沸石骨架材料封装金属纳米颗粒催化剂的物理吸附曲线图;
图6为实施例1中类沸石骨架材料封装金属纳米颗粒催化剂的X-射线光电子能谱图;
图7为实施例1中类沸石骨架材料封装钯金属纳米颗粒催化剂的催化选择加氢性能。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1
称取10 mg醋酸钯加入到100mL圆底烧瓶中,超声分散于20 mL甲醇溶液中,室温水浴下快速磁力搅拌1.0小时;向上述溶液中缓慢加入1.0g 2-甲基咪唑,继续搅拌反应2.0小时,将溶于15 mL甲醇溶液的2.0g六水合硝酸锌逐滴加入到上述反应溶液,室温连续搅拌2.0小时,随后再晶化处理8.0小时,生成的灰色浑浊液抽滤洗涤并干燥过夜,即得到类沸石型骨架封装的金属纳米颗粒催化剂。
称取20 mg催化剂,1 mmol 1-辛烯反应物,5 mL乙醇于耐压玻璃反应管中,向反应体系通入氢气约2分钟后,整个反应过程中维持氢气的压力为1个大气压,然后将反应瓶置入30 ℃水浴锅,每次搅拌1.0 h后并取样进行色谱分析。同时,用上述不同的催化剂来考察它们对1-辛烯和环辛烯的催化性能,间隔取样,检测反应进度。
附图1是在甲醇溶液中将醋酸钯从该体系中还原出金属钯纳米颗粒的透射电镜图,统计结果显示出球形钯颗粒尺寸约为2~3nm且分布非常均匀;附图2是小尺寸钯纳米颗粒封装于类沸石骨架材料内部的透射电镜图,从图中可以看出该催化材料的直径主要在55-70 nm范围而且观察不到明显的纳米颗粒这是由于钯含量很低且非常均匀地分散在催化剂骨架内部;附图3的X-射线粉末衍射图说明合成的催化剂样品具有类似于ZIF-8母体的衍射峰并且没有显示任何钯纳米颗粒相关的衍射峰,这表明催化剂具有ZIF-8同样的微孔孔道特性及含量极低且细小的钯纳米颗粒;附图4的红外谱图在1642 cm-1和3457 cm-1处的强吸收峰归因于类沸石催化剂中含有丰富的N-H官能团,这些官能团能够很好地配位并稳定钯纳米颗粒;附图5中的物理吸附结果表明该类沸石骨架材料封装金属纳米颗粒催化剂的比表面积可达2869 m2·g-1和孔径尺寸主要集中在0.60~0.92nm且非常适于尺寸和形貌选择性催化反应;附图6的X-射线光电子能谱图进一步证明按照实施例1合成的催化剂样品表面均匀分布有C、N、O和Zn四种元素,未显示金属Pd元素主要是因为它们镶嵌在类沸石骨架材料内部而且含量很低引起;附图7显示了类沸石骨架材料封装钯纳米颗粒催化剂对1-辛烯和环辛烯的碳碳双键的催化加氢反应结果,从图中可以看出在催化反应1~6 h过程中1-辛烯可以完全转化而环辛烯几乎没有发生反应,这说明在催化反应时只有小尺寸的1-辛烯分子能进入催化材料的骨架内部而环辛烯被完全阻挡在微孔孔道外面。
实施例2
称取10 mg氯化钌加入到100mL圆底烧瓶中,超声分散于20 mL甲醇溶液中,室温水浴下快速磁力搅拌2.0小时;向上述溶液中缓慢加入2.0g 2-甲基咪唑,继续搅拌反应3.0小时,将溶于15 mL甲醇溶液的3.0g六水合硝酸锌逐滴加入到上述反应溶液,40℃搅拌2.0小时,随后在室温下晶化处理12小时,生成的灰色浑浊液抽滤洗涤并干燥过夜,即得到类沸石型骨架封装的金属纳米颗粒催化剂。
实施例3
称取20 mg醋酸镍加入到100mL圆底烧瓶中,超声分散于20 mL甲醇溶液中,室温水浴下快速磁力搅拌1.0小时;向上述溶液中缓慢加入3.0g 2-甲基咪唑,继续搅拌反应6.0小时,将溶于15 mL甲醇溶液的2.0g六水合硝酸锌逐滴加入到上述反应溶液,50℃搅拌2.0小时,随后在室温下晶化处理18小时,生成的灰色浑浊液抽滤洗涤并干燥过夜,即得到类沸石型骨架封装的金属纳米颗粒催化剂。
实施例4
称取30 mg氯化钴加入到100mL圆底烧瓶中,超声分散于20 mL甲醇溶液中,室温水浴下快速磁力搅拌3.0小时;向上述溶液中缓慢加入5.0g 2-甲基咪唑,继续搅拌反应8.0小时,将溶于15 mL甲醇溶液的6.0g六水合硝酸锌逐滴加入到上述反应溶液,50℃搅拌2.0小时,随后在室温下晶化处理24小时,生成的灰色浑浊液抽滤洗涤并干燥过夜,即得到类沸石型骨架封装的金属纳米颗粒催化剂。
实施例5
称取20 mg醋酸钴加入到100mL圆底烧瓶中,超声分散于20 mL甲醇溶液中,室温水浴下快速磁力搅拌2.0小时;向上述溶液中缓慢加入3.0g 2-甲基咪唑,继续搅拌反应4.0小时,将溶于15 mL甲醇溶液的4.0g六水合硝酸锌逐滴加入到上述反应溶液,40℃搅拌3.0小时,随后在室温下晶化处理24小时,生成的灰色浑浊液抽滤洗涤并干燥过夜,即得到类沸石型骨架封装的金属纳米颗粒催化剂。
实施例6
称取50 mg氯化镍加入到100mL圆底烧瓶中,超声分散于20 mL甲醇溶液中,室温水浴下快速磁力搅拌5.0小时;向上述溶液中缓慢加入2.0g 2-甲基咪唑,继续搅拌反应6.0小时,将溶于15 mL甲醇溶液的4.0g六水合硝酸锌逐滴加入到上述反应溶液,40℃搅拌1.0小时,随后在室温下晶化处理8.0小时,生成的灰色浑浊液抽滤洗涤并干燥过夜,即得到类沸石型骨架封装的金属纳米颗粒催化剂。

Claims (9)

1.类沸石骨架封装的金属纳米颗粒催化剂的制备方法,其特征在于:以有机溶剂为还原剂和抑制剂,使金属盐在溶液体系中缓慢分解并可控生长,得到细小尺寸、高度分散的金属纳米颗粒胶体溶液,随后加入2-甲基咪唑和六水合硝酸锌,通过一锅反应得到类沸石骨架材料封装的金属纳米颗粒催化剂。
2.根据权利要求1所述的类沸石骨架封装的金属纳米颗粒催化剂的制备方法,其特征在于:包括以下步骤:
(1)称取金属盐加入到甲醇溶液中,超声处理形成均匀的透明溶液,该溶液在低于50℃的水浴中快速磁力搅拌0.5~6小时,形成黑色的浑浊液;
金属盐与甲醇溶液的比例为:5~30 mg金属盐溶解在30~100 mL甲醇溶液中;
(2)向上述浑浊液缓慢加入六水合硝酸锌,继续搅拌1~3小时后,缓慢加入2-甲基咪唑,反应体系搅拌2-8小时,在室温下晶化处理8~24小时;得到暗灰色浑浊液;
上述六水合硝酸锌与2-甲基咪唑的质量比为2.0~5.0 :1.0~6.0 ,其中硝酸锌与金属盐的质量比为200~500:0.5~3;
(3)将得到的灰色浑浊液过滤分离,用水和乙醇反复冲洗并真空干燥,即制得类沸石型骨架封装的金属纳米颗粒催化剂。
3.根据权利要求2所述的类沸石骨架封装的金属纳米颗粒催化剂的制备方法,其特征在于:所述金属盐为氯化钌、氯化钴、氯化钯、醋酸钴、醋酸钯、氯化镍或醋酸镍中的一种。
4.根据权利要求2所述的类沸石骨架封装的金属纳米颗粒催化剂的制备方法,其特征在于:有机溶剂为甲醇、乙醇、异丙醇或N,N-二甲基甲酰胺中的一种或两种以上的混合溶剂。
5.根据权利要求2所述的类沸石骨架封装的金属纳米颗粒催化剂的制备方法,其特征在于:步骤(2)中的反应温度为30~50℃,金属纳米颗粒的尺寸在1.0~5.0nm并具有很高的分散度。
6.一种采用权利要求1~5任一项所述的类沸石骨架封装的金属纳米颗粒催化剂的制备方法制备而成的催化剂。
7.根据权利要求6所述的催化剂,其特征在于:所得类沸石型骨架封装的金属纳米颗粒催化剂比表面积为1469~2869m2/g,催化剂尺寸为50-100nm,催化剂的孔径分布在0.60~0.92nm,金属负载量为0.1~0.5%。
8.一种权利要求6或7所述的催化剂在精细化学品的尺寸选择性催化合成中的应用。
9.根据权利要求8所述的应用,其特征在于:操作方法如下:称取10~50 mg催化剂、1mmol 1-辛烯或环辛烯反应物、5 mL乙醇于耐压玻璃反应管中,向反应体系通入氢气,使整个反应过程中氢气的压力保持在1个大气压,然后将反应瓶置入30 ℃水浴锅,搅拌一段时间后并定时取样进行色谱分析;用上述催化剂来考察其对1-辛烯或环辛烯的催化性能,间隔取样,检测反应进度。
CN201810712416.4A 2018-07-03 2018-07-03 类沸石骨架封装的金属纳米颗粒催化剂及其制备方法和应用 Expired - Fee Related CN108940368B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810712416.4A CN108940368B (zh) 2018-07-03 2018-07-03 类沸石骨架封装的金属纳米颗粒催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810712416.4A CN108940368B (zh) 2018-07-03 2018-07-03 类沸石骨架封装的金属纳米颗粒催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108940368A true CN108940368A (zh) 2018-12-07
CN108940368B CN108940368B (zh) 2020-08-04

Family

ID=64484844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810712416.4A Expired - Fee Related CN108940368B (zh) 2018-07-03 2018-07-03 类沸石骨架封装的金属纳米颗粒催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108940368B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152735A (zh) * 2019-06-20 2019-08-23 北京机械设备研究所 一种二氧化碳还原催化剂、制备方法及还原反应方法
CN114425450A (zh) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 用于制备不饱和碳酸酯的催化剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816956A (zh) * 2010-04-20 2010-09-01 武汉理工大学 一种提高纳米金属颗粒在石墨化碳载体表面分散的方法
CN103084582A (zh) * 2013-01-08 2013-05-08 江苏大学 一种制备原子尺度贵金属纳米粒子稳定胶体悬浮液的方法
CN103394373A (zh) * 2013-04-27 2013-11-20 南京工业大学 一种加氢催化剂的制备方法
CN104998658A (zh) * 2015-07-20 2015-10-28 昆明贵研催化剂有限责任公司 PtNi(Ⅲ)纳米单晶八面体质子交换膜燃料电池氧还原催化剂的制备方法
EP2941790A1 (en) * 2013-01-07 2015-11-11 Northeastern University Non-noble metal catalysts for oxygen depolarized cathodes and their uses
CN106632055A (zh) * 2016-12-21 2017-05-10 湘潭大学 一种类沸石咪唑骨架材料的制备方法及其在环己烷氧化反应中的应用
CN108097316A (zh) * 2017-12-05 2018-06-01 中国科学院兰州化学物理研究所苏州研究院 一种负载纳米金属颗粒的MOFs纳米材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816956A (zh) * 2010-04-20 2010-09-01 武汉理工大学 一种提高纳米金属颗粒在石墨化碳载体表面分散的方法
EP2941790A1 (en) * 2013-01-07 2015-11-11 Northeastern University Non-noble metal catalysts for oxygen depolarized cathodes and their uses
CN103084582A (zh) * 2013-01-08 2013-05-08 江苏大学 一种制备原子尺度贵金属纳米粒子稳定胶体悬浮液的方法
CN103394373A (zh) * 2013-04-27 2013-11-20 南京工业大学 一种加氢催化剂的制备方法
CN104998658A (zh) * 2015-07-20 2015-10-28 昆明贵研催化剂有限责任公司 PtNi(Ⅲ)纳米单晶八面体质子交换膜燃料电池氧还原催化剂的制备方法
CN106632055A (zh) * 2016-12-21 2017-05-10 湘潭大学 一种类沸石咪唑骨架材料的制备方法及其在环己烷氧化反应中的应用
CN108097316A (zh) * 2017-12-05 2018-06-01 中国科学院兰州化学物理研究所苏州研究院 一种负载纳米金属颗粒的MOFs纳米材料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CASEY J. STEPHENSON ET AL.: "Pt@ZIF-8 composite for the regioselective hydrogenation of terminal unsaturations in 1,3-dienes and alkynes", 《INORGANIC CHEMISTRY FRONTIERS》 *
PATRICK D. BURTON ET AL.: "Facile, surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts", 《JOURNAL OF CATALYSIS》 *
PING-WEN YEN ET AL.: "Formation of palladium metal active sites on styrene-divinylbenzene copolymer catalyst by alcohol reduction at room temperature", 《APPLIED CATALYSIS A: GENERAL》 *
李启厚等: "多元醇法制备超微粉体材料的特点及应用", 《粉末冶金材料科学与工程》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152735A (zh) * 2019-06-20 2019-08-23 北京机械设备研究所 一种二氧化碳还原催化剂、制备方法及还原反应方法
CN110152735B (zh) * 2019-06-20 2022-04-12 北京机械设备研究所 一种二氧化碳还原催化剂、制备方法及还原反应方法
CN114425450A (zh) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 用于制备不饱和碳酸酯的催化剂及其制备方法和应用
CN114425450B (zh) * 2020-10-13 2023-08-29 中国石油化工股份有限公司 用于制备不饱和碳酸酯的催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN108940368B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
Yang et al. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages
Yang et al. Encapsulating metal nanocatalysts within porous organic hosts
Qin et al. One-step construction of a hollow Au@ Bimetal–Organic framework core–shell catalytic nanoreactor for selective alcohol oxidation reaction
Wang et al. Nanoparticles@ nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size-and shape-selective reactions
Burton et al. Facile, surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts
Yurderi et al. Ruthenium (0) nanoparticles stabilized by metal-organic framework (ZIF-8): Highly efficient catalyst for the dehydrogenation of dimethylamine-borane and transfer hydrogenation of unsaturated hydrocarbons using dimethylamine-borane as hydrogen source
CN108097316B (zh) 一种负载纳米金属颗粒的MOFs纳米材料的制备方法
CN110433864A (zh) 一种mof负载双金属型催化剂的制备及其应用
Fan et al. Oxidation of cyclohexane over iron and copper salen complexes simultaneously encapsulated in zeolite Y
CN108636455B (zh) 一种以核壳结构mof为反应容器的负载型贵金属基催化剂的制备及应用
CN107790184B (zh) 一种具有可控形貌的Pd金属纳米晶体内核的Pd/UiO-66催化剂及其制备方法
Lin et al. ZnO-template synthesis of rattle-type catalysts with supported Pd nanoparticles encapsulated in hollow ZIF-8 for liquid hydrogenation
CN105413712B (zh) 金纳米棒‑CdS‑金纳米粒子复合光催化剂和应用
CN108404987B (zh) 一种提高纳米颗粒@MOFs材料催化效率的方法
Gholampour et al. Simultaneous creation of metal nanoparticles in metal organic frameworks via spray drying technique
CN108607603B (zh) 一种co2合成炔酸催化剂及其制备和应用
CN114160196B (zh) 一种钯团簇催化剂的制备方法及其应用
Lan et al. Geometric effect in the highly selective hydrogenation of 3-methylcrotonaldehyde over Pt@ ZIF-8 core–shell catalysts
CN108940368A (zh) 类沸石骨架封装的金属纳米颗粒催化剂及其制备方法和应用
CN107442180A (zh) 一种MOFs‑rGO负载的Pd纳米催化剂及其制备与应用
Sun et al. A Shell‐by‐Shell Approach for Synthesis of Mesoporous Multi‐Shelled Hollow MOFs for Catalytic Applications
US8962512B1 (en) Synthesis of PD particles by alcohols-assisted photoreduction for use in supported catalysts
CN115999629A (zh) 一种用于α-烯烃氢甲酰化制备醛的多相催化剂及其制备方法和用途
CN110756197B (zh) Ni@Au核壳型纳米催化剂及其合成与应用
CN110394195B (zh) 贵金属基二维金属有机框架复合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200804